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Abstract

In people, colonization with Clostridioides difficile, the leading cause of antibiotic-associated
diarrhea, has been shown to be associated with distinct gut microbial features, including
reduced bacterial community diversity and depletion of key taxa. In dogs, the gut microbiota
features that define C. difficile colonization are less well understood. We sought to define
the gut microbiota features associated with C. difficile colonization in puppies, a population
where the prevalence of C. difficile has been shown to be elevated, and to define the effect
of puppy age and litter upon these features and C. difficile risk. We collected fecal samples
from weaned (n = 27) and unweaned (n = 74) puppies from 13 litters and analyzed the
effects of colonization status, age and litter on microbial diversity using linear mixed effects
models.

Colonization with C. difficile was significantly associated with younger age, and colonized
puppies had significantly decreased bacterial community diversity and differentially abun-
dant taxa compared to non-colonized puppies, even when adjusting for age. C. difficile colo-
nization remained associated with decreased bacterial community diversity, but the
association did not reach statistical significance in a mixed effects model incorporating litter
as a random effect.

Even though litter explained a greater proportion (67%) of the variability in microbial
diversity than colonization status, we nevertheless observed heterogeneity in gut microbial
community diversity and colonization status within more than half of the litters, suggesting
that the gut microbiota contributes to colonization resistance against C. difficile. The coloni-
zation of puppies with C. difficile has important implications for the potential zoonotic transfer
of this organism to people. The identified associations point to mechanisms by which C. diffi-
cile colonization may be reduced.
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Introduction

Clostridioides difficile is a spore-forming anaerobic, gram-positive bacillus that is the leading
cause of antibiotic-associated and nosocomial diarrhea in humans [1, 2] and a significant
enteric pathogen in many species of animals [3-5]. Administration of antibiotics is the pri-
mary risk factor for the development of C. difficile infection (CDI) [1, 6, 7]. However, patients
can develop CDI outside of a healthcare facility without the prior use of antibiotics, and com-
munity-acquired CDIs are now thought to account for one quarter of infections [8, 9].

The source of community-acquired infections has not been definitively established. People
asymptomatically colonized with C. difficile are potential reservoirs [10], but zoonotic, envi-
ronmental, and food-borne transmission to people has also been posited. The presence of C.
difficile in companion animals has been documented since the 1980’s, and dogs and cats were
posited as a potential reservoir species as early as 1983 [11]. Given the close contact between
people and their pets, colonized or infected companion animals may represent an important
transmission source for this pathogen. As in other species of animals [12-15], including
human infants [16-18], C. difficile is highly prevalent in the feces of puppies [19-21]. Under-
standing how colonization is regulated in puppies might reduce their colonization with C. dif-
ficile and the potential transmission to pet owners.

The role of the commensal gut microbiota in C. difficile colonization resistance has been
demonstrated in people [22-26] and in certain species of animals [27-29]. Human subject and
animal model studies suggest key microbiome features, including community diversity and
specific taxa, are involved in protection against C. difficile. No such association has been dem-
onstrated in dogs, and studies of the association between the administration of antibiotics (and
the consequent disruption of the gut microbiota) and C. difficile colonization/infection in dogs
have yielded mixed results [30, 31]. The evolution of the neonatal canine gut microbiota has
been described, with increasing diversity and taxonomic shifts occurring with increasing age
[32]. As has been found in human infants [24], it is possible that certain taxonomic patterns
and a lack of microbial community diversity in the gut may be associated with a lack of coloni-
zation resistance to C. difficile.

The objective of this study was to define the gut microbiota features associated with C. diffi-
cile colonization in puppies and to define the effects of puppy age and litter on the risk of colo-
nization. The results could contribute to a better understanding of C. difficile colonization in
puppies and their potential to serve as a reservoir for this pathogen.

Materials and methods
Samples

Freshly voided fecal samples were obtained from 1) pet owners bringing their puppies to the
pediatric service at the Veterinary Hospital of the University of Pennsylvania, 2) shelters, and
3) breeders in the greater Philadelphia area who collected fecal samples from their puppies and
shipped them in sterile conical screw-cap collection containers on ice overnight to the labora-
tory. No puppies were systemically ill at the time of sampling according to the pet owners, shel-
ter workers or breeders who provided the samples, and none of the puppies had received
antimicrobial therapy. After collection, samples were split into sterile cryogenic vials. One ali-
quot was processed for culture within 24 hours, while others were stored at -80°C and pro-
cessed subsequently in batch for the 16S ribosomal RNA (rRNA) sequencing. Frozen samples
were thawed only once prior to processing. This study was approved by the Institutional Ani-
mal Care and Use Committee of the University of Pennsylvania (protocol number 806539).
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Anaerobic culture and toxigenic testing

A 0.5 g pellet of formed fecal sample was mixed with 0.5 ml of 100% ethanol. The mixture
remained for 60 minutes at room temperature before being inoculated on BBL CDSA/Clostri-
dioides difficile selective agar (BD; Sparks, Maryland, USA) and Columbia CNA agar (Remel;
Lenexa, KS, USA). Inoculated plates were incubated at 35°C under anaerobic growth condi-
tions for seven days and checked for growth every other day. Suspect colonies were identified
and isolated. Isolates were confirmed to be C. difficile by Maldi-TOF MS identification and/or
RapID ANA II System (ThermoFisher Scientific, USA). Confirmed isolates of C. difficile were
inoculated into BHI broth and/or cooked meat broth to induce toxin production. The broth
was incubated anaerobically at 35°C for 48 hours. The supernatant was collected and tested by
EIA (TechLab C. difficile Tox A/B II) for toxin production.

16 S sequencing

DNA was extracted from the fecal samples using Qiagen Power Soil DNA Extraction Kit (Qia-
gen, Hilden, Germany) using 0.25 g of each fecal pellet as input. Extraction and PCR blanks
were used to control for environmental contamination and mock communities were used to
control for contamination across wells. The V4 region of the 16S rRNA gene was amplified
using barcoded primers for use on the Illumina platform [33]. The concentration of each PCR
product was determined using a PicoGreen assay, and samples were normalized to equal
amounts and pooled. Sequencing was performed using 250-base paired-end chemistry on an
[lumina MiSeq instrument with an average read depth of 49,436 reads per sample. Three sam-
ples were dropped due to low read depth (<4000 reads per sample), raising the average read
depth to 50,860 reads per sample. Sequences were demultiplexed using the Quantitative
Insights into Microbial Ecology (QIIME2) software [34], and denoised using DADA2 [35].
Sequences were aligned using Maaft [36] and phylogenetic reconstruction was performed
using Fasttree [37]. Finally, sequences were rarefied to 11,700 reads per sample for calculating
alpha- and beta-diversity metrics.

Analysis

The effects of age and litter on culture status were analyzed by logistic regression. Metrics of
alpha and beta diversity of the fecal microbiota were calculated using the giime diversity core-
metrics-phylogenetic function in giime2 and visualized using QIIME2 and Emperor [38].

The alpha diversity was calculated for each sample using the Shannon index. Differences in
alpha diversity between C. difficile-infected and uninfected puppies were assessed using (1)
univariable linear regression (N = 98), (2) linear regression controlling for puppy age (N = 98),
and (3) a linear mixed effects model (LMM) on all unweaned puppies, controlling for age and
using litter as a random effect (N = 70) using the Ime4 package in R [39]. The effect of C. diffi-
cile colonization status on microbiota alpha diversity was assessed by comparing the likeli-
hoods of the LMM with and without the fixed effect of C. difficile infection status using an
analysis of variance. Finally, the effect of C. difficile toxigenicity on alpha diversity among C.
difficile-positive puppies was assessed using univariable linear regression (N = 35).

The effect of C. difficile culture status on the per-specimen bacterial community diversity of
the fecal microbiota was first assessed by univariable analysis. Univariable analysis was also
performed to identify clustering of specimens by colonization status, using the PERMANOVA
test applied to pairwise distances as determined by the beta diversity metrics Bray-Curtis,
unweighted unifrac, and weighted unifrac. The effect of C. difficile culture status on beta diver-
sity of the microbiota adjusted for puppy age and litter was assessed using mixed effects PER-
MANOVA. Age and culture status were considered fixed effects, while litter was considered a
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random effect. All comparisons were two-tailed, and P < 0.05 was considered to represent sta-
tistical significance. PERMANOVA tests were performed using the vegan package [40] as
implemented in R v.3.5.2 (R Core Team, 2018). Principal coordinates analysis (PCoA) was per-
formed using phyloseq [41] to visualize the clustering of samples by various parameters (C. dif-
ficile status, age, litter).

A taxonomic classifier trained on the GreenGenes database with 99% Operational taxo-
nomic units (OTUs) was used to assign relative abundances of OTUs for each sample calcu-
lated at the genus level. The relative contributions of different microbial taxa that characterize
the differences between C. difficile culture positive and negative puppies were assessed through
linear discriminant analysis effect size (LEfSe) using the tools found at http://huttenhower.sph.
harvard.edu/galaxy/. OTUs were filtered such that only those with >5% relative abundance in
one or more samples and with LDA scores > 2.0 were considered to be significant. All plots
were generated using the ggplot2 package in R [42].

Results
Subject characteristics and C. difficile status

A total of 101 samples were collected from puppies ranging in age from 2-28 weeks. Seventy-
four of the samples were obtained from 13 different litters of puppies that were still with their
dam, and 27 samples were obtained from older weaned puppies that had been placed with
families. The distribution of age was bi-modal, with the age of unweaned puppies in litters
being significantly lower (p = 0.01) than that of the weaned puppies (Fig 1). The mean (SD)
age of the unweaned puppies was 3.7 (0.8) weeks, whereas that of the weaned puppies was 11.4
(2.9) weeks. Litters ranged in size from 3 to 12 puppies, with a mean (SD) of 5.8 (2.9) puppies.
The 13 litters included one litter each of Corgis, Golden Retrievers, Great Danes, Labrador
Retrievers, French Bulldogs, Springer Spaniels, and Boerboels, two litters of Goldendoodles,
and four litters of Collies. Most of the weaned puppies were mixed breed, although there was
one Coton de Tulear, one Cocker Spaniel and one Corgi.

Thirty-seven samples (36.3%) were culture-positive for C. difficile, and 19 (51%) of these C.
difficile isolates were toxigenic. All of samples from the weaned puppies (n = 27) were culture-
negative. In 6 of the 13 litters of puppies, colonization status was the same for all puppies (i.e.,
all puppies within the litter were culture-negative or culture-positive). Age was significantly
associated with culture status, with younger puppies being significantly more likely to harbor
C. difficile (OR = 0.46, p = 0.004, 95% CI = 0.27-0.78).

Association between C. difficile status, age and microbiota diversity in all
puppies
Microbiota community structure of 101 puppy fecal samples was assessed by sequencing and
analyzing the V4 region of the 16S rRNA gene. Three culture-negative samples were dropped
from subsequent analyses because of low coverage. Alpha diversity was significantly lower
(p<0.001) in the C. difficile-positive fecal samples than in the C. difficile-negative fecal samples
(Fig 2). When adjusting for age, the effect of C. difficile status on microbial community diver-
sity was mitigated but persistent (p-value increased 2 orders of magnitude from 1.6 e to 6e™).
There was no difference in diversity between puppies colonized with toxigenic C. difficile and
non-toxigenic C. difficile (p = 0.66).

Beta diversity, or the dissimilarity between microbiota communities, was assessed using
Bray-Curtis, weighted unifrac, and unweighted unifrac. Univariable analysis showed a signifi-
cant difference between microbial communities using all three metrics (p = 0.0001) even when
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Fig 1. Distribution of the ages of puppies sampled in the greater Philadelphia region.
https://doi.org/10.1371/journal.pone.0215497.9001

controlling for age (p<0.0002) (Fig 3). The Bray-Curtis dissimilarity is summarized in a PCoA
plot (Fig 4).

We found several taxa of bacteria to be differentially enriched in the C. difficile-positive and
-negative samples. C. difficile-positive samples were enriched with members the Escherichia,
Bacteroides, Enterococcus and Parabacteroides genera (Fig 5). Taxa from the Escherichia genus
were found at relative abundance levels exceeding 10% in 48 samples and 50% in 15 samples.
The relative abundance of Escherichia was associated with much of the clustering along the
axis of principal component 1 (Fig 4, S1 Fig). In contrast, C. difficile-negative samples were
enriched with members of the Prevotella, Megamonas, and Streptococcus genera. Unweaned
puppies that were not colonized with C. difficile had higher relative abundance of taxa from
the Clostridia genera than unweaned puppies that were colonized with C. difficile.

Association between C. difficile status, age, litter, and microbiota diversity
in unweaned puppies

To evaluate the effect of litter on the observed association between fecal bacterial community
diversity and C. difficile colonization, we restricted analysis to the 70 unweaned puppies from
13 litters for which litter data were available. In seven litters, there was a mix of colonized and
non-colonized puppies. (litters 3, 8,9, 10, 11, 12, 13, Fig 5). In six litters, all of the puppies were
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Fig 2. Boxplot of the Shannon diversity indices among C. difficile-positive puppies (left) and C. difficile-negative puppies (right). Boxes
display the median, first and third quartiles, and whiskers extend to the minimum and maximum, while points represent outliers.

https://doi.org/10.1371/journal.pone.0215497.9002

of the same colonization status (all negative: litters 2,4,5; all positive: litters 1, 6, 7; Fig 5).
When controlling for litter, C. difficile status had no effect on microbial alpha diversity

(p = 0.547). Among these unweaned puppies, the litter explained most (67%, p = 1.0e-4) of the
dissimilarity between bacterial communities, and colonization with C. difficile was no longer
significantly correlated with microbiota composition (p > 0.1). PCoA analysis showed distinct
clustering within most litters, but not necessarily by colonization status within a litter (S2 Fig).
Even when controlling for breed, we found that litter remains a strong predictor of alpha and
beta diversity. Among the 21 collies from four litters, Shannon alpha and beta diversity were
significantly correlated with litter (p = 0.001 according to Kruskal-Wallis test and p = 0.001
according to PERMANOVA test, respectively).

Discussion

Asymptomatic carriage of C. difficile is common in the young of many species, including
humans [43], dogs [20], pigs [12, 44, 45], and cattle [46]. In people, colonization with C. diffi-
cile has been shown to be associated with altered gut microbial diversity [24, 26, 47-49], but no
studies have examined this association in young dogs. In adult dogs, C. difficile colonization
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Fig 3. Non-metric Multidimensional Scaling (NMDS) plots and box plots show the dissimilarity in bacterial communities in C. difficile-
positive and C. difficile-negative fecal samples from puppies in the greater Philadelphia area. Ellipses on NMDS plots display 95%
confidence intervals. P-values were calculated using PERMANOVA. The dissimilarity among C. difficile positive puppies is displayed in the left
boxplots and the dissimilarity between culture positive and negative puppies is displayed in the right boxplots. Boxes display the median, first
and third quartiles, and whiskers extend to the minimum and maximum, while points represent outliers.

https://doi.org/10.1371/journal.pone.0215497.9003

was associated with reduced gut bacterial species and diversity [50]. In puppies, we found that
the association between lower bacterial community diversity and C. difficile colonization was
statistically significant even when accounting for age, and certain bacterial taxa were preferen-
tially associated with C. difficile colonization.

As has been found in other studies [21, 32], both colonization with C. difficile and reduced
gut microbial diversity in puppies were significantly associated with young age. Similar associ-
ations have also been found in human studies [24, 26, 47, 51]. However, within litters, this
association was no longer significant. Puppies of a same litter are exposed to the same environ-
ment, consume the same diet (i.e., dam’s milk), and are cophrophagic. It is therefore not sur-
prising that similar gut microbial communities are seen among puppies of a litter, as we found
and as was found in a previous study of 30 German Shepherd litters [52]. Microbial communi-
ties, presumably along with C. difficile, are likely shared among littermates. However, even
within litters, we noted heterogeneity in the fecal microbiota (Fig 5) and in colonization status.
In more than half of the litters (7/13), there were colonized and non-colonized puppies,
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Fig4. A.Bray-Curtis principal coordinate analysis (PCoA) shows clustering of fecal samples from puppies in the greater
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that were no longer in litters and resided with their owner. B. Relative abundance of the genus Escherichia increases along the
x-axis of the PCoA.

https://doi.org/10.1371/journal.pone.0215497.9004

suggesting that either our sample sizes were too small to detect a significant association
between colonization status and microbial diversity, or other unmeasured factors were associ-
ated with colonization. The heterogeneity in the fecal microbiota within a litter may be analo-
gous to the cage effect in mice studies [53, 54], where significant interindividual differences in
intestinal microbiota were seen among mice within a cage, even though they were bred and
raised in highly controlled similar conditions.

While the association between gut microbial diversity and C. difficile colonization status
did not attain statistical significance within a litter, it is likely that features of the gut micro-
biota nevertheless contribute to the establishment and persistence of C. difficile. We found C.
difficile-positive samples to be enriched with members of the Escherichia, Bacteroides, Entero-
coccus and Parabacteroides genera, and C. difficile-negative samples with members of the Pre-
votella, Megamonas, and Streptococcus genera. Almost identical trends were found for taxa of
the Escherichia, Parabacteroides, Enterococcus, Prevotella and Megamonas genera in one study
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and C. difficile-negative fecal samples from puppies in the greater Philadelphia area. Only organization taxonomic units with >5% relative
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comparing C. difficile non-colonized, asymptomatically colonized and infected human adults
[26], and for taxa of the Parabacteroides, Prevotella, Paraprevotella and Enterococcus genera in
another study of non-colonized and colonized human adults [49]. Similar findings were found
for the Bacteroides genera in a study of human infants [51]. In particular, increased relative
abundances of taxa from the Parabacteroides and Enterococcus genera are thought to be the
result of a blooming phenomenon associated with reduced ecological niche competition in
people with CDI [49, 55, 56]. In adult dogs, at the phylum level, C. difficile colonization was
associated with increases in the relative abundance of Fusobacteria, Proteobacteria, and Firmi-
cutes, and decreases in Verrucomicrobia, Bacteroidetes, Euryarchaeota, and Actinobacteria
[50]. This is consistent with our finding of increased relative abundance of Escherichia and
Enterococcus and decreased relative abundance of Prevotella, but inconsistent with our other
findings.

Among unweaned puppies, we found that noncolonized puppies had higher relative abun-
dances of taxa from the Clostridia genera compared to colonized puppies. Consistent with this
finding, other studies have postulated that bacterial species that are phylogenetically related to
C. difficile and share niches and compete for similar resources could provide colonization
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resistance against toxigenic C. difficile [57, 58]. In fact, colonization with non-toxigenic C. diffi-
cile has been shown to prevent infection with toxigenic C. difficile in hamsters and people fol-
lowing administration of antibiotics [58-60].

In contrast to our findings, one study showed that noncolonized human infants had lower
relative abundance of taxa from the Escherichia genera than colonized infants [24], while sev-
eral other studies found Bacteroides spp in greater relative abundance in non-colonized
human infants, children and adults [26, 47, 61, 62]. It is unclear why these discrepancies were
observed in our study. Both Bacteroides spp, which are used as markers of a healthy gut in peo-
ple [62], and E. coli are found in the feces of healthy puppies [32, 63]. Bacteroides spp are
found in increasing relative abundance with increasing age, while E. coli levels are significantly
higher in younger (less than 21 days) puppies than in older (greater than 42 days) puppies
[32]. Our findings underscore that puppies colonized with C. difficile retain microbial gut fea-
tures consistent with those of healthy animals. Additionally, while depletion and enrichment
of certain bacterial taxa in colonized puppies were mostly consistent with what is seen in peo-
ple, certain distinctions point to possible species-specific interactions between various bacterial
taxa and C. difficile in the gut microbiota.

While some of the general trends were similar in our study and in several human studies, it
is important to note that GI microbiota differ significantly by species, and extrapolation from
human to animals is not always possible or prudent. In one study, for example, microbial
groups associated with C. difficile colonization status were significantly different for people
and poultry [64]. However, the canine gut microbiome has been shown to be more similar to
the human gut microbiome than that of pigs and mice [65, 66], perhaps due to their shared
environments and diets, which might be why we observed similar microbiological trends in
puppies and people.

The large proportion of puppies colonized with C. difficile has important implications for
the potential zoonotic transmission of this organism. While it is likely that a puppy’s litter (and
resultant environmental exposures) is the main determinant of colonization status, it is also
likely that the puppy’s microbiota has an effect. The small number of puppies in each litter and
the limited number of litters with colonized and non-colonized puppies precluded us from
establishing whether the effect was statistically significant, but microbial community signa-
tures that were consistent with what has been observed in people suggest that the microbiota
has a role to play in colonization resistance. The protective role of the gut microbiota is partic-
ularly important when considering the fact that many puppies sold in pet stores (up to 95%)
receive prophylactic antibiotics prior to shipping, as was recognized in a recent outbreak of
Campylobacteriosis associated with puppies in pet stores [67]. This could result in gastrointes-
tinal dysbiosis and a resultant predisposition to harboring pathogens such as C. difficile. More
research is needed to better understand the interaction between the gut microbiota and coloni-
zation and infection with C. difficile in dogs, especially at the level of the litter; define the rela-
tionship between dog-colonizing C. difficile strains and human colonizing strains; and
understand how interventions that reduce colonization in human pets may impact human dis-
ease prevention.

Our study had several limitations. The first is the possibility of false-negative culture results.
C. difficile is difficult to isolate and is very sensitive to even low levels of oxygen in the environ-
ment [68], and other authors [69] have found recovery rates to be higher when using a broth
enrichment step, which we did not perform. Second, we did not have information on puppies’
sex, husbandry status, environmental exposures (including contact with other animals, chil-
dren, etc.), or dietary status, all of which can impact the gut microbiome. Finally, the cross-sec-
tional nature of the study precludes the possibility of drawing any conclusions about the
duration of colonization.
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Conclusions

We found that puppies with C. difficile-positive fecal samples had reduced gut microbiota
diversity, even when adjusting for the puppy’s age, and that there were differentially-abundant
taxa in C. difficile-positive and C. difficile-negative fecal samples. These differences in microbial
features may be permissive in promoting the colonization and establishment of C. difficile,
though longitudinal studies are needed to confirm this hypothesis. Though this effect was not
observed at the level of the litter, and even though the litter explained a large proportion of the
gut microbiota diversity, heterogeneity in the gut microbiota and in C. difficile colonization
within litters was observed in more than half of the litters, suggesting that the gut microbiota
and potentially other unmeasured factors contribute to colonization resistance against C. diffi-
cile in puppies.

Supporting information

S1 Fig. Principal component analysis (PCA) biplot shows the genera that drive the differ-
ences in microbiome community structure among A) all weaned and unweaned puppies

(n =98) and B) only unweaned puppies (n = 70). The PCoA was calculated using the prcomp
function and visualized using the biplot function in R.

(TIF)

S2 Fig. Principal coordinate analysis (PCoA) plot showing clustering of fecal samples from
seven litters of puppies in the greater Philadelphia area where puppies within litters had
different C. difficile colonization status.

(TIF)
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