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Abstract

Individuals with stroke are often left with persistent upper limb dysfunction, even after treat-

ment with traditional rehabilitation methods. The purpose of this retrospective study is to

demonstrate feasibility of the implementation of an upper limb myoelectric orthosis for the

treatment of persistent moderate upper limb impairment following stroke (>6 months). Meth-

ods: Nine patients (>6 months post stroke) participated in treatment at an outpatient Occu-

pational Therapy department utilizing the MyoPro myoelectric orthotic device. Group

therapy was provided at a frequency of 1–2 sessions per week (60–90 minutes per session).

Patients were instructed to perform training with the device at home on non-therapy days

and to continue with use of the device after completion of the group training period. Outcome

measures included Fugl-Meyer Upper Limb Assessment (FM) and modified Ashworth Scale

(MAS). Results: Patients demonstrated clinically important and statistically significant

improvement of 9.0±4.8 points (p = 0.0005) on a measure of motor control impairment (FM)

during participation in group training. It was feasible to administer the training in a group set-

ting with the MyoPro, using a 1:4 ratio (therapist to patients). Muscle tone improved for mus-

cles with MAS >1.5 at baseline. Discussion: Myoelectric orthosis use is feasible in a group

clinic setting and in home-use structure for chronic stroke survivors. Clinically important

motor control gains were observed on FM in 7 of 9 patients who participated in training.

Introduction

Stroke is a leading cause of long term disability in the United States[1]. Traditional rehabilita-

tion does not restore normal motor control for all stroke survivors, and upwards of 50% live

with persistent upper limb dysfunction[2]. This leads to diminished functional independence
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and quality of life[3]. Motor learning-based interventions have shown promise[4]. However in

today’s health care milieu, for those with chronic motor deficits, provision of the intensive

rehabilitation necessary to provide motor learning-based interventions is challenging. There-

fore, new treatment methods are needed under these constraints.

An emerging technology that warrants further investigation is myoelectric control which har-

nesses the user’s EMG signal to power a custom fabricated orthotic device. When the user activates

a target muscle, the EMG signal from that muscle signals a motor to produce a desired movement.

Myoelectric control has been studied in different populations[5], but its study in stroke has been

limited. One commercially available upper limb myoelectric device is the MyoPro motion-G

(Cambridge, MA). The MyoPro motion-G provides assistance to the weak upper limb and allows

the patient to perform movement they otherwise are unable to complete. Preliminary evidence

suggests it may be effective in improving motor control[6–9] and one study showed improvement

in self-reported function and perception of recovery[10]. This device has been utilized in the occu-

pational therapy (OT) clinic at our medical center for 5 years. The purpose of this study is to dem-

onstrate feasibility of administering treatment with the MyoPro using a group therapy design in a

cohort of patients with chronic stroke whose progress with standard OT had plateaued.

Methods

This is a retrospective analysis of data collected longitudinally while chronic stroke patients partic-

ipated in group training with a MyoPro in our clinic. Training was provided by OT staff. This

study was approved by the IRB of the Louis Stokes Cleveland Department of Veterans Affairs

Medical Center (IRB #17030-H23). Approval was obtained to review and analyze patient data.

MyoPro treatment candidate selection criteria

Patients were assessed for eligibility to receive a MyoPro once they reached a plateau in func-

tional performance following traditional OT. Inclusion criteria included: regular/consistent

therapy attendance; trace muscle contraction in major upper limb muscle groups; adequate

passive ROM to don/doff device; intact cognition; active shoulder flexion�40˚ and shoulder

abduction�20˚; ability to don/doff device with/without a reliable caregiver. Nine patients

were prescribed a MyoPro at the conclusion of their regular OT.

Technology

The MyoPro Motion-G is a custom fabricated, myoelectric upper limb orthosis worn on the

paretic upper limb (Fig 1). It supports the affected limb and assists the user to perform flexion/

extension of the elbow and opening/closing of the hand. Sensors within the device detect the

patient’s EMG signal during volitional muscle contraction. When an EMG signal is sensed,

motors within the device provide assistance to complete the desired movement (i.e. hand

opening/closing). Using computer software, the therapist adjusts the EMG level at which

device movement is triggered. The degree of movement produced by the device is proportional

to the recorded EMG level produced by the patient’s volitional effort. Patients interface with

the device through a push button control panel and via software on a computer. Users can

switch between 4 individual SINGLE modes (BICEP mode, TRICEP mode, hand CLOSE

mode, and hand OPEN mode), and are able to train multi-joint movement by practicing com-

binations of these modes (i.e. BICEP+hand CLOSE modes). Additionally, users can combine

both EMG sensors simultaneously at a given joint (i.e. DUAL mode elbow, which combines

the biceps and triceps EMG sensors; DUAL mode hand, which combines the finger flexor and

extensor EMG sensors) or all 4 EMG sensors can be used simultaneously (DUAL mode elbow

+ DUAL mode hand). To practice joint movement in a SINGLE mode, the patient is required
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to produce an adequate EMG signal to reach the therapist-adjusted threshold. To return to the

starting position their EMG must drop below this threshold (i.e. the patient must learn to relax

the muscle). To trigger movement in DUAL mode, both flexor and extensor EMG signals are

taken into account. The motor is activated after a corresponding muscle’s EMG exceeds its

threshold and is greater than the EMG in the antagonist muscle. For example, elbow extension

is achieved when triceps EMG exceeds its threshold and biceps EMG is less than triceps EMG.

This practice facilitates relearning coordinated control of agonist/antagonist muscles across

the joint as opposed to abnormal co-activation of both muscles which precludes practice of

such movement.

Intervention

An orthotist performed custom fabrication of each patient’s device along with initial fitting

and setting of device parameters for training. A group training paradigm was employed where

patients were scheduled for 1–2 weekly group sessions (60–90 minutes/session). Patients

unable to attend the group sessions received individualized MyoPro training (n = 2).

Patient selection. Patients entered the group when they were deemed plateaued in their

traditional therapies. The group accepted new patients using a rolling enrollment schedule-i.e.

an individual was offered entry into the group when they were plateaued with their traditional

OT. Because of this, patients joined the group at different time points and therefore some have

data that spans a longer duration. Upon discontinuation of group therapy, patients were issued

a home exercise program to complete with their MyoPro and encouraged to use the device in

performing everyday activity. In this data analysis, we labeled the first phase (i.e. when they

attended group therapy training) as the Supervised phase and the following phase as the Unsu-

pervised phase (when group therapy was discontinued). For the Unsupervised phase, all

patients had access to their device as it was purchased for their personal use. However, 5/9

patients did not attend any further therapy sessions after the group training ended and there-

fore received no further evaluation. Four patients had sought out additional visits with OT (1

session every 5–10 weeks) after the conclusion of the group therapy and were subsequently re-

evaluated. It is notable that some patients did not have a device for some period of time during

this Unsupervised period as it was being upgraded to the most current model.

Fig 1. Schematic drawing of an individual reaching for an object without and with the device donned. With assist

of the device, the goal directed movement of reaching for the object can be completed. The Cleveland FES Center

created this illustration and has granted the authors permission to publish it in this manuscript.

https://doi.org/10.1371/journal.pone.0215311.g001
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Intervention: Training progression. At each session, patients donned the device. Then, a

training progression was employed (Table 1). First, patients performed preparatory exercises

using SINGLE modes (i.e. BICEP mode or hand CLOSE mode). During BICEP mode training,

patients were instructed to bend their elbow and then relax back to the start position. For hand

CLOSE mode, they practiced closing their hand and relaxing back to the start position. After

preparatory activities, therapeutic exercises were performed in either the seated or standing

position. These exercises were designed to prepare patients for activities that required sus-

tained contraction or contraction across multiple joints in preparation for function. For exam-

ple, patients performed multiple repetitions of BICEP mode with instruction to bend their

elbow, sustain a position for a fixed time, and then relax the elbow followed by completing

hand CLOSE mode, holding for a period of time and relaxing. Depending on individual abil-

ity, exercises also included combined hand and elbow motions to work on separate and simul-

taneous elbow and hand motions. As patients progressed, they would also perform functional

task training with the device including sorting laundry, placing utensils away, sorting tools,

holding a pot while stirring with unaffected hand, and sweeping.

Outcomes. Outcome measures were the Fugl Meyer Upper Limb Assessment (FM) and

modified Ashworth Scale (MAS). FM is an impairment measure of motor control, [11] with

good validity,[12] intra-rater and inter-rater reliability,[13] and is recommended for use in

chronic stroke trials[14] (0–66 points; a higher score equals less impairment). MAS is a com-

monly used clinical test of muscle tone with high interrater reliability (kappa = 0.92 or percent

of agreement = 97.4%)[15]. It consists of a six-point scale (0, 1, 1.5, 2, 3 and 4) used to grade

tone elicited during passive movement[16]. A score of 0 corresponds to normal tone while a

rating of 4 corresponds to rigidity. The timing of data collection varied among patients. How-

ever, they were all evaluated at around the 12-week time point of the device use. Outcomes

were collected without the device donned.

Statistical analysis. Data analysis included descriptive statistics and use of paired t-tests.

Two-sided Type I error level of 0.05 was adopted for hypothesis testing.

Results

Table 2 provides patient characteristics (n = 9). Fig 2 provides information regarding the

change in FM score over time along with individual patient participation patterns in the group

training sessions. Patients were moderately impaired at initial data collection according to FM

Table 1. Summary of group training protocol.

1. Don on Device

2. Warm Ups/Preparatory Activities (Sitting &/or Standing)

a. Bend elbow, relax/extend– 25 reps (BICEP or DUAL MODE)

b. Extend elbow, relax/flex– 25 reps (TRICEP or DUAL MODE)

c. Close hand, relax/open– 25 reps (CLOSE or DUAL MODE)

d. Open hand, relax/close– 25 reps (OPEN or DUAL MODE)

3. Therapeutic Exercises (Seated &/or Standing)

a. Bend elbow and Hold 10+ seconds, then Relax– 25 reps

b. Close Hand and Hold 10+ seconds, then Relax– 25 reps

c. Yo-yos: Bend elbow low, middle, full (~45�, 90�, full range)– 25 reps
��relax and extend elbow between each rep

d. Combined motions:

i. Close hand>Bend Elbow>Open Hand>Extend Elbow– 25 reps

ii. Open hand>Bend Elbow>Close Hand> Extend Elbow>Open Hand– 25 reps

4. Functional Tasks

a. Sorting tools, laundry, utensils

5. Turn off/doff Device

https://doi.org/10.1371/journal.pone.0215311.t001
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(Table 3). Four of 9 patients had their dominant arm affected by stroke (patients 1,2,3 and 9,

Table 3).

Supervised phase: change in FM score

There was variability in the length of time patients trained with the device during the Super-

vised phase (11.9–62 weeks), however, the majority of patients (7/9) had testing completed

around the 12-week point of using the device (Table 3 and Fig 2). Two patients were not re-

tested until the 26th (patient#1) and 62nd (patient#4) weeks of participation in the MyoPro

group therapy. For those who were evaluated at about 12 weeks of working in the Supervised

phase, there were significant changes in FM (7.3 (5.9) points; p = 0.017; Table 3). The timing

of 12-week testing varied from 8 to 14 weeks. At the conclusion of the Supervised phase,

patients had participated in group training an average of 32.16(12.8) hours and a statistically

significant change from the initial FM score was observed (9.0(4.8) points; p = 0.00053;

Table 3). Sixty percent of patients improved FM between the 12-week testing and the end of

the Supervised phase (mean length of Supervised phase was 30 weeks). Seven out of nine

patients demonstrated a FM change score�5 points at the end of the Supervised phase which

is within or above the minimal clinically important difference (MCID) range of 4.25–7.25

points[17]. Patient#7 had non-device OT sessions twice per week in addition to the group

device visits.

Table 2. Patients’ Characteristics (N = 9).

Age in years, mean (SD) 62 (9.5)

Female, % 11%

Years since stroke, mean (SD) 4.3 (3.7)

Stroke Hemisphere, % Left 67%

Stroke Type, % ischemic 78%

https://doi.org/10.1371/journal.pone.0215311.t002

Fig 2. Change in Fugl-Meyer score over time for each group therapy participant. The change in FM score from the initial evaluation is shown with different

symbols for each patient. Vertical tick marks correspond to therapy sessions using the device for each individual of the group.

https://doi.org/10.1371/journal.pone.0215311.g002

Myoelectric orthosis use in rehabilitation of the arm after stroke

PLOS ONE | https://doi.org/10.1371/journal.pone.0215311 April 12, 2019 5 / 12

https://doi.org/10.1371/journal.pone.0215311.t002
https://doi.org/10.1371/journal.pone.0215311.g002
https://doi.org/10.1371/journal.pone.0215311


Unsupervised phase: FM score

Only 4 patients had FM scores obtained following the Unsupervised phase (Table 3 and Fig 2).

These 4 patients demonstrated some worsening, although most were still improved compared

with the initial score. Patient#1 had initial FM = 24, gained 8 points during the Supervised

phase, but lost 4 FM points during the Unsupervised period even though they were still attend-

ing near-weekly standard OT sessions without the device. Patient#5 had initial FM = 53,

gained 3 and then lost 3 FM points. However, patient#5 had additional twice weekly OT ses-

sions without the device for the 1st half the Supervised phase and weekly sessions for the 2nd

half. During the Unsupervised phase this patient did not use the device half the time due to

device upgrading and participation in a research study. Patient#6 had initial FM = 29, gained 8

and then lost 4 FM points during the Unsupervised phase; this patient also had biceps, forearm

and hand botulinum toxin treatments for spasticity during the Unsupervised phase. Patient#9

had initial FM = 45, gained 2, but lost 9; the patient did not have the device for 2 months prior

to the final evaluation.

Change in MAS score

At the initial testing, abnormal muscle tone (MAS>0) was detected in elbow flexors of 6

patients and in wrist flexors of all tested patients (Table 4). Data is missing for patient#7 (initial

test) and patient#4 (after device use). Although there was no statistically significant pre to post

change observed with a group-wise comparison (p>0.05), improvements were observed for

some patients. For elbow flexor tone, there was an improvement of MAS score for 3 patients

and worsening in 1 patient. The improvement for patient#6 from 1.0 to 0 was made approxi-

mately 4 months after receiving the device and 9 months prior to reporting initiation of botuli-

num toxin treatments. Worsening of MAS score occurred in patient#5 who had very mild

MAS of 1 at the initial test. For wrist flexors, there was an improvement in MAS score for 4

patients and worsening in one. Importantly, for 3 patients with MAS > 1.5 at initial testing,

there was a consistent improvement in MAS score during the Supervised phase.

Table 3. Device use and change in Fugl-Meyer scores.

Supervised Phase Unsupervised phase

Patient Initial

FM

12-week testing

(actual week #)

FM change @

12-week testing

Supervised phase

duration (weeks)

FM change during

Supervised phase

Unsupervised phase

duration (weeks)

FM change post

Supervised phase

FM change

from initial

test

1 24 26.0 +8 10.0 -4 +4

2 24 11.6 +14 35.6 +12 na +12

3 29 11.0 +16 24.0 +18 na +18

4 41 62.9 +12 na +12

5 53 8.0 +3 27.4 +3 24.0 -3 0

6 29 14.0 +1 37.0 +8 21.1 -4 +4

7 42 8.0 +8 19.0 +10 na +10

8 14 10.4 +7 27.0 +8 na +8

9 45 11.9 +2 11.9 +2 40.4 -9 -7

Mean

(SD)

33.4

(12.5)

10.7 (2.1) 7.3

(5.9)�
30.1

(14.5)

+9.0

(4.8)†
24.0

(12.6)

-5.0

(2.7)

+6.8

(7.4)‡

� t-test p = 0.017
† t-test p = 0.00053
‡ t-test p = 0.026

na–not applicable as these patients did not have re-evaluation following an Unsupervised phase

https://doi.org/10.1371/journal.pone.0215311.t003
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Discussion

This study provides evidence that it is feasible to utilize a myoelectric upper limb orthosis

using a group training paradigm for the rehabilitation of moderately impaired chronic stroke

survivors. The main finding is that clinically important changes on a motor control perfor-

mance measure were observed in individuals with chronic stroke who participated in group

training. Of note, these patients were deemed plateaued with traditional OT services and were

being discharged from standard care. There was a trend toward decreased flexor tone in indi-

viduals presenting with elevated flexor tone.

The gains on FM in our clinical practice setting study are comparable to many studies con-

ducted in the research setting with subjects who were less impaired. For example, in research

studies of less impaired individuals (baseline FM 39–55 points), patients demonstrated gains

ranging from 6–9 points on FM[18–26]. For studies with similar impairment level to our

cohort (baseline FM 27–36 points), treatment gains on FM ranged from 2–14 points[27–35].

Participants across these research studies trained an average of 24.9 hours (range of 7–48

hours), similar to the number of face to face hours for our patient cohort. It is encouraging

that our results are comparable to many of these studies even though they were obtained in a

clinical treatment setting under the constraints of current health care delivery where patient

selection and therapy administration is less strictly controlled than in the rehabilitation admin-

istered within the research setting. Translation of research into actual clinical practice is an

area of great interest and significant challenge in rehabilitation science[36,37]. Within the

research setting, rehabilitation typically has strict subject inclusion/exclusion criteria, duration,

intensity and content of care. Our patient cohort reflects real world variability in impairment

levels and the care that is specifically tailored to meet the needs of the individual receiving the

care (as opposed to a standardized research intervention). Our observation, therefore, presents

a novel training paradigm that would be feasible within our current clinical practice setting

using a group therapy approach and motor learning as the basis for intervention.

The MyoPro allows practice of three important motor learning principles. First, it encour-

ages coordinated, volitional muscle activation. With EMG-biofeedback the patient learns to

Table 4. Modified Ashworth scale scores before and after device use.

Elbow Flexors Wrist Flexors

Patient Pre� Post Change Pre Post Change Time with MyoPro

(weeks)†

1 0.0 0.0 0.0 1.0 1.0 0.0 46.0

2 4.0 1.5 -2.5 4.0 1.5 -2.5 47.0

3 0.0 0.0 0.0 1.5 1.0 -0.5 27.1

4 1.0 NC 1.0 NC

5 1.0 1.5 0.5 2.0 1.5 -0.5 4.3

6 1.0 0.0 -1.0 1.0 1.0 0.0 17.0

7 NC 1.0 NC 0.0 40.1

8 1.5 1.5 0.0 1.0 1.5 0.5 39.0

9 2.0 1.0 -1.0 3.0 2.0 -1.0 19.4

Mean

(SD)

1.3

(1.3)

0.8

(0.7)

-0.6

(1.0)

1.8

(1.1)

1.2

(0.6)

-0.6

(1.0)

30.0

(15.5)

NC = not collected

� MAS prior to receiving the MyoPro
† Time elapsed after receiving the MyoPro

https://doi.org/10.1371/journal.pone.0215311.t004
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selectively contract a desired muscle in a coordinated manner that would be difficult to accom-

plish without the device. Often when a patient attempts a movement (i.e. grasp preparation),

involuntary co-contraction of the antagonist occurs. This abnormal co-contraction limits

opening of the hand in preparation for grasp. Furthermore, due to disparity of muscle strength

between the agonist/antagonist pairings (i.e. greater strength in the finger flexors versus the

extensors), the ability to selectively practice finger extension is precluded. Others have studied

whether myoelectric control can address pathological co-contraction with some promising

findings[38,39]. In one study, EMG biofeedback training was used to decouple the anterior

deltoid and bicep muscles, and patients demonstrated more selective muscle activation with

modest improvement on FM[38]. Improved coordination of agonist/antagonist pairs was also

demonstrated with a hybrid EMG-driven robotic/neuromuscular electrical stimulation system

and there was a clinically significant improvement on FM[39]. The Myopro employs biofeed-

back in a targeted manner to allow for very consistent, incremental practice of individual mus-

cle activation as well as coordination training of agonist/antagonist pairings. The second

principle is motivation for repeated practice which is encouraged by the reward of movement

the device delivers. Moderately/severely impaired patients are usually discouraged in their

repeated task practice because they do not experience the product of their hard labor. This

device compensates for patients’ physical disabilities and produces a desired joint movement

which motivates additional practice. Furthermore, the training is ultimately aimed at comple-

tion of meaningful functional tasks which provides further motivation. Finally, the device

allows for incremental progression of training. Both single and multi-joint movement exer-

cises can be performed; exercise can be fragmented; device settings (i.e. EMG threshold) can

be adjusted to introduce additional challenge; and practice can be done in different body pos-

tures. Overall, the combination of EMG biofeedback with a wearable powered upper limb

orthosis presents a powerful therapeutic tool that fits well within the framework of motor

learning.

Patients were scheduled for 1–2 weekly sessions. However, high attendance variability was

noted with some patients (i.e. patient#4; Fig 2) while others attended a greater number of ses-

sions within a shorter time frame (i.e. patient# 3; Fig 2). Despite this variability, patients

improved individually on the main study outcome measure. It is reasonable to suggest that

consistent gains across all participants may have occurred because patients had access and

were encouraged to practice with their device in the home setting.

Our study results were obtained in a clinical setting using a group therapy training para-

digm. This is important for a few reasons. First, our study demonstrates that clinically impor-

tant treatment gains can be made in chronic stroke patients with persistent motor control

deficits in an actual clinical setting, as opposed to a controlled research laboratory. Further-

more, training was implemented efficiently in a group training paradigm (4:1 patient to thera-

pist ratio). Delivery of care in a group setting allows more patients to benefit from limited

rehabilitation resources and evidence suggests it can be as effective as individual therapy in

stroke[40]. Additionally with group therapy training, patients were given the opportunity to

train over several months. This may have allowed sufficient time to address persistent motor

control impairments and allow for consolidation of gains. Of note, patients in our cohort had

plateaued in traditional OT, and with exception of a few were being discharged from therapy.

However, they were given the opportunity to try this novel training approach. Clinically

important and statistically significant gains were made on the FM after therapists assessed the

patients to be plateaued with traditional services. Though efficacy of group training with the

device cannot be determined due to small sample size and variability of training parameters,

our results provide groundwork for further examination of this training paradigm to be con-

sidered in addressing persistent deficits following stroke.
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Mitigation of elevated flexor muscle tone was demonstrated in several patients. Three

patients showed a decrease in elbow flexor tone and 4 patients showed a decrease in wrist

flexor tone by the end of the study. The variability in the muscle tone data is likely due to small

sample size and/or inclusion of patients who did not initially present with tone or presented

with mildly increased tone. Furthermore, muscle tone management may require regular use of

the device. Future research will be needed to evaluate the effect of myoelectric orthotics on

management of spasticity.

Data for the Unsupervised phase is limited in two ways. First, only 4 of 9 patients were re-

evaluated. Second, there were long periods when patients did not have full access to their

device as it was being upgraded. As a result, much of the time participants were without their

device and could not continue their independent training. During the Unsupervised phase, we

observed degradation in motor control performance according to FM for all patients. Non-use

of the device may result in deterioration of motor performance, although this conclusion is

preliminary. Our results suggest that further study is warranted to determine whether regular

home use of the device is needed to maintain gains made during supervised training.

Several limitations of the current study constrain interpretation of our findings. Two main

limitations were the inconsistent timing with which testing was completed and variability in

treatment doses across different patients. Additionally, this was a retrospective analysis of clin-

ical care delivered to a small, heterogeneous group of stroke survivors and data was not avail-

able on patients’ adherence with the home exercise program. However, given that this was an

actual clinical setting and not a designed clinical trial, our data may be more representative of

clinical practice patterns in chronic stroke. Finally, we report only measures of impairment,

thus limiting our interpretation of findings in terms of function and quality of life. More

robust measurement across multiple domains is necessary to further elucidate how the device

impacts patient care and functional performance.

Conclusions

In a group clinical setting, it was feasible to implement a myoelectric upper limb orthosis with

chronic stroke survivors. Clinically important and statistically significant gains were made on

a measure of upper limb motor control. The results may be explained by the motor learning

based functionality of the device. Further study is warranted in a larger cohort.
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