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Charles University, Hradec Králové, Czech Republic, 3 Department of Oncology, Institute of Clinical

Sciences, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden

* daniel.giglio@pharm.gu.se

Abstract

Radiotherapy is an important therapeutic approach against cervical cancer but associated

with adverse effects including vaginal fibrosis and dyspareunia. We here assessed the

immunological and oxidative responses to cervical irradiation in an animal model for radia-

tion-induced cervicitis. Rats were sedated and either exposed to 20 Gy of ionising radiation

given by a linear accelerator or only sedated (controls) and euthanized 1–14 days later. The

expressions of toll-like receptors (TLRs) and coupled intracellular pathways in the cervix

were assessed with immunohistofluorescence and western blot. Expression of cytokines

were analysed with the Bio-Plex Suspension Array System (Bio-Rad). We showed that

TLRs 2–9 were expressed in the rat cervix and cervical irradiation induced up-regulation of

TLR5, TRIF and NF-κB. In the irradiated cervical epithelium, TLR5 and TRIF were increased

in concert with an up-regulation of oxidative stress (8-OHdG) and antioxidant enzymes

(SOD-1 and catalase). G-CSF, M-CSF, IL-10, IL- 17A, IL-18 and RANTES expressions in

the cervix decreased two weeks after cervical irradiation. In conclusion, the rat uterine cervix

expresses the TLRs 2–9. Cervical irradiation induces immunological changes and oxidative

stress, which could have importance in the development of adverse effects to radiotherapy.

Introduction

Cervical cancer is the fourth most common cancer form among women [1]. While earlier

stages are treated with surgery, advanced stages of cervical cancer are normally treated with

radiotherapy alone or in combination with chemotherapy. The understanding on what hap-

pens in the normal tissue surrounding the tumour of the cervix upon exposure of radiation is

at present lacking. Radiotherapy may cause vaginal mucosal atrophy, elastosis, fibrosis and

vaginal stenosis and as a consequence dyspareunia [2, 3]. While the immune system has been

studied in other irradiated tissues such as the colon [4], the lung [5] and the urinary bladder

[6], the immune system of the irradiated cervicovaginal tract has not been studied. Pattern rec-

ognition receptors (PRRs) are part of the innate immune system and respond to pathogen-

associated molecular patterns (PAMPs), which are constituted of microbial pathogens, and
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damage-associated molecular patterns (DAMPs). Toll-like receptors (TLRs) are an important

group of receptors among PRRs. TLRs are expressed in different tissues including the cervix

and respond to the exposure of bacteria and viruses thereby activating an immunological

response [7]. Studies show that the cervix of the rabbit expresses TLRs 2, 3, 4, 5, 6, 8 and 10

[8]. Activation of TLRs induces intracellular activation of myeloid differentiation primary

response 88 (MyD88) and TIR-domain-containing adapter-inducing interferon-β (TRIF) and

via transcriptional factors (e.g. NFκB) may induce cytokine release [9].

It is tempting to assume that radiation causes the release of antigens from tumour cells and

surrounding tissue activating DAMPs such as TLRs [10]. Numerous studies are undergoing to

test TLR agonists in the therapy against cancer [11]. The TLR 7/8 agonist imiquimod is used in

the therapy of HPV-related intraepithelial neoplasia including of the cervix and vagina [12].

The understanding of the immunological events following irradiation of the cervix could

mean discovery of potential targets in the therapy of cervical cancer as well as finding thera-

peutic approaches to prevent the development of adverse effects to radiotherapy such as fibro-

sis. Activation of certain immunological pathways may lead to later development of fibrosis as

has been demonstrated for radiation-induced dermal fibrosis, colonic fibrosis and pulmonary

fibrosis [4, 13, 14]. In an animal model for radiation cystitis, we observed that radiation may

suppress TLR4 and immunoregulatory pathways and affect the antioxidative system of the uri-

nary bladder [6, 15]. Therefore, we presently assessed in an animal model how the innate

immune system and antioxidative system of the cervix respond to the exposure of high-dose

ionising radiation in the early phase following cervical irradiation. The radiation dose of 20 Gy

used and the time window of two weeks assessed in the present model were chosen based on

our findings in our rat model of radiation cystitis [6].

Materials and methods

Uterine cervix irradiation

Sprague-Dawley female rats (200–250 g; n = 49; CD IGS rat, Charles River, Germany) had free

access to food and water. On the day of cervix irradiation, rats were sedated with pentobarbi-

tone and medetomidine (50 mg/kg im and 10 μG/kg ip) and placed in the supine position with

the legs placed on the abdomen (to keep the legs away from the radiation field). The uterine

cervix was then radiated with one fraction of 20 Gy given by a linear accelerator (Varian Medi-

cal Systems Inc., Palo Alto; 6 MV). Radiation was given in two side-fields to minimize the

exposure of the spinal cord. One dose of 20 Gy corresponds to an equivalent dose of 92 Gy in 2

Gy fractions (assuming α/β = 3). Control rats were only sedated. Rats were euthanized 1, 3, 7

and 14 days after uterine cervix irradiation by an overdose of pentobarbitone.

Microscopical examination of cervical specimens

The thickness of the epithelium and the submucosa and the degree of infiltration of granulo-

cytes were estimated in a blindly manner. The average thickness of the epithelium and the sub-

mucosa was calculated from nine randomly positions of each cervical specimen. The number

of granulocytes in the cervical submucosa was graded 0 to 5 (0 = solitary granulocytes in the

submucosa, 3 = 2–3 zones in the submucosa with high concentration of granulocytes, 5 = pre-

dominant part of the submucosa with high concentration of granulocytes).

Immunohistofluorescence

Sections of cervical specimens (6 μM) were deparaffinised in xylene and rehydrated in decreas-

ing concentrations of ethanol (99–95%) and tap water and washed in phosphate-buffered
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saline (PBS; Life technologies Ltd, Paisley, UK). The sections were boiled for 30 min in citrate

buffer (pH 7.5) for antigen retrieval and incubated for two hours with CuSO4 solution to

quench autofluorescence (Sigma-Aldrich, St. Louis, MO, USA). Unspecific protein binding

was blocked by incubating sections for one hour in 5% goat serum (diluted in PBS). Incubation

with the primary antibody (diluted in 1% goat serum in PBS; see S1 Table) occurred overnight

at 4˚C. The next day the sections were washed in PBS and incubated with the secondary anti-

body (1:250; 1% goat serum in PBS; see S1 Table) for one hour. After washes in PBS, sections

were dehydrated in increasing concentration of ethanol (95–99%). Prolong Gold Antifade

Reagent with DAPI (Life technologies) was applied on the sections and cover glasses were then

mounted. The average pixel intensity of antigen staining in one representative area of epithe-

lium, submucosa, smooth muscle and submucosal blood vessel wall in every cervix specimen

was measured with Photoshop (version 12.0.4).

Immunohistochemistry for CD3+ lymphocytes

To detect CD3+ lymphocytes in the cervical tissue, HRP/DAB immunohistochemistry was

performed (Abcam; Mouse and Rabbit Specific HRP/DAB (ABC) Detection IHC Kit;

ab64264). In brief, after deparaffinization and hydration (see above), the sections were blocked

with hydrogen peroxide. Antigen retrieval was then performed as above and protein block was

applied on the sections. Incubation with the primary antibody against CD3 occurred overnight

at 4˚C. Sections were the next day incubated with biotinylated goat anti-polyvalent followed

by streptavidin peroxidase followed by applying DAB chromogen mixed with DAB substrate

on the sections for 5 min. After counterstaining with Mayer’s hematoxylin (Histolab Products

AB, Göteborg, Sweden) the sections were washed in tap water and dehydrated in increasing

concentrations of ethanol and xylene. Sections were covered with Pertex mounting medium

(Histolab Products AB) and cover slips. The average number of CD3+ lymphocytes present in

the epithelium and submucosa per three vision fields (x100) was counted in the cervical speci-

mens (n = 7).

Protein estimations and western blot analysis

Cervix specimens were homogenized in homogenization buffer containing 0.1% phosphatase

inhibitor cocktail 2 (Sigma-Aldrich) and 0.5% protease inhibitor cocktail (Sigma-Aldrich),

centrifuged and the supernatants were recovered. The Pierce BCA Protein Assay Kit (Thermo

Scientific, Rockford, IL, USA) was used to determine the concentrations of the protein sam-

ples. The protein samples were mixed with NuPAGE LDS Sample Buffer (Life Technologies)

and NuPAGE Reducing Agent (Life Technologies) and heated for 10 min at 70˚C. Proteins

were separated by electrophoresis on NuPAGE 4–12% Bis-Tris gels (Life Technologies) in

MOPS buffer (Life technologies Ltd) followed by transferring the proteins onto nitrocellulose

membranes (Life Technologies) for one hour at 30 V. The membranes were washed in tris-

buffered saline with 0.3% Tween 20 (TBS-T; Sigma-Aldrich) and blocked for one hour with

5% non-fat milk in TBS-T. After washes in TBS-T, incubation with the primary antibody (in

TBS-T containing 3% goat serum; see S1 Table) occurred overnight at 4˚C. On the next day,

after washes in TBS-T, the membranes were incubated with the secondary antibody (in TBS-T

containing 5% non-fat milk; see S1 Table) for one hour. Signals of binding of the antibodies

were developed with Amersham ECL Plus Western Blotting Detection Reagent (GE Health-

care, Little Chalfont, UK) and visualized with the Fujifilm Image Reader LAS-1000 Pro v.2.6

(Stockholm, Sweden). Quantification of pixel intensity was made with the Fujifilm Multi

Gauge v3.0 software (Stockholm, Sweden). Membranes were washed in TBS-T, stripped in

Restore Western Blot Stripping Buffer (Thermo Fisher Scientific, Rockford, IL, USA) and
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washed again in TBS-T. The membranes were then blocked for 60 min in TBS-T containing

5% non-fat milk and incubated then with a new primary antibody followed by the protocol as

above.

Cytokine analysis from cervical specimens

Cytokines were analysed from homogenized cervical tissue with the Bio-Plex Pro Assays

according to the instructions of the manufacturer (Bio-Rad Laboratories Inc, Irvine, CA,

USA). Erythropoietin (EPO), granulocyte colony-stimulating factor (G-CSF), granulocyte-

macrophage (GM)-CSF, Gro/KC (chemokine (C-X-C motif) ligand 1; CXCL1), interferon

gamma (IFN-γ), interleukin (IL)-1α, IL-1β, IL-2, IL-4, IL-5, IL-6, IL-7, IL-10, IL-12p70, IL-13,

IL-17A, IL-18, macrophage (M)-CSF, monocyte chemotactic protein 1 (MCP-1), macrophage

inflammatory protein (MIP)-1α (CCL3), MIP-3α, regulated on activated, normal T-cell

expressed and secreted (RANTES), tumour necrosis factor alpha (TNF-α) and vascular endo-

thelial growth factor (VEGF) were analysed.

Statistical analysis

Statistical significance for unpaired data was determined with the Mann-Whitney test. The

Kruskal-Wallis test was used when multiple comparisons were made followed by the Dunn’s

multiple comparison test. Linear regression was performed to assess the relationship between

cervical TLR5 expression and the number of days following cervical irradiation and the coeffi-

cient of determination (r-squared) was determined. A p-value of 0.05 or less was considered as

statistically significant. Data is presented in the form of mean±standard error of the mean if

not stated otherwise. Graphs were generated and parameters computed using the GraphPad

Prism program 7.0 (GraphPad Software, Inc., San Diego, US).

Results

Activation of the innate immune system and anti-oxidation

Histological examination of the cervix showed that irradiation induced oedema in the submu-

cosa and the thickness of the submucosa increased time-dependently after irradiation (at days

7–14 post-irradiation; p<0.001; n = 5; S1 Fig). Granulocytes were particularly expressed in the

submucosa and the granulocyte number was not significantly affected by cervical irradiation

(S1 Fig). Neither was the number or distribution of CD3+ lymphocytes in the submucosa or

epithelium affected by irradiation (S2 Fig). Western blot showed the expression of TLRs 2–9

but not the expression of TLR1 in control and irradiated cervical tissue. While TLR1 was not

detected with western blot in cervical tissue with two antibodies tested (see Methods), TLR1

was expressed for example in the rat brain (10.6084/m9.figshare.7886066). An increase in cer-

vical TLR5 expression in response to cervical irradiation occurred and the increase occurred

time-dependently (p<0.05; n = 6; Fig 1a and S3 Fig). The increase in TLR5 occurred in the cer-

vical epithelium (p<0.01; n = 7; Fig 1b). TLRs 2–9 were expressed in normal, non-irradiated,

cervical specimens (S4 Fig).

In general, the epithelium expressed a more intense staining signal for the TLRs than the

underlying stroma. TLRs 2–9 were expressed in the epithelium. In the submucosa, TLR2,

TLR4, TLR5, TLR6 and TLR9 were expressed. In the smooth muscle TLR2-9 except TLR8

were expressed. TLR4, TLR5, TLR6 and TLR7 were also expressed in blood vessels. MyD88

and TRIF were expressed in the cervical epithelium (Fig 2a). Western blot analysis showed

that TLR downstream molecules TRIF and NF-κB were increased in the irradiated cervix,

while MyD88 instead was decreased (Fig 2b).
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8-OHdG, SOD-1, SOD-2 and catalase were expressed in the cervical epithelium and in

blood vessels of the cervical submucosa (Figs 3a and 4a). Cervical irradiation induced up-regu-

lation of 8-OHdG, SOD-1 and catalase in the epithelium and in submucosal blood vessels of

the cervix (Figs 3a, 3b, 4a and 4b).

Cytokine expressions after irradiation

G-CSF, M-CSF, IL-10, IL- 17A, IL-18 and RANTES expressions in the cervix decreased two

weeks after cervical irradiation (p<0.001–0.05; n = 10–16; Tables 1 and 2). GM-CSF and

MCP-1 tended to decrease but significance was not attained (p = 0.05 and p = 0.06, respec-

tively; n = 16; Tables 1 and 2).

Fig 1. Expression of TLRs in control and irradiated cervical specimens. A) Western blot analysis of TLR1 (90 kDa), TLR2 (90 kDa), TLR3 (95 kDa),

TLR4 (95 kDa), TLR5 (95 kDa), TLR6 (96 kDa), TLR7 (121 kDa), TLR8 upper band (95 kDa), TLR8 lower band (90 kDa) and TLR9 (100 kDa) in

control and irradiated cervices at day 14 post-irradiation (n = 5–7; expressed as fraction of control cervix expression). B) TLR5 expression in different

structures of the cervix (n = 7–8). Representative microphotographs immunostained for TLR5 (green) and DAPI-stained nuclei (blue) of a control and

irradiated cervix to the right. E indicates epithelium and Subm indicates submucosa. Horizontal bars indicate 200 μm. � indicates p<0.05 between TLR5

expression in control and irradiated cervices at day 14 post-irradiation and �� indicates p<0.01 between TLR5 epithelial expression in control and

irradiated cervices at day 14 post-irradiation. Vertical bars indicate S.E.M.

https://doi.org/10.1371/journal.pone.0215250.g001
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Discussion

In our study we wondered how radiation affects the immunological system of the uterine cer-

vix with focus on the expression of TLRs. The expression of TLRs (TLR1-9) in the female

reproductive tract has been demonstrated in previous studies [7, 16–18]. It is also established

that TLR stimulation may boost radiation-induced immune responses in cancer [19]. How-

ever, knowledge about how radiation affects the expression of TLRs in the normal cervical tis-

sue is at present lacking. The most apparent finding of our study was that cervical irradiation

induced increases of TLR5 in the epithelium concomitant with changes in cervical levels of

TLR adaptor molecules MyD88, TRIF and NF-κB. The cervical epithelium expressed TLRs

2–9, which indicates that the cervical epithelium may respond to a high number of PAMPs

and DAMPs. In the epithelium, TLR4, TLR6 and TLR9 were more expressed than TLR2,

TLR3, TLR5, TLR7 and TLR8. Previous studies on cervical human epithelial cell lines showed

the presence of all TLRs (1–9), where stimulation of TLR2, TLR3, TLR5 and TLR6 induced the

release of cytokines [20]. The myometrium expresses TLR2, TLR3 and TLR5 and stimulation

of these TLRs may induce the release of pro-inflammatory and pro-labour mediators [21–23].

TLRs (such as TLR2, TLR4 and TLR5) may use the MyD88/IRAK/NF-κB signal and the

TRIF transduction pathways. Our data show that TRIF and NF-κB increased while MyD88

decreased in the irradiated cervix. The increase in TRIF appeared in the epithelium concomi-

tant with the up-regulation of TLR5. Studies show that TLR5 may interact with the TRIF path-

way in the gut epithelium [24]. TLR5 may mitigate radiation-induced damage in the irradiated

head and neck area of the mouse [25]. TLR5 agonists may also reduce apoptosis after

Fig 2. Activation of TLR-connected signaling pathways in response to cervical irradiation. A) Representative microphotographs immunostained for

MyD88 (green), TRIF (green) and DAPI-stained nuclei (blue) of control and irradiated cervices (days 1–14 post-irradiation). E indicates epithelium,

Subm indicates submucosa and SM indicates smooth muscle. Horizontal bars indicate 200 μm. B) Western blot analysis of MyD88, TRIF and NF-κB

expression in control and irradiated cervices (n = 6). �� indicates p<0.01 between TRIF expression in control and irradiated cervices at day 3 post-

irradiation. Vertical bars indicate S.E.M.

https://doi.org/10.1371/journal.pone.0215250.g002
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irradiation of the gut thereby improving tissue remodelling after rectal irradiation [26, 27].

The TLR5 agonist flagellin protects mice exposed to a lethal dose of whole-body γ-irradiation

via MyD88 dependent pathways [28]. Radioprotective effects have also been shown to be gen-

erated via other TLRs such as TLR2, TLR3, TLR4 and TLR9 [29].

Our study showed that oxidative stress (reflected by 8-OHdG staining) increased succes-

sively till 14 days after cervical irradiation, while SOD-1 and catalase increased in the cervical

tissue already 24 hours after cervical irradiation. Changes in oxidative stress and antioxidants

occurred particularly in the epithelium and in the submucosal blood vessels of the cervix. The

present findings are in line with previous reports showing that oxidative stress and anti-oxida-

tive responses appear particularly in the urothelium and in submucosal blood vessels 28 days

following irradiation of the rat urinary bladder [30]. Our data may indicate that oxidative

stress induced by cervical irradiation activated TLR5 and TLR-connected downstream mole-

cules TRIF and NF-κB thereby mitigating oxidative stress via the release of antioxidants SOD-

1 and catalase in the cervical tissue.

Irradiation induced edema in the cervical submucosa, however, irradiation did not affect

the distribution and number of granulocytes or lymphocytes in the cervix. The dominant effect

on the cervical tissue 14 days following irradiation was instead an anti-inflammatory response

reflected by a reduction in important pro-inflammatory cytokines and chemokines. IL-17 was

decreased concomitant with a decrease in G-CSF, M-CSF and IL-10 levels in the cervix. While

Fig 3. Increase in oxidative stress in response to cervical irradiation. A) Representative microphotographs immunostained for 8-OHdG (red) and

DAPI-stained nuclei (blue) of control and irradiated cervices (at days 1–14 post-irradiation). B) 8-OHdG expression in different structures of the cervix

(n = 5–10). E indicates epithelium and Subm indicates submucosa. Horizontal bars indicate 200 μm. � indicates p<0.05 between 8-OHdG expression in

submucosal blood vessels of control and irradiated cervices at day 14 post-irradiation. Vertical bars indicate S.E.M.

https://doi.org/10.1371/journal.pone.0215250.g003
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we only measured the level of cytokines on day 14 following cervical irradiation we do not

know if the suppression of cytokines was preceded by an increase in cytokines at an earlier

time point. However, the present findings are in line with studies showing that pro-inflamma-

tory mediators are reduced 14 days following urinary bladder irradiation [6, 30]. IL-17 plays

an important role in the female genital tract and may be released by Th17 cells and mucosal-

associated invariant T (MAIT) cells [31, 32]. Our findings with a reduced IL-17 in response to

cervical irradiation may indicate that radiation may lead to a weaker response to pathogens.

An imbalance between Th1 and Th2 cytokines may also favour the development of adverse

functional side effects to radiation and fibrosis. A number of studies have shown that Th17

cells and IL-17 play important roles in the development of radiation-induced functional disor-

ders and fibrosis, e.g., radiation-induced proctitis [4], liver fibrosis [33, 34] and radiation-

induced pulmonary fibrosis [35, 36]. Interestingly, IL-10 and IL-17 levels in bronchoalveolar

lavage after pulmonary irradiation were shown to be inversely correlated to the severity of pul-

monary fibrosis [35]. Speculatively, our findings of reduced levels of IL-10 and IL-17 may indi-

cate that a pro-fibrotic micro-environment may have been developed in the cervix. The

Fig 4. Increases in antioxidants in response to cervical irradiation. A) Representative microphotographs immunostained for SOD-1 (green), SOD-2

(red), merged SOD-1/SOD-2 (third row), catalase (red) and DAPI-stained nuclei (blue) of control and irradiated cervices (days 1–14 post-irradiation).

E indicates epithelium, Subm indicates submucosa and BV indicates blood vessel. Horizontal bars indicate 200 μm. B) Western blot analysis of SOD-1,

SOD-2 and catalase expression in control and irradiated cervices (days 1–14 post-irradiation; n = 6). �� indicates p<0.01 between SOD-1 expression in

control and irradiated cervices at day 1 post-irradiation. Vertical bars indicate S.E.M.

https://doi.org/10.1371/journal.pone.0215250.g004
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development of fibrosis seems, however, to take time since we could not either observe fibrosis

in the rat cervical tissue 28 days after cervical irradiation (unpublished data).

The understanding of how the uterine cervical tissue responds to radiotherapy is at present

scarce. We here assessed the different components in the innate immune system of the uterine

cervix and our study gives insight in the early events following cervical irradiation. This could

have importance for how to intervene to prevent the development of fibrosis in the female

Table 1. Cytokine expressions in control and irradiated cervical specimens.

EPO G-CSF M-CSF GM-CSF GRO/KC IL-1α IL-1β IL-7 IL-10

CONTROL

Median: 9.94 1.91 8.16 6.98 15.97 61.07 46.28 12.02 388.6

Mean: 17.43 2.116 9.33 6.883 30.94 126.1 46.23 21.79 502.6

SD: 20.43 1.107 4.15 1.87 35.27 137.2 33.29 30.01 263.0

Min-Max: 4.92–76.9 1.05–4.94 5.38–20.98 2.99–10.94 6.26–130.9 4.65–486.2 2.65–118.6 0.92–126.2 278.1–1069

N: 16 16 16 16 16 16 16 16 16

IRRADIATED

Median: 8.29 1.05 5.88 5.83 13.56 44.61 29.275 6.5 278.14

Mean: 14.36 1.156 5.823 5.861 22.25 210.2 40.59 12.18 307.2

SD: 13.35 0.2465 1.731 1.44 23.00 410.3 36.84 15.17 112.4

Min-Max: 4.92–53.14 1.05–1.91 2.32–8.61 2.86–8.96 6.26–81.33 4.2–1331 2.65–134.1 0.92–58.22 278.1–713.5

N: 16 16 16 16 16 16 16 16 15

Fold change (decrease): 1.20 1.82 1.39 1.20 1.18 1.37 1.58 1.85 1.40

P-value: 0.7088 0.0006 0.0025 0.0523 0.7874 0.4619 0.5198 0.2029 0.0019

Cytokine concentrations (pg/ml) of cervical tissue homogenates of control and irradiated cervices day 14 post-irradiation. SD = standard deviation, N = number of

samples/animals.

https://doi.org/10.1371/journal.pone.0215250.t001

Table 2. Cytokine expressions in control and irradiated cervical specimens.

IL-17A IL-18 MCP-1 MIP-1α RANTES TNF-α VEGF

CONTROL

Median: 2.14 2.92 23.26 2.19 5.55 18.78 72.42

Mean: 2.73 4.92 24.14 2.81 7.86 20.37 158.2

SD: 1.67 4.08 14.25 1.39 6.69 9.55 198.8

Min-Max: 1.25–7.17 1.39–1185 4.14–56.21 1.85–6.39 1.51–20.51 6.23–36.54 21.12–799.6

N: 16 16 16 16 16 16 16

IRRADIATED

Median: 1.25 1.39 14.18 1.85 1.51 20.55 35.93

Mean: 3.17 1.80 15.05 2.53 4.47 19.1 128.7

SD: 7.04 1.54 8.304 1.61 5.26 6.13 224.4

Min-Max: 1.25–29.53 1.39–7.56 4.14–31.88 1.85–7.66 1.51–18.43 9.38–28.54 8.5–850.4

N: 16 16 16 16 16 16 16

Fold change (decrease): 1.71 2.10 1.64 1.18 3.68 0.91 2.02

P-value: 0.006 0.0051 0.0574 0.218 0.0447 0.8451 0.1306

Not detected IFN-γ, IL-2, IL-4, IL-5, IL-6, IL-12p70, IL-13, MIP-3α

Cytokine concentrations (pg/ml) of cervical tissue homogenates of control and irradiated cervices day 14 post-irradiation. SD = standard deviation, N = number of

samples/animals.

https://doi.org/10.1371/journal.pone.0215250.t002
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pelvic area. Whether targeting TLRs or other key elements in the innate immune system may

alleviate adverse effects to radiotherapy should be assessed in future studies.

Conclusions

The present study shows that the rat uterine cervix expresses the TLRs 2–9. By exposing the rat

cervix to radiation, TLR5 was activated together with an up-regulation of oxidative stress and

antioxidative responses concomitant with a reduction in important pro-inflammatory

cytokines.
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