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Abstract

Water-quality monitoring in rivers often focuses on the concentrations of sediments and

nutrients, constituents that can smother biota and cause eutrophication. However, the phys-

ical and economic constraints of manual sampling prohibit data collection at the frequency

required to adequately capture the variation in concentrations through time. Here, we devel-

oped models to predict total suspended solids (TSS) and oxidized nitrogen (NOx) concen-

trations based on high-frequency time series of turbidity, conductivity and river level data

from in situ sensors in rivers flowing into the Great Barrier Reef lagoon. We fit generalized-

linear mixed-effects models with continuous first-order autoregressive correlation structures

to water-quality data collected by manual sampling at two freshwater sites and one estua-

rine site and used the fitted models to predict TSS and NOx from the in situ sensor data.

These models described the temporal autocorrelation in the data and handled observations

collected at irregular frequencies, characteristics typical of water-quality monitoring data.

Turbidity proved a useful and generalizable surrogate of TSS, with high predictive ability in

the estuarine and fresh water sites. Turbidity, conductivity and river level served as com-

bined surrogates of NOx. However, the relationship between NOx and the covariates was

more complex than that between TSS and turbidity, and consequently the ability to predict

NOx was lower and less generalizable across sites than for TSS. Furthermore, prediction

intervals tended to increase during events, for both TSS and NOx models, highlighting the

need to include measures of uncertainty routinely in water-quality reporting. Our study also

highlights that surrogate-based models used to predict sediments and nutrients need to bet-

ter incorporate temporal components if variance estimates are to be unbiased and model

inference meaningful. The transferability of models across sites, and potentially regions, will

become increasingly important as organizations move to automated sensing for water-qual-

ity monitoring throughout catchments.
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Introduction

Measuring the concentrations of sediments and nutrients in rivers, and understanding how

they change through time, is a major focus of water-quality monitoring given the potential det-

rimental effects these constituents have on aquatic ecosystems. Such knowledge can help

inform the effective management of our land, waterways and oceans, including World Heri-

tage Areas such as the Great Barrier Reef in the Australian tropics [1,2,3]. In regions domi-

nated by highly seasonal, event-driven climates, such as those in the tropics, high-magnitude

wet-season flows can transport large quantities of sediments and nutrients from the land

downstream in relatively short time frames [4]. The rapidity of change in sediment and nutri-

ent concentrations during high-flow events poses challenges for water-quality monitoring

based on discrete manual sampling of water followed by laboratory measurement of concen-

trations, which is time consuming, costly and typically temporally sparse. Relatively low sam-

pling frequency increases the chances of missing water-quality events, but high flows may

preclude the safety conditions required for manual sampling, and sample collection at the

frequency required to capture change in concentrations may not always be physically or eco-

nomically practical. The spatial sparsity of measurements from manual sampling is also prob-

lematic. For example, the Great Barrier Reef lagoon stretches over 3000 km of coastline, but

the data currently used to validate estimates of sediments and nutrients flowing to the lagoon

are collected from just 43 sites [5]. This lack of data limits knowledge and understanding of

sediments and nutrient concentrations in both space and time.

In situ sensors have the potential to complement or circumvent the need for manual sam-

pling and laboratory analysis, whilst also providing monitoring data at the frequencies

required to capture the full range of water-quality conditions occurring in rivers (e.g. every

15–60 mins). However, in situ sensors currently used to measure sediments and/or nutrients

(e.g. nitrate) have drawbacks related to biofouling and drift, excessive power requirements,

high costs, and/or low accuracy and precision [6]. An alternative is to use in situ sensors at

sites of interest to measure time series of water-quality variables, such as turbidity, conductiv-

ity, and river level (i.e. height), that have the potential to act individually or in combination as

surrogates for sediments and nutrients [7,8]. However, an in-depth understanding of the rela-

tionship between sediment and nutrient dynamics and other water-quality variables is needed

before the latter can be used as surrogate measures.

Turbidity is a visual property of water indicative of its clarity (or lack thereof) due to sus-

pended particles of abiotic and biotic origin that absorb and scatter light. As a result, turbidity

tends to increase during high-flow events in rivers, when waters often contain high concentra-

tions of particles (e.g. sediments and nutrients from runoff-derived soil erosion), which makes

it a popular surrogate for total suspended solids (TSS; e.g. [4]). Turbidity can also increase

when water residence times increase during low flows, due to the resultant concentration of

suspended particles, or when high concentrations of microalgae reduce water clarity. Both tur-

bidity and conductivity of water can change rapidly during flow events. Conductivity reflects

the ability of water to pass an electric current as determined by the concentration of ions,

which can include nitrate and nitrite (oxidized nitrogen; NOx = nitrite + nitrate). As such,

new inputs of fresh water will typically decrease conductivity in rivers as waters rapidly dilute

and water levels rise. In contrast, conductivity tends to increase during low-flow periods and

when water levels decline (see [9] for a detailed discussion). Turbidity and conductivity,

together with river level, thus have the potential to act as a combined proxy for nutrients such

as NOx (e.g. [7,10]). Furthermore, the relationships described above between water level, tur-

bidity and conductivity, and the potential of these variables to act as individual or combined

proxies of river flow, TSS and NOx, are grounded in the vast body of work on flow-based
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relationships with water quality constituents, which can be found even where those relation-

ships are complex, strongly dependent on rare but intense precipitation events, or involve hys-

teresis [4,11,12].

A wide range of modelling techniques have been used to describe the relationship between

sediment and nutrient concentrations and other water quality constituents. For example, Arti-

ficial Neural Networks have been used to predict nitrate from multiple measures including

other nutrient concentrations [13], and standard major axis regression to quantify the rela-

tionship between turbidity and TSS [14]. One of the most common approaches is to use linear

regression to predict TSS from turbidity [4,7,8,11,15,16,17], nitrogen species from turbidity

and conductivity [4,10] and phosphorus species from turbidity [4,7,8,11,16,18]. However,

these regression models typically fail to account for the temporal autocorrelation (i.e. serial

correlation) inherent in water-quality time series and/or the heteroscedasticity in the data.

Presence of such features violates the underlying assumptions (e.g. independent and identi-

cally distributed residuals), which can lead to biased variance estimates, inflated statistical sig-

nificance of predictor variables and thus incorrect inference. Models that account for temporal

autocorrelation and/or heteroscedasticity through the incorporation of random effects and/or

specific variance-covariance structures can produce more accurate and precise predictions

when temporal autocorrelation exists in the data (e.g. [12,19]). Despite the advantages of using

mixed-effects models that account for temporal autocorrelation to predict concentrations of

sediments and nutrients from water-quality time series, they are rarely used for this purpose.

Our key objective was to predict TSS and NOx from high-frequency water-quality data

using models that accounted explicitly for temporal autocorrelation and heteroscedasticity.

We used turbidity (NTU), conductivity (μS/cm) and river level (m) data collected using in situ
sensors in rivers flowing into the Great Barrier Reef lagoon (Fig 1), along with water-quality

data measured in the laboratory, as surrogate covariates. We aimed to assess whether relation-

ships between TSS or NOx and the water-quality surrogates differed (i) among sites and (ii)

between estuarine and fresh waters. Surrogate approaches are often site-specific and as such

suffer from lack of transferability [17]. Thus, we further aimed to assess (iii) whether a single

mixed-effects model fit to the water quality surrogates could be used to predict TSS or NOx

over multiple locations, and when using data collected by in situ sensors. By investigating the

predictive ability of the models, our findings will provide a basis to determine the most

Fig 1. The study region. Study sites (closed circles), rivers and catchment boundaries within north tropical Queensland, Australia (left panel), the Wet

Tropics (MR; middle panel) and Mackay Whitsunday regions (PR and SC; right panel). Closed triangles show the major towns of Cairns, Townsville

and Mackay.

https://doi.org/10.1371/journal.pone.0215503.g001
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effective water-quality surrogates for TSS and NOx, along with the potential generalizability of

the models across locations in the study area.

Materials and methods

Study region and sites

Our three study sites are located in rivers that flow into the Great Barrier Reef lagoon along the

northeast coast of tropical Australia in Queensland (Fig 1). We chose these sites because they

had comprehensive water-quality datasets available containing both laboratory-measured sedi-

ment and nutrient concentrations, as well as high frequency in situ water-quality data from

multiple sensors. Two of the sites (Sandy Creek and Pioneer River) lie within the Mackay

Whitsunday region and the third (Mulgrave River) lies within the Wet Tropics region. These

two regions are characterized by seasonal climate, with higher rainfall and air temperatures in

the ‘wet’ season and lower rainfall and air temperatures in the ‘dry’ season. Although there is

inter-annual seasonal variation in climate and river flow in both regions, the wet season typi-

cally occurs from December to April in the Mackay Whitsunday region, and from November

to April in the more northern Wet Tropics region [20,21,22]. The wet season is typically asso-

ciated with tropical cyclones, monsoonal rainfall and associated event-flows in rivers, and the

dry season with low to zero surface flow.

Pioneer River (21.1441˚ S, 149.0753˚ E) rises in the forested uplands of the Great Dividing

Range in north Queensland [20]. Many of its upper reaches lie within National or State Parks,

whilst land use in the mid and lower reaches is dominated by sugarcane farming. Sandy Creek

(21.2831˚ S, 149.0228˚ E) is a low-lying coastal-plain stream south of the Pioneer River, where

the dominant land use is also sugarcane farming. The Mulgrave River (17.2075˚ S, 145.9264˚

E) in the Wet Tropics World Heritage Area rises, like the Pioneer River, in forested National

Park uplands of the Great Dividing Range and flows through mostly cleared alluvial flood-

plains in its lower reaches [23]. The Pioneer River and Sandy Creek sites (PR and SC) are in

freshwater reaches, and the Mulgrave River site (MR) is in an estuarine reach. The monitored

catchment area of each site is 1466 km2 (PR), 326 km2 (SC) and 789 km2 (MR).

Laboratory and in situ sensor data

The Queensland Department of Environment and Science (DES) has installed an in situ auto-

mated water-quality sensor (YSI EXO2 Sonde attached with an EXO Turbidity Smart Sensor

599101–01 and EXO Conductivity & Temperature Smart Sensor 599870) at each of the three

study sites. Sensors are housed in a flow cell in water-quality monitoring stations on river-

banks; water is pumped at regular intervals from the river to the flow cell, every hour or hour

and a half depending on the site and variable being measured, and sometimes more frequently

during event flows. The sensors measure and record turbidity (NTU) and electrical conductiv-

ity at 25 ˚C (conductivity; μS/cm). Pressure-induction sensors record river level (i.e. height in

meters from the riverbed to the water surface; level, m) every 10 minutes. Time-matched

observations of level for the occasional out-of-step turbidity or conductivity measurement are

provided via linear interpolation of the ten-minute level data. Sensors are equipped with wip-

ers to minimize biofouling, and all equipment are checked and sensors calibrated every six

weeks following manufacturer guidelines. Prior to analysis, all the turbidity, conductivity and

river level data were quality controlled and assured following standard procedures as per the

laboratory data (see below), which for the sensor data included detection and removal of tech-

nical anomalies following the framework outlined in [24].

DES manually collect grab-samples of water approximately monthly, and more frequently

during event flows in the wet season when safety permits, from each site for laboratory analysis

High-frequency water-quality prediction from in-situ sensor data
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of water quality, as part of their Great Barrier Reef Catchment Loads Monitoring Program

[25]. The laboratory data therefore contain unequally spaced observations of water quality

through time. The goal of the program is to track long-term trends in the quality of water

entering the Great Barrier Reef lagoon from adjacent catchments, as part of the Paddock to

Reef program [26]. Collection, storage, transport and laboratory analysis of grab-samples is

conducted under strict quality control and assurance procedures [27,28,29,30]. Samples are

analyzed in the National Association of Testing Authorities credited Science Division Chemis-

try Centre laboratories (Dutton Park, Queensland) for turbidity, conductivity and concentra-

tions of TSS (mg/L) and NOx (mg/L) following standard methods [30]. DES also record river

level on-site on most occasions when grab-samples are collected.

Turbidity, conductivity, TSS and NOx data measured in the laboratory were available from

January 2016 to June 2017 at SC and MR and from January 2016 to October 2017 at PR

(Table 1, Figs 2–4). Turbidity, conductivity and level data measured and recorded in situ by

automated sensors were available from March 2017 to March 2018 at all three sites (Table 1,

Figs 2–4). As such, the data captured an entire water-year for these event-driven systems. This

included the wet-season high-flow period associated with approximately 5–10 high-turbidity

and low-conductivity events, depending on the site, and the dry-season low-flow period (Figs

2–4). Inputs of saline water from groundwater inputs or tidal influence will increase the con-

ductivity of surface waters and confound the relationship between conductivity and NOx. For

this reason, all conductivity observations under tidal influence at MR (i.e. those greater than the

maximum conductivity observed across the two freshwater sites over the same time span,

which was 1100 μS/cm) were removed from the laboratory and sensor data prior to analysis.

The ranges of the laboratory-measured turbidity, conductivity and level data at each site were

comparable and observations exhibited similar patterns through time as the respective turbid-

ity, conductivity and level data from the in situ sensors at each site (Figs 2–4, Table 1), validating

the use of the laboratory data to build models for subsequent prediction using the sensor data.

Statistical analysis

We fit generalized-linear mixed-effects models with a continuous first-order autoregressive

correlation (AR(1)) structure [31] to the laboratory TSS or NOx (i.e. the response) and surro-

gate water-quality variables (i.e. the covariates). The models are of the form:

y ¼ Xbþ ε;

Table 1. Water quality at each study site.

Measure (unit) Source Mulgrave River Pioneer River Sandy Creek

TSS (mg/L) Laboratory 1.0–221 (106) 2.0–609 (193) 1.0–700 (143)

NOx (mg/L) Laboratory 0.02–0.48 (106) <0.01–1.00 (183) <0.01–0.99 (113)

Tur (NTU) Laboratory 1.2–143 (106) 1.3–335 (193) 1.6–542 (143)

Sensor 0.58–396 (6 276) 0.61–503 (6 158) 1.15–430 (5 399)

EC (μS/cm) Laboratory 30–1010 (103) 52–352 (183) 33–988 (113)

Sensor 11.57–1099 (4 958) 54.41–363 (6 163) 29.68–1105 (5 401)

Level (m) Laboratory� 9.94–11.70 (58) 13.98–15.89 (81) 0.46–14.55 (94)

Sensor 9.12–14.24 (37 085) 13.81–16.58 (9 893) 0.46–14.77 (5 401)

The range (minimum to maximum) and number of observations (shown in parentheses) for total suspended solids (TSS), oxidized nitrogen (NOx), turbidity (Tur),

conductivity (EC), and river level at each site.

�Level recorded on-site at the time of water-sample collection.

https://doi.org/10.1371/journal.pone.0215503.t001
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Fig 2. Turbidity of water at each study site. Laboratory-measured (open circles) and in situ sensor-measured turbidity (NTU). Mulgrave River (MR;

purple points), Pioneer River (PR, blue points) and Sandy Creek (SC; light green points).

https://doi.org/10.1371/journal.pone.0215503.g002

Fig 3. Conductivity of water at each study site. Laboratory-measured (open circles) and in situ sensor-measured

conductivity (μS/cm) at Mulgrave River (MR; purple points), Pioneer River (PR, blue points) and Sandy Creek (SC;

light green points).

https://doi.org/10.1371/journal.pone.0215503.g003
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where y is an n-dimensional vector of TSS or NOx collected at times t1,. . .,tn; n is the number

of observations; X is an n × p design matrix of p covariates (including the intercept) collected

at times t1, . . .tn; β is a p-dimensional vector of estimated regression coefficients; and ε is an n-

dimensional vector of zero-mean, normally distributed errors with covariance matrix σ2Λ. The

covariance is defined by a continuous AR(1) structure, such that Corrðεt; εt� 1Þ ¼ �
ti � ti� 1 ,

where ϕ is the parameter in the AR(1) process, which can range between 0 and 1 and defines

how the autocorrelation declines with time. The continuous AR(1) structure accounts for both

the temporal correlation and unequal temporal spacing present in the laboratory time-series

data.

We selected potential covariates for the TSS and NOx models based on plausible mecha-

nisms that could cause changes in TSS or NOx, evidence from the literature, exploratory data

analysis, and the availability of covariates within the laboratory dataset (Fig 5, Step 1; [32]).

Turbidity, conductivity, TSS, NOx and river level were all log10-transformed prior to analyses

to meet model assumptions. We chose the log10-transform because it is commonly used and

has the benefit of being easy to interpret on the transformed scale. Predictions from the models

were back-transformed with bias correction [33] for graphical visualization and assessment of

accuracy and precision with respect to the laboratory TSS and NOx concentrations.

TSS model. Exploratory analyses indicated that including data from all three sites in a sin-

gle TSS model was appropriate; there was a strong and similar positive relationship between

turbidity and TSS at all sites (S1 Fig), reflecting the physical properties of these variables and

the processes underlying water quality dynamics in rivers [34,35]. The suite of covariates we

selected for the TSS model included: turbidity measured in the laboratory; T15, a categorical

Fig 4. Height of water at each study site. River level (m) measured on-site at the time of water sample collection (open circles) and by in situ sensors at

Mulgrave River (MR; purple points), Pioneer River (PR, blue points) and Sandy Creek (SC; light green points).

https://doi.org/10.1371/journal.pone.0215503.g004
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variable representing turbidity < 15 NTU (‘below’) or� 15 NTU (‘above’); site (MR, PR, SC);

and all of their interactions (Fig 5, Step 1). We also included site as a grouping variable in the

temporal correlation structure, to account for within-site correlation (Fig 5, Step 2). We

included T15 because the intercept for the relationship with TSS appeared to change below 15

NTU, particularly at freshwater sites PR and SC (S1 Fig). In addition, 15 NTU is the water-

quality guideline value for turbidity in freshwater streams and rivers in northern Australia

[36].

We used a two-step model-selection process to identify the final TSS model. First, we imple-

mented a backwards-stepwise model-selection procedure to identify the subset of covariates

that had the most support in the data (Fig 5, Step 4a). Parameters were estimated using maxi-

mum likelihood and models were compared using the Akaike Information Criterion (AIC)

[37]. Next, we assessed the predictive performance of the model using a 5-fold cross-validation

(cv) procedure designed specifically for temporally correlated data (Fig 5, Step 6) [38]. Valida-

tion data from each site were created by dividing the complete time series into five blocks of

chronologically ordered observations. Maximum likelihood can produce biased estimates of ϕ
[39] and so the final model was then iteratively refit without the validation data (i.e. each of the

five blocks), using restricted maximum likelihood (REML) for parameter estimation. We then

Fig 5. Model development, selection and prediction for the final total suspended solids (TSS) and oxidized nitrogen (NOx) models. LevelQ is a

categorical variable with two levels based on first, second or third quartiles of the data (Q1, Q2 or Q3). Turbidity, conductivity and level covariates were

all log10-transformed prior to analysis.

https://doi.org/10.1371/journal.pone.0215503.g005
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used the observations from the validation set and the associated cross-validation predictions to

calculate the root mean-square error (cvRMSE) and the 95% prediction coverage value

(cvPC). An r-squared statistic (cvR2) was also generated based on the squared Spearman rank

correlation between the observations and the cross-validated predictions. We chose this

approach because Spearman rank correlation is suitable for time series and models with auto-

regressive correlation structures.

NOx model. Relationships between NOx and the potential covariates conductivity, tur-

bidity (both measured in the laboratory) and river level (measured on-site at the time of water

sampling) were more complex and site-specific than the relationship between turbidity and

TSS (S2–S4 Figs). Therefore, we first fit NOx models for each site separately (Fig 5, Step 1).

The models included covariates for conductivity, turbidity, level and all of their interactions.

We also included a binary grouping variable in the temporal correlation structure based on

river level (Fig 5, Step 2) because concentrations of NOx can vary more considerably during

high flows than more stable flow periods (e.g. [40]). We did not know a priori what the most

suitable cut off would be for the level-based AR(1) structure and so we tested three options for

each site: (i) less than the first quartile (Q1), (ii) less than the median (Q2), and (iii) less than

the third quartile (Q3; Fig 5, Step 3). We then implemented the two-stage model-selection pro-

cedure (Fig 5, Steps 4a,b), using backwards stepwise regression and cross-validation for NOx

in the same general way as for TSS, except that models were fit separately to each site and three

AR(1) structures were tested for each site. This produced nine models (3 sites x 3 AR(1) struc-

tures), which we then refit using REML to calculate a cvRMSE for each. For each site, the

model with the lowest cvRMSE was deemed the best model, reducing the nine models to three.

Although each of these three remaining models had the greatest predictive ability for the rele-

vant site, our aim was to develop a single model that could be applied across all sites. There-

fore, we composited all of the covariates from the three ‘best’ models to create a final model for

NOx (Fig 5, Step 5). We refit this final model using the data from each site separately, using

cross-validation to generate the cvRMSE, cvPC and cvR2 and evaluate the predictive ability (Fig

5, Step 6).

Prediction using data from in situ sensors. After identifying the final models for TSS

and NOx, we fit those models using covariates based on the data from the in situ sensors (i.e.

turbidity, conductivity and/or level, as per the final TSS or NOx model structure), and used

them to make predictions and associated estimates of uncertainty of TSS and NOx, respec-

tively (Fig 5, Step 7). There was limited overlap in the timespans of the laboratory and in situ
sensor data (Figs 2–4), and of course no sensor-measured observations of TSS or NOx on

which to forecast future concentrations. Therefore, we generated the predictions and associ-

ated estimates of uncertainty using an infinite-horizon forecast [41], which assumes that fore-

casting is being made well into the future so that any temporal autocorrelations in the data are

irrelevant.

We used a leave-one-out cross validation (LOOCV) procedure to assess whether the final

models for TSS and NOx fit to the sensor-measured surrogate covariates could accurately and

precisely predict the response (Fig 5, Step7). This took a single observation from the sensor-

measured covariate(s) as the validation dataset and the laboratory data minus a single observa-

tion (time-matched with the sensor validation observation) as the training dataset, which was

fit using the final TSS or NOx model. A prediction was then made using the validation dataset,

and the procedure was repeated for each observation. The laboratory and sensor observation

were rarely synoptic, and so we used only those sensor measurements collected within one

hour of a laboratory measurement (for MR, PR and SC respectively: n = 11, 49 and 28 for TSS;

n = 11, 23, and 30 for NOx) as validation observations. Given the limited size of these data sub-

sets, the LOOCV procedure was a more suitable method than the 5-fold cross-validation
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procedure [38] we used on the much larger, complete datasets of laboratory observations. We

then calculated the cvRMSE, cvPC and cvR2 using the ‘time-matched’ laboratory concentra-

tions of TSS or NOx and the associated LOOCV predicted concentrations.

We performed all statistical analyses in R statistical software [42], using the nlme package

[43] to implement the linear mixed-effects models.

Results

TSS model based on laboratory data

The final TSS model, which minimized the AIC, explained over 90% of the variation in TSS

(cvR2) and had excellent 95% prediction coverage (cvPC = 97.7%; Table 2; Fig 6) based on the

5-fold cross-validation. Although the linear relationship was strong, the model tended to

under-predict at high TSS values, where data were relatively sparse (Fig 6). More specifically,

at observed TSS concentrations greater than c. 100 mg/L, the model marginally over-predicted

at MR, and under-predicted at both PR and SC (Fig 6).

The relatively high correlation parameter value (ϕ = 0.87, with 95% confidence interval of

0.83–0.91) indicated that there was significant temporal autocorrelation in the data captured

by the AR(1) model. The model included laboratory-based covariates for turbidity, site and

T15, as well as interactions between site and turbidity and between T15 and turbidity

(Table 3). TSS had a statistically significant (p< 0.05) and positive relationship with turbidity

across all three sites, with TSS increasing more rapidly per unit rise in turbidity at MR than at

the freshwater sites PR and SC, and when turbidity was� 15 NTU as opposed to< 15 NTU.

NOx model based on laboratory data

NOx models with a grouping structure based on the median value of river level (i.e. Q2) had

the best predictive ability at all of the sites according to the cvRMSE (S1 Table). The combina-

tion of covariates from those models comprised turbidity, conductivity, level, and interactions

between turbidity and level and between conductivity and level, which were all included in the

final NOx model (Fig 7) along with median river level (Q2, as relevant to each site) in the

grouping structure. Correlation parameters for this model indicated that temporal autocorre-

lation in the data was captured by the AR(1) structure (MR: ϕ = 0.86, with a confidence inter-

val (CI) of 0.75–0.93; PR: ϕ = 0.86, CI = 0.72–0.94; SC: ϕ = 0.87, CI = 0.73–0.94).

The three site-specific models had poor predictive ability, explaining 6–22% of the variation

in NOx only (Table 2). At observed NOx concentrations greater than c. 0.1 mg/L NOx, the pre-

dictions had almost no relationship with the observations at any of the sites (Fig 7). In addi-

tion, the statistical significance and direction of the covariates’ effects in the model also

differed among sites (Table 4). For example, the relationship between conductivity and level

Table 2. Cross validation statistics for the final total suspended solids (TSS) and final oxidized nitrogen (NOx)

models as applied to data across all or each site.

Model cvR2 (%) cvRMSE (mg/L) cvPC (%)

TSS (all sites) 90.4 29.4 97.7

NOx (MR) 19.5 0.10 82.8

NOx (PR) 6.2 0.16 84.0

NOx (SC) 21.6 0.29 83.0

MR, Mulgrave River; PR, Pioneer River; SC, Sandy Creek; cross validation, cv; r-squared, R2; root mean-square error,

RMSE; 95% prediction coverage, PC.

https://doi.org/10.1371/journal.pone.0215503.t002
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was significant (p< 0.01) and positive at SC, but non-significant at MR and PR. The relation-

ship between turbidity and level was significant (p< 0.01) and negative at PR, but non-signifi-

cant at MR and SC. However, such differences may be expected given that the final model

contained covariates and interactions were not significant at every site (S1 Table).

TSS predictions from sensor data

The predictive accuracy of the final TSS model that included covariates from in situ sensors

was high. The cvR2 and cvRMSE (86.5% and 25.1 mg/L; Table 5, Fig 8) from the LOOCV

Fig 6. Observed versus 5-fold cross-validated (cv) prediction values of total suspended solids (TSS) from the final TSS model. TSS (mg/L; back-

transformed with bias correction). Data from each site shown in purple (Mulgrave River, MR), blue (Pioneer River, PR) and light green (Sandy Creek,

SC). Black lines show the 1:1 relationships between observations and predictions.

https://doi.org/10.1371/journal.pone.0215503.g006

Table 3. Coefficient estimates for the final TSS model fit to fit to laboratory data from all three sites.

Coefficient Estimate SE t-value p-value

Intercept -0.28 0.098 -2.86 0.0044

Turbidity 1.24 0.068 18.15 < 0.0001

Site(PR) 0.11 0.069 1.59 0.1134

Site(SC) 0.002 0.082 0.024 0.9807

T15(Below) 0.41 0.089 4.60 < 0.0001

Turbidity × Site(PR) -0.21 0.055 -3.80 0.0002

Turbidity × Site(SC) -0.13 0.061 -2.11 0.0354

Turbidity × T15(Below) -0.21 0.071 -2.95 0.0034

TSS (total suspended solids, mg/L) and turbidity (NTU) were log10-transformed. MR, Mulgrave River; PR, Pioneer River; SC, Sandy Creek; SE, standard error.

https://doi.org/10.1371/journal.pone.0215503.t003
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showed that the accuracy of the model was similar to that of the model fit to laboratory data

(cvR2 = 90.4% and cvRMSE = 29.4 mg/L; Table 2). Although the 95% prediction coverage

decreased from 97.7% to 88.6%, this is still reasonable given the relatively small sample size.

Furthermore, all TSS predictions made from the sensor-measured turbidity covariate fell

within the ranges of TSS measured in the laboratory (Table 1), except for some of the ‘future’

predictions at MR (Fig 9) when sensor-measured turbidity in late 2017 and early 2018 was

high relative to that measured in the laboratory between January 2016 and June 2017 (Fig 2).

The higher TSS values predicted at MR during the latter half of 2017 are therefore reasonable.

TSS at SC was under-predicted at higher concentrations (> c. 100 mg/L; Fig 8), which was

similar to our findings from the final TSS model fit to laboratory data (Fig 6). Finally, predic-

tion intervals for all sites tended to be wider during peak events than at other times, which is to

be expected when dealing with a log-normal response (Fig 9).

NOx predictions from sensor data

Accuracy and precision of the NOx predictions produced by the model fit to the sensor-based

covariates exceeded that of the final model fitted to all of the laboratory data (Tables 2 and 5,

Fig 10). The cvRMSE values were substantially smaller (MR: 0.05 vs 0.10; PR: 0.10 vs 0.16; SC:

0.11 vs 0.29) and the cvR2 values higher (MR: 56.9 vs 19.5%; PR: 6.6 vs 6.2%; SC: 71.1 vs

21.6%). In addition, the 95% prediction intervals were more reliable in the model fit to sensor

data and captured the true values 100% of the time, with prediction intervals tending to be

wider during events than non-events (Fig 11). At SC, there was a close relationship between

Fig 7. Observed versus 5-fold cross-validated (CV) prediction values of oxidized nitrogen (NOx) from the final NOx model. NOx (mg/L; back-

transformed with bias correction). Data from each site shown in purple (Mulgrave River, MR), blue (Pioneer River, PR) and light green (Sandy Creek,

SC). Black lines show the 1:1 relationships between observations and predictions.

https://doi.org/10.1371/journal.pone.0215503.g007
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the predictions and the observations at concentrations < c. 0.15 mg/L, but values greater than

those tended to be under-predicted (Fig 10). There was also consistent over-prediction at MR

and no relationship between predicted and observed NOx at PR (Fig 10).

The range of NOx values predicted from the sensor covariates using all of the sensor-mea-

sured observations at both PR and SC fell within the range of NOx values measured in the lab-

oratory. Although the maximum value predicted at MR (30.6 mg/L) was much greater than

that measured in the laboratory (0.48 mg/L; Fig 11, Table 1), the elevated NOx values (>10

mg/L) predicted at MR were associated with peak values of the sensor-based covariates in late

2017 and early 2018 (turbidity, conductivity and/or level, depending on the site; Figs 2–4). As

with TSS predictions, these high-concentration NOx predictions were in the ‘future’ (i.e.

occurring after the last available laboratory observation); thus, the future NOx concentrations

could conceivably have exceeded the concentrations observed in 2016 and early 2017.

Table 4. Coefficient estimates for the final NOx model fit to fit to laboratory data from each site.

Site Coefficient Estimate SE t-value p-value

MR Intercept -24.22 16.35 -1.48 0.1446

Turbidity -0.50 3.27 -0.15 0.8799

Conductivity 14.99 9.12 1.64 0.1062

Level 20.92 15.93 1.31 0.1948

Conductivity × Level -13.47 8.87 -1.52 0.1348

Turbidity × Level 0.50 3.21 0.16 0.8759

PR Intercept -36.84 53.52 -0.69 0.4933

Turbidity 18.88 6.00 3.15 0.0024

Conductivity 0.71 22.02 0.03 0.9745

Level 31.32 45.86 0.68 0.4967

Conductivity × Level -0.79 18.87 -0.04 0.9668

Turbidity × Level -16.15 5.14 -3.14 0.0024

SC Intercept -2.42 0.69 -3.50 0.0007

Turbidity 0.13 0.15 0.87 0.3884

Conductivity 0.64 0.24 2.68 0.0089

Level -4.37 1.41 -3.10 0.0026

Conductivity × Level 1.47 0.47 3.09 0.0027

Turbidity × Level 0.62 0.33 1.84 0.0688

TSS (total suspended solids, mg/L), turbidity (NTU), conductivity (μS/cm) and river level (m) were log10-transformed. MR, Mulgrave River; PR, Pioneer River; SC,

Sandy Creek; SE, standard error.

https://doi.org/10.1371/journal.pone.0215503.t004

Table 5. Leave-one-out cross validation statistics for the final total suspended solids (TSS) and final oxidized

nitrogen (NOx) models.

Model cvR2 (%) cvRMSE (mg/L) cvPC (%)

TSS (all sites) 86.5 25.1 88.6

NOx (MR) 56.9 0.05 100

NOx (PR) 6.6 0.10 100

NOx (SC) 71.1 0.11 100

Sensor-measured covariates were used as the validation dataset. Models applied across data from all (TSS) or each

site (NOx). Cross validation, cv; r-squared, R2; root mean-square error, RMSE; 95% prediction coverage, PC.

https://doi.org/10.1371/journal.pone.0215503.t005
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Discussion

Surrogate potential and model generalizability

The transferability of models across sites, and potentially regions, will become increasingly

important as organizations move to automated sensing for water-quality monitoring through-

out catchments. We found a consistent, positive relationship between TSS and turbidity in

both estuarine and fresh waters across study locations in different catchments separated by up

to c. 700 km. In addition, the final TSS model had high predictive ability across all sites, indi-

cating that a single mixed-effects model could be used to predict sediment concentrations

from high-frequency, in situ sensor data over multiple locations in the study region. Whilst

other studies have shown that turbidity is a useful surrogate of sediments in rivers, particularly

when models account for temporal correlation in the data (e.g. [19]), our findings additionally

suggest that a model based on sensor-measured turbidity has strong potential to be generaliz-

able across locations, at least for the studied Great Barrier Reef catchments.

The complex relationships between NOx and its potential surrogates made the develop-

ment of a generalizable model more difficult than it was for TSS. The predictive ability of the

composite final NOx model fit to the turbidity, conductivity, and river level covariates at each

site was substantially lower than that of the TSS model. Mismatch in the timing of laboratory

and sensor observations was also a potential source of variability and bias in the leave-one-out

cross-validations for the NOx model, particularly during events when rapid changes in the

covariates’ values can occur. However, such mismatch would also have affected the leave-one-

out cross-validations for the TSS model, which maintained good predictive ability regardless.

Furthermore, the NOx model performed differently depending on the site to which it was

Fig 8. Observed total suspended solids (TSS, mg/L) versus predicted TSS (mg/L) from the leave-one-out cross validation (LOOCV).

https://doi.org/10.1371/journal.pone.0215503.g008
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applied, with a poor relationship between the observed and predicted concentrations at PR in

particular, and a tendency to under-predict at SC for NOx concentrations above c. 0.1 mg/L.

Consequently, we would not recommend that the NOx model developed herein be used as a

generalized model across the study region.

Fig 9. Total suspended solids (TSS, mg/L) at each site predicted using the final TSS model and in situ sensor

turbidity data (March 2017–2018). Mulgrave River (MR, purple), Pioneer River (PR, blue) and Sandy Creek (SC,

light green). Gray shading shows upper and lower boundaries of the 95% prediction interval, and the inner lines the

predicted TSS concentrations through time. Gaps indicate periods of missing data in the sensor time series. Closed

circles show the laboratory-measured TSS concentrations within the same period.

https://doi.org/10.1371/journal.pone.0215503.g009
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The lack of generalizability of the NOx model likely relates to the complexity of dissolved

nutrient dynamics in rivers, which are influenced by multiple and interacting factors including

physical, chemical and biological processes [34,35]. For example, different timings and appli-

cations of fertilizers to agricultural land, different spatial configurations and types of soil and

agricultural land (e.g. livestock grazing versus sugarcane cropland), and variation in the uptake

of nutrients by phytoplankton, may all differentially influence dissolved nutrient concentra-

tions among sites and through time [44,45,46]. Inclusion of additional covariates such as sea-

sonal variation in fertilizer application, flow-weighted land use [47], soil characteristics and/or

time since the last rainfall event may improve model fits and resultant predictions if more site-

specific NOx models are desired. We also acknowledge that our findings are based on one year

of data alone; inclusion of successive years of data, as they become available, may more com-

prehensively describe the temporal trends in water quality and the relationships between vari-

ables, which may in turn improve our ability to predict NOx across sites using surrogate

measures. The NOx model findings also highlight that development of reliable, low-cost

nitrate sensors [6] will remain an important management goal for the study region, and likely

elsewhere, in the absence of suitable surrogate measures that can predict NOx across multiple

sites with high accuracy and precision (e.g. dissolved oxygen [13]).

Important information for managers and scientists are also provided by the estimates of

uncertainty associated with each prediction. Our results showed that the prediction intervals

reliably captured the true TSS and NOx values for the final models fit to in situ sensor data,

regardless of the predictive accuracy of the models. Prediction intervals were wider during

events when the predicted TSS and NOx concentrations increased rapidly, corresponding with

sudden new inputs of fresh water, and this has modelling implications. For instance, if such

models were used to predict sediment and nutrient concentrations during events in the study

region, end-users would need to be aware that the uncertainty around those predictions may

be quite high, especially at the upper end of the prediction interval. Furthermore, if the pre-

dicted concentrations were then used to estimate high-frequency sediment and nutrient loads,

as most water-quality monitoring programs transitioning to automated in situ sensors would

Fig 10. Observed oxidized nitrogen (NOx; mg/L) versus predicted NOx (mg/L) from the leave-one-out cross

validation.

https://doi.org/10.1371/journal.pone.0215503.g010
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desire, the associated estimates of uncertainty could be propagated through the model and

accounted in loads estimates [48]. Knowledge of the magnitude of prediction uncertainty is

important because it provides managers with information about where and when they can be

most or least confident in model predictions [49] in order to prioritize future sampling efforts

Fig 11. Oxidized nitrogen (NOx, mg/L; log10 transformed) at each site predicted using the final NOx model and in
situ sensor turbidity, conductivity and level data (March 2017–2018). Mulgrave River (MR, purple), Pioneer River

(PR, blue) and Sandy Creek (SC, light green). Gray shading shows upper and lower boundaries of the 95% prediction

interval, and the inner lines the predicted TSS concentrations through time. Gaps indicate periods of missing data in

the sensor time series. Closed circles show the laboratory-measured NOx concentrations within the same period.

https://doi.org/10.1371/journal.pone.0215503.g011
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and management actions effectively [50,51]. We therefore recommend that measures of uncer-

tainty be included routinely in water-quality reporting.

Future directions and concluding remarks

Significant investments are being made to change management practices and reduce the quan-

tities of sediments and nutrients entering rivers and, eventually, the Great Barrier Reef lagoon

[26]. However, measuring the downstream impacts of these investments is challenging because

current water-quality monitoring relies on a relatively small number of sites at or near river

mouths. This makes pinpointing where the largest sources of sediments and nutrients are

within a catchment difficult. The ability to predict TSS and NOx using data from relatively

low-cost in situ sensors will allow networks of sensors to be deployed throughout catchments

as technologies advance, creating numerous benefits for management. Firstly, the number of

water-quality monitoring sites would increase significantly. Secondly, as the amount of data

increases, the opportunity to develop near-real time statistical models for TSS and NOx

increases, which could then be used to create dynamic predictive maps of sediment and nutri-

ent concentrations throughout entire catchments. This would provide managers with greater

situational awareness of where and when water-quality targets are being breached and would

allow prioritization of land management actions in space and time to further reduce land-

based impacts on the Great Barrier Reef lagoon.

Our study highlights that models fit to in situ water-quality data can be used to generate

accurate predictions of TSS at both freshwater and estuarine sites. As the number of monitor-

ing locations increases, spatial statistical models for stream networks [52] could be used to gen-

erate predictions, with estimates of uncertainty, across entire catchments. These methods

could also be extended into both space and time (i.e. spatio-temporal models [53]), the need

for which still clearly exists [32,54]. Such efforts, in combination with the methods developed

herein, could revolutionize the way water quality is monitored and managed.
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