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Abstract

This paper provides a general equilibrium approach to pricing volatility. Existing models

(e.g., ARCH/GARCH, stochastic volatility) take a statistical approach to estimating volatility,

volatility indices (e.g., CBOE VIX) use a weighted combination of options, and utility based

models assume a specific type of preferences. In contrast we treat volatility as an asset and

price it using the general equilibrium state pricing framework. Our results show that the gen-

eral equilibrium volatility method developed in this paper provides superior forecasting ability

for realized volatility and serves as an effective fear gauge. We demonstrate the flexibility

and generality of our approach by pricing downside risk and upside opportunity. Finally, we

show that the superior forecasting ability of our approach generates significant economic

value through volatility timing.

Introduction

Volatility modelling has proceeded as a field separate from asset pricing. Statistical models,

such as ARCH [1, 2], GARCH [3], stochastic volatility [4], and option prices [5] are commonly

used to estimate volatility, without reference to modern asset pricing theory. In this paper, we

propose to price volatility using a general equilibrium asset-pricing framework. The advantage

of such an approach is that volatility can be priced and measured in the most general setting

available. The approach also allows us to extend measurement and pricing (such as downside

risk pricing and upside opportunity pricing), which cannot be achieved with current

approaches to volatility modelling.

This paper assumes a complete market setting where state prices are available for each time

and state. State prices are derived from the general equilibrium state pricing framework [6].

Options complete the state space [7] and in this compete market all investors face the same

state prices and these prices can be used to price any asset in the aggregated market. State

prices are obtained for each time based on options written on the aggregate market (S&P 500

index as a proxy)[8]. We apply this state pricing approach to market volatility risk and are able

to derive prices that are almost perfectly correlated with the CBOE Volatility Index (VIX) but

are the result of a general equilibrium model. There are several advantages to treating volatility

as any other asset and pricing it using the general equilibrium approach [6]. First, we treat
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volatility pricing the same as any other pricing exercise. Second, we do not have to assume a

specific form of utility preferences (i.e., mean-variance or mean-variance-skewness or any

other form) to implement this approach. Third, the equilibrium price of volatility provides not

only a more general approach that is very flexible and can also be used for individual securities,

but also serves as a better predictor of future volatility and as an investor fear gauge.

Empirically, we generate market state prices from the S&P 500 index options and use them

to price the 49 Fama and French industry portfolio’s volatility. Although our method can be

applied to any traded asset, we focus on industries since understanding the volatility of a par-

ticular industry is crucial for both investors and policy makers [9, 10]. The ex-ante industry

volatility measure constructed in this approach yields better forecasts of realized volatility than

existing approaches and serves as a qualified investor fear gauge. We then demonstrate the

flexibility and generality of our approach by pricing downside and upside opportunity, which

complements the prior work [11–14]. We show that these new upside and downside volatility

measures work well empirically. Finally, we analyze the economic value of volatility timing

using the general equilibrium measures versus existing volatility measures. We show that the

superior forecasting ability of our general equilibrium volatility measure has greater economic

value for investors wishing to manage volatility.

Our paper is related to the recent literature on understanding volatility in a general equilib-

rium framework. As an extension of [15] and [16], Tauchen [17] proposes a consumption-

based general equilibrium model that assumes stochastic consumption. The model generates a

two-factor structure for stock market volatility along with time-varying risk premiums on con-

sumptions and volatility risk, and the leverage effect. In the general equilibrium framework,

Bansal et al.[18] demonstrate that besides the cash flow risk and discount rate risk, volatility

risk is an important and separate risk source that cannot be ignored. In contrast to this strand

of literature, we impose no assumptions on consumption dynamics and rely only on state

prices extracted from the options market. The focus of these existing studies is to explain the

stylized facts (e.g., leverage effect, equity risk premium) in the market, while we aim to provide

market participants with an easy and flexible tool to measure and manage the volatilities of

asset portfolios or individual securities.

Our paper is also related to the prior literature on constructing volatility indices based on

options. As long established in the literature, ex-ante risk-neutral volatility can be built upon

the fair value of future variance. Britten-Jones and Neuberger [19] use a replicating strategy to

synthesize a variance swap using options contracts, assuming continuity in the underlying

asset price. Jiang and Tian [20] build on a similar concept by incorporating a jump-diffusion

stochastic volatility model. More recently, Martin [21] proposes a market level volatility index

as the price of squared returns contract and proves it serves as the lower bound for the market

risk premium. Martin and Wagner [22] extend the method of Martin [21] and develop a stock

level volatility index and link it with the expected stock return. Sharing the same spirit of Mar-

tin [21] and the other existing literature, we also treat volatility (or more precisely, the squared

return) as an asset. However, we adopt the general equilibrium approach and are able to con-

struct volatility indices for assets without the need to use traded options. In contrast, Martin

and Wagner [22]’s methodology can only be applied to individual stocks with the availability

of options. Since options either do not exist or are illiquid for most stocks/industry portfolios,

our approach is more general and has a wider application.

Our paper also adds to recent efforts to disentangle the effects of upside and downside uncer-

tainty on asset prices [11, 14] by proposing a new approach for volatility decomposition. One

common approach for decomposing volatility into upside and downside components is to use a

threshold to compute risk-neutral expectations of semi-variances [12, 13, 23]. However, this

approach still depends on the existence of traded options, while our approach does not.

A general equilibrium approach to pricing volatility risk

PLOS ONE | https://doi.org/10.1371/journal.pone.0215032 April 12, 2019 2 / 18

CRSP) provided by WRDS. The researcher can

then register a WRDS Account and have access to

the subscribed databases via the WRDS Web Site

(https://wrds-web.wharton.upenn.edu/wrds/).

Funding: Two of the authors (MKL and TS)

acknowledge funding from the Australian Research

Council (ARC), Grant Number DP160103425.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0215032
https://wrds-web.wharton.upenn.edu/wrds/


The paper is organized as follows. Section 2 outlines volatility pricing using a general equi-

librium model. Section 3 extends our approach to price downside risk and upside opportunity.

Section 4 analyzes the economic value of our volatility measures in a volatility timing frame-

work. Section 5 concludes.

Methods and materials

Pricing volatility in a general equilibrium model

This section outlines the general equilibrium approach for pricing market volatility and shows

how it can be extended to pricing industry volatility. Industry volatility prices are compared

with existing approaches to forecasting realized volatility and evaluated as a gauge of investor

fear. We have obtained the appropriate permissions for use of third-party data and complied

with the terms of service for the websites from which we collected data.

Under a state pricing approach, the value of any asset is the sum of the state prices multi-

plied by the payoff in each state. If, for example, we were to price the market portfolio M
which pays off Fms in each of S states one period (set as 30 days in this paper) from now, the

price is given by:

Pm ¼
XS

s¼1

�msFms ð1Þ

Breeden and Litzenberger [8] argue that the market portfolio, as a proxy for aggregate con-

sumption, is sufficient to represent the different states in the economy. We show in S1 Appen-

dix how we obtain the state prices using market options, where the market is represented by

S&P 500 index (SPX).

For an arbitrage asset i, whose payoff Fi depends on the level of the market, under the com-

plete market setting, its price is given by:

Pi ¼
XS

s¼1

�msE½FisjFms� ð2Þ

If we were to take a linear projection of Fi onto FM, then we would obtain:

Pi ¼
XS

s¼1

�ms½ai þ biFms� ð3Þ

or

Pi ¼ arfi þ biPm ð4Þ

Since
XS

s¼1

�ms is the price of a risk-free asset with payoff of 1, αrfi is the price of a riskless asset

with payoff αi.

This is a relation that closely resembles the Sharpe-Lintner Capital Asset Pricing Model

[24]; however, the derivation contains obvious differences. First, the market price of risk will

vary over time as the state prices change. Second, the risk-free factor will be different for each

asset i depending on the magnitude of αi. Moreover, a nonlinear projection of the conditional

expectation leads to the mean-variance-skewness model of Kraus and Litzenberger [25]. S2:

Appendix provides a more detailed discussion of the relation between state pricing theory, the

CAPM and the co-skewness pricing.

A general equilibrium approach to pricing volatility risk

PLOS ONE | https://doi.org/10.1371/journal.pone.0215032 April 12, 2019 3 / 18

https://doi.org/10.1371/journal.pone.0215032


We now consider pricing market volatility. Here, the payoff is the squared market return at

each state. The price of market volatility under the general equilibrium state-pricing approach

is given by:

SVX2

M ¼
XS

s¼1

�msR
2

ms ð5Þ

where SVXM is the state pricing volatility index for the market. It is the general equilibrium

price of market volatility.

Compared to the calculation of the VIX, the SVXM formula offers a more straightforward

approach. For a more detailed discussion on how to construct SVXM and how it performs

against other volatility measures in predicting future market volatility, see [26]. The approach

of using Arrow-Debreu securities to price squared returns has also been adopted in prior stud-

ies, see [27–29]. To price volatility on an arbitrary asset, for example industry I, the approach

above yields:

SVX2

I ¼
XS

s¼1

�msE½R
2

IsjR
2

ms� ð6Þ

An assumption of a linear relation between individual asset return and market return (as in Eq

3) would lead to a linear relation between individual asset return squared and market return

squared conditional on the given market return, Rm. Naturally, we have:

SVX2

I ¼
XS

s¼1

�ms½aI þ bIR
2

ms� ð7Þ

or

SVX2

I ¼ arfI þ bISVX2

M ð8Þ

where αrfI is the price of a riskless asset with payoff αI, SVX2
M is as defined above in Eq 5.

The details of the construction of SVXI are presented in S3: Appendix. We see that under

the linear projection approach, the volatility price of any asset depends on the market price of

volatility in a straightforward manner.

We compare two other volatility measures to our measure. The first is an ad-hoc industry

volatility index using the widely available CBOE volatility index VIX. To achieve that, we sim-

ply replace SVX2
M by VIX2

M :

VIX2

I ¼ arfI þ bIVIX2

M ð9Þ

where VIXM is the CBOE VIX.

The second measure is the historical volatility, HVI, which is the realized volatility in the

previous year.

Data set

To estimate state prices in the complete market setting, we obtain prices and implied volatili-

ties of S&P 500 index options and S&P 500 index dividend yields from the Ivy DB US Option

Metrics, available through Wharton Research Data Services. The options data are available on

a daily basis from January 4, 1996 to April 29, 2016. Interest rates are taken from the Center

for Research in Security Prices (CRSP) Zero Curve file. We apply a cubic spline to the interest

rate term-structure data to match the length of the risk-free rate with the corresponding option
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maturity. The 49 industry portfolios are obtained from Kenneth R. French’s Data Library

(http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html) and has been

provided in S1 Data. Given we need to estimate the betas in Eq 7 using a fixed two-year rolling

window, we examine daily industry returns since January 1994.

Results and discussions

Summary statistics of industry volatility indices

Summary statistics of SVXI are reported in Table 1. The mean of the annualized SVXI varies

across industries, ranging from 0.129 for the utility industry to 0.273 for the coal industry.

Consistent with economic intuition, the “necessities” industries, such as Food, Soda, Beer,

Smoke, and Utilities [30] are insensitive to business cycles, and are the least volatile, on

average.

SVXI for the 49 industry portfolios is illustrated in Fig 1. It is apparent that there is a strong

positive correlation among the volatility indices. Fig 1 also reveals that there is a significant

time variation in volatility for all industries in the analysis, showing an upward spike in the

1998 Asian Financial Crisis and during the technology bubble of the early 2000’s. A peak

occurs around the 2008 Global Financial Crisis.

Forecasting future 30-day realized volatility

The primary goal of a volatility index is to serve as a measure of the next 30-day expected vola-

tility [31]. In this section, we examine the information content of SVXI in predicting subse-

quent 30-day realized return volatility from January 1996 to April 2016. We regress the future

30-day close-to-close realized volatility on different volatility measures in the following mod-

els:

RVI;t;tþ30 ¼ aI þ bISVXI;t þ εI;t;tþ30 ð10Þ

where I stands for one of the 49 industry portfolios, RVI,t,t+30 denotes the annualized realized

volatility over the next 30 days and it is defined as RVI;t;tþ30 ¼ 100ð365

30

X22

i¼1

R2

i Þ
1=2

, where R2
i is

the square of the daily portfolio return. We also run this regression for VIXI and HVI, where

HVI is the annualized realized volatility in the previous year. These measures are highly corre-

lated on average, so we cannot include both in the same regression to determine which index

is more statistically significant. Instead, we use the Mincer and Zarnowitz [32] regression to

compare the prediction performances of these three volatility measures.

To be an unbiased volatility predictor, we expect alphas to be not significantly different

from 0 and betas to be not significantly different from 1. If SVXI is a better predictor than the

other measures, the forecasting regression using it as the predictor is expected to generate the

highest model explanatory power, as expressed in adjusted R-squared.

We run the above regressions for each of 49 industry portfolios and report the arithmetic

average of regression results in Table 2. The covariance matrix is computed according to

Newey and West [33] to correct for any potential serial correlations in the error terms.

The mean level of the β of SVXI is 1.01, with an average standard error of 1.5%. As expected,

β of SVXI is significantly different from 0 at 1% level, and not significantly different from 1 at

any levels. In comparison, β of VIXI has a mean level of 0.918 with a standard error of 1.4%. It

is significantly different from both 0 and 1 at 1% level. β of HVI has the lowest mean level out

of the three measures; namely, 0.677 with a standard error of 1.5%. On average, α of SVXI is

0.046, which is marginally significantly different from 0 at 5% level. The mean for α of VIXI is
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PLOS ONE | https://doi.org/10.1371/journal.pone.0215032 April 12, 2019 5 / 18

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
https://doi.org/10.1371/journal.pone.0215032


Table 1. Summary statistics of industry SVXI.

Industry Obs Mean Std. Dev. Min Max

Agric 5,099 0.150 0.103 0.039 0.950

Food 5,099 0.132 0.051 0.052 0.482

Soda 5,099 0.138 0.062 0.005 0.602

Beer 5,099 0.136 0.067 0.044 0.481

Smoke 5,099 0.143 0.066 0.049 0.645

Toys 5,099 0.180 0.066 0.080 0.603

Fun 5,099 0.216 0.098 0.088 0.893

Books 5,099 0.165 0.079 0.060 0.772

Hshld 5,099 0.145 0.060 0.059 0.534

Clths 5,099 0.179 0.078 0.066 0.714

Hlth 5,099 0.155 0.066 0.055 0.553

MedEq 5,099 0.160 0.063 0.059 0.581

Drugs 5,099 0.164 0.065 0.068 0.558

Chems 5,099 0.188 0.083 0.091 0.818

Rubbr 5,099 0.155 0.061 0.083 0.557

Txtls 5,099 0.166 0.076 0.066 0.711

BldMt 5,099 0.185 0.072 0.080 0.686

Cnstr 5,099 0.224 0.095 0.097 1.080

Steel 5,099 0.243 0.126 0.084 1.207

FabPr 5,099 0.182 0.086 0.056 0.780

Mach 5,099 0.210 0.088 0.104 0.863

ElcEq 5,099 0.211 0.081 0.105 0.798

Autos 5,099 0.212 0.089 0.101 0.839

Aero 5,099 0.203 0.098 0.089 0.756

Ships 5,099 0.168 0.073 0.073 0.784

Guns 5,099 0.146 0.067 0.028 0.554

Gold 5,043 0.184 0.102 0.005 0.925

Mines 5,099 0.208 0.133 0.049 1.199

Coal 4,735 0.273 0.154 0.007 1.363

Oil 5,099 0.182 0.106 0.039 1.068

Util 5,099 0.129 0.076 0.045 0.735

Telcm 5,099 0.184 0.083 0.075 0.836

PerSv 5,099 0.171 0.063 0.079 0.601

BusSv 5,099 0.177 0.066 0.084 0.615

Hardw 5,099 0.250 0.134 0.093 1.009

Softw 5,099 0.224 0.105 0.090 0.770

Chips 5,099 0.244 0.119 0.089 0.893

LabEq 5,099 0.204 0.081 0.095 0.667

Paper 5,099 0.162 0.061 0.085 0.631

Boxes 5,099 0.171 0.069 0.072 0.678

Trans 5,099 0.181 0.069 0.088 0.619

Whlsl 5,099 0.156 0.059 0.078 0.605

Rtail 5,099 0.182 0.074 0.073 0.626

Meals 5,099 0.156 0.056 0.070 0.549

Banks 5,099 0.229 0.114 0.083 1.494

Insur 5,099 0.191 0.096 0.077 1.005

RlEst 5,099 0.164 0.119 0.033 0.950

(Continued)
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0.04 and is not significantly different from 0 at 5% level. In comparison, the α of HVI has an

average value of 0.072 and is significantly different from 0. SVXI provides higher adjusted R-

squared than the regressions using VIXI and HVI. On average, the model with SVXI as the pre-

dictor has a 1.4% higher adjusted R-squared than VIXI and 19% higher than HVI. Therefore,

we conclude that the state price volatility index SVXI is a more efficient forecaster of future

realized volatility than its counterparts. This industry-level result reinforces Liu and O’Neill

[26]’s finding that state price volatility outperforms VIX and other predictors at the market

level.

Fear gauge

It is well-documented that there is a negative correlation between the rate of change in volatil-

ity (e.g., CBOE VIX) and daily market returns [34]. As expected, market volatility increases,

investors demand a higher rate of return on stocks and prices fall, which ultimately leads to a

drop in the current market return. Therefore, we study the contemporaneous relation between

rates of change in various industry volatility measures and daily industry portfolio returns. In

particular, we investigate whether these indices contain any fear information from the market

state prices. Generally, a fall in an industry portfolio usually implies a rally in investor fear in

Table 1. (Continued)

Industry Obs Mean Std. Dev. Min Max

Fin 5,099 0.263 0.132 0.094 1.331

Other 5,099 0.179 0.088 0.060 0.669

This table presents summary statistics of Industry SVXI of 49 industry portfolios. The data are from 4 January 1996 to

29 April 2016.

https://doi.org/10.1371/journal.pone.0215032.t001

Fig 1. SVXI for 49 industries: 1996–2016. This figure plots the Industry SVXI of 49 industry portfolios. The data are

from 4 January 1996 to 29 April 2016.

https://doi.org/10.1371/journal.pone.0215032.g001
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the segment. Therefore, we expect to see negative betas in all volatility measures. A fear gauge,

such as CBOE VIX [35], should respond more to negative changes in portfolio returns than

positive changes. We are interested in testing whether industry state price volatility measures

can capture this asymmetric fear gauge effect. We regress the daily changes of various mea-

sures against industry portfolio returns in the following forms:

DSVXI;t ¼ aI þ b1;IRI;t þ b2;IR
�

I;t þ εI;t ð11Þ

where I stands for each of the 49 industry portfolios, Δ measures the daily changes, and RI,t is

the daily industry portfolio return, R�I;t is defined as min(RI,t,0).

We run the above regressions for each of 49 industry portfolios and report the arithmetic

average of regression results in Table 3. The covariance matrix is computed according to

Newey and West [33] to correct for any potential serial correlations in the error terms. On

average, β1 is significantly less than 0 at the 1% level, implying that there is an inverse relation

between contemporaneous changes in volatility indices and changes in portfolio returns. β2 is

also significantly less than 0 at the 1% level. These results show that the response to different

swings in portfolio returns is strongly asymmetric, and are consistent with the findings of [35]

and [26]. Besides statistical significance, the coefficients are also economically meaningful: on

average, an increase in the industry return by 100 basis would result in 51.7 basis decrease in

SVXI and an decrease in the industry return by 100 basis would lead to 73.8 basis increase in

SVXI.

Downside risk and upside opportunity in a general equilibrium model

Recent literature highlights the importance of distinguishing downside and upside volatility

risk [11, 14, 36]. Here, we use the general pricing approach to price downside risk and upside

risk.

Table 2. Forecasting realized volatility with SVXI, VIXI, and HVI.

Dep Variable: RVI Average of R2 Average of Intercept Average of β for SVXI Average of β for VIXI Average of β for HVI

47.2%

Coef 0.046�� 1.010���

p-value 0.041 1.15E-133

Std Err 0.003 0.015

45.8%

Coef 0.044� 0.918���

p-value 0.057 3.6E-100

Std Err 0.003 0.014

28.2%

Coef 0.072��� 0.677���

p-value 1.3E-25 9.2E-137

Std Err 0.004 0.015

This table presents the average OLS estimates of regressions in Eq (10). The regressions take the following general form

Y ¼ aþ bXþ ε
All coefficients, p-values, and standard errors are an average of the corresponding measures from 49 regressions on all industry portfolios. Dependent variable RVI is

annualized realized volatility in future 30 days of one of 49 industry portfolios, where RV ¼ 100� ð365=30�
P22

i¼1
R2

i Þ
1=2

and Ri is the daily portfolio return. The data

are from 4 January 1996 to 29 April 2016. To correct for autocorrelation and heteroskedasiticity, we use the Newey-West estimator for covariance matric with

automatically selected lags as in Newey and West [33].

���, ��, and � denote significance at the 0.01, 0.05, and 0.10 level, respectively.

https://doi.org/10.1371/journal.pone.0215032.t002
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Downside market risk is given by:

BEXM ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XS

s¼1

�msR
2

msIRms<0

s

ð12Þ

where IRms<0 is an indicator variable equal to 1 if Rms is less than zero.

Similarly, upside market risk is given by:

BUXM ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XS

s¼1

�msR
2

msIRms>0

s

ð13Þ

where IRms>0 is an indicator variable equal to 1 if Rms is greater than zero.

Industry measures of BEX and BUX are obtained in an analogous manner to industry vola-

tility SVXI (Eq 7) and can be represented as:

BEX2

I ¼ aDown;I þ bDown;IBEX2

M ð14Þ

BUX2

I ¼ aUp;I þ bUp;IBUX2

M ð15Þ

To estimate the alphas and betas in Eq 14 and Eq 15, we use a linear least squares regression

of squared daily industry returns on squared S&P 500 market returns. Specifically, we are

interested in the alphas and betas in the following regressions:

R2

I ¼ aDown;I þ bDown;IR
2

MjDown þ εI ð16Þ

R2

I ¼ aUp;I þ bUp;IR
2

MjUp þ εI ð17Þ

where R2
I is the daily squared industry return, and R2

MjDown (R2
MjUp) is the market return squared

conditional on whether the market has gone down (up) from the previous day, regardless of

movement in the industry portfolio. We also considered different definitions of conditional

downturn return squared for the industry portfolio. We selected the current definition because

it is more meaningful for examining how the industry portfolio responds and contributes to a

downturn in the whole market. The return is computed using the closing value at the end of

Table 3. Regression results of rate change of SVXI against returns of industry portfolios.

Dep Variable: ΔSVXI Average of R2 Average of Intercept Average of β1 for RI,t Average of β2 for RI,t
-

36.7%

Coef -0.001� -0.517��� -0.221���

p-value 0.051 0.000 0.001

Std Err 0.000 0.019 0.032

This table presents the average OLS estimates of regressions in Eq (11). The regressions take the following general form

DSVXI;t ¼ aþ b1RI;t þ b2R
�

I;t þ ε

All coefficients, p-values, and standard errors are an average of the corresponding measures from 49 regressions on all industry portfolios. Independent variables

include RI, daily return of the corresponding industry portfolio; and RI, daily return of the corresponding industry portfolio conditional on whether the return is below

0, i.e., RI- = min(RI, 0). The dependent variable is the daily return of SVXI, where ΔSVXI,t = ln(SVXI,t/SVXI,t−1). The return data are from 4 January 1996 to 29 April

2016. To correct for autocorrelation and heteroskedasiticity, we use the Newey-West estimator for covariance matric with automatically selected lags as in Newey and

West [33].

���, ��, and � denote significance at the 0.01, 0.05, and 0.10 level, respectively.

https://doi.org/10.1371/journal.pone.0215032.t003
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day. We estimate each beta using a two-year fixed rolling window. That is, on the 505th day, we

use the past two years (504 trading days) of return squared to estimate the alphas and betas in

the above regressions.

Industry state-price volatility that incorporates downside market volatility

Prior studies have shown that returns become more correlated in a bear market (e.g., [37, 38]).

As a result, we extend the basic formula for SVXI by using an alternative linear projection that

incorporates market downside movement:

ðSVXD
I Þ

2
¼
XS

s¼1

�ms½aI þ bIR
2

ms þ gIR
2

msIRms�0� ð18Þ

Which can be solved to yield:

ðSVXD
I Þ

2
¼ arfI þ bISVX2

M þ gIBEX2

M ð19Þ

where αrfI is the price of a riskless asset with payoff αI, SVX2
M is as defined above in Eq 4. and

IRms�0 is an indicator variable equal to 1 if Rms is less than zero. In this definition, the volatility

price of any asset depends on its sensitivity to the price of market volatility and (in addition) to

the price of market downside volatility.

To estimate the alphas, betas, and gammas in Eq 19, we use a linear least square regression

of squared daily industry returns on squared daily S&P 500 market returns.

R2

I ¼ aDown;I þ bDown;IR
2

M þ gDown;IR
2

MjDown þ εI ð20Þ

where R2
I is the daily squared industry return, and R2

MjDown is the market return squared condi-

tional on whether the market has gone down from the previous day, regardless of movement

in the industry portfolio.

Forecasting future 30-day realized volatility with SVXD
I

To extend the analysis described in Section 2.3, we examine the information content of SVXD
I

in predicting the future 30-day realized volatility in each industry portfolio. We regress the

future 30-day close-to-close realized volatility on different volatility measures in the following

models:

RVI;t;tþ30 ¼ aI þ bISVXD
I;t þ εI;t;tþ30 ð21Þ

Results are reported in Table 4 Panel A. The mean level of β of SVXD
I is 1.003, with an aver-

age standard error of 1.5%. β of SVXD
I is significantly different from 0 at 1% level, and not sig-

nificantly different from 1 at any levels. Comparing to results in Table 2, we can see that SVXD
I

outperforms other volatility candidates in terms of adjusted R-squared.

Forecasting future 30-day realized downside volatility

A typical volatility measure does not describe the proportion of upside gain versus downside

threat. In this paper, we solve this problem by introducing a downside (upside) volatility index

BEXI(BUXI) for each industry portfolio as an ex-ante predictor of future downside (upside)

volatility. It is important to note that, unlike the comparison with SVXI and VIXI in the previ-

ous section, we do not have a VIX benchmark per se because is not mathematically feasible to

derive a downside VIX using market state prices. We regress the future 30-day close-to-close
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realized downside volatility in the following way:

RVDI;t;tþ30 ¼ aI þ bIBEX2

I;t þ εI;t;tþ30 ð22Þ

where I stands for each of the 49 industry portfolios, RVDI,t,t+30 denotes the realized downside

volatility over the next 30 days and it is defined as RVDI;t;tþ30 ¼ 100ð365

30

X22

i¼1

R22

i¼1
IRi�0Þ

1=2
.

We expect alphas to be not significantly different from 0 and betas to be not significantly

different from 1 if BEXI is an unbiased forecaster, and betas to be significantly different from 0.

We run the above regression for each of 49 industry portfolios and report the arithmetic aver-

age of regression results in Panel B in Table 4. The covariance matrix is computed according

to Newey and West [33] to correct for any potential serial correlations in the error terms. The

mean level of β of BEXI is 0.917, with an average standard error of 1.8%. β of BEXI is signifi-

cantly different from 0 and 1 at 1% level. On average, α of BEXI is 0.029 and is not significantly

different from 0 at 5% level. The average adjusted R-squared of Eq 22 is 34.7%. We show that

BEXI is an efficient forecaster of future realized downside volatility.

Fear gauge property of SVXD
I

We further study the contemporaneous relation between rates of change in SVXD
I and daily

industry portfolio returns. We are interested in testing whether the modified industry volatility

measure can better capture the fear gauge. We regress the daily changes of SVXD
I against the

industry portfolio returns in the following forms:

DSVXD
I;t ¼ aI þ b1;IRI;t þ b2;IR

�

I;t þ εI;t ð23Þ

where I stands for each of the 49 industry portfolios, Δ measures the daily changes, and RI,t is

the daily industry portfolio return, R�I;t is defined as min(RI,t,0). We perform a similar analysis

for DBEXD
I;t to see whether the downside volatility measure can serve as a qualified fear gauge

or not.

Table 4. Forecasting realized volatility and downside realized volatility with SVXD
I and BEXI.

Dep Variable Average of R2 Average of Intercept Average of β for SVXD
I Average of β for BEXI

Panel A RVI 47.3%

Coef 0.047�� 1.003���

p-value 0.046 1.27E-133

Std Err 0.003 0.015

Panel B RVD
I 34.7%

Coef 0.029� 0.917���

p-value 0.058 8.3E-166

Std Err 0.003 0.018

This table presents the average OLS estimates of regressions in Sections III C and D. The regressions take the following general form

Y ¼ aþ bXþ ε
All coefficients, p-values, and standard errors are an average of the corresponding measures from 49 regressions on all industry portfolios. Dependent variables include;

(1) RV is annualized realized volatility in future 30 days of one of 49 industry portfolios, where RV ¼ 100� ð365=30�
P22

i¼1
R2

i Þ
1=2

and Ri is the daily portfolio return;

and (2) RVDI is the realized downside volatility in future 30 days of one of 49 industry portfolios, where RVD ¼ 100� ð365=30�
P22

i¼1
R2

i IRi�0Þ
1=2

. The data are from 4

January 1996 to 29 April 2016. To correct for autocorrelation and heteroskedasiticity, we use the Newey-West estimator for covariance matric with automatically

selected lags as in Newey and West [33].

���, ��, and � denote significance at the 0.01, 0.05, and 0.10 level, respectively.

https://doi.org/10.1371/journal.pone.0215032.t004

A general equilibrium approach to pricing volatility risk

PLOS ONE | https://doi.org/10.1371/journal.pone.0215032 April 12, 2019 11 / 18

https://doi.org/10.1371/journal.pone.0215032.t004
https://doi.org/10.1371/journal.pone.0215032


We run the above regressions for each of 49 industry portfolios and report the arithmetic

average of regression results in Table 5. The covariance matrix is computed according to

Newey and West [33] to correct for any potential serial correlations in the error terms. On

average, for both DSVXD
I;t and DBEXD

I;t, all β1 are significantly less than 0 at 1% level, implying

there is an inverse relation between the contemporaneous changes of volatility indices and

those of portfolio returns. For both DSVXD
I;t and DBEXD

I;t, β2 are also significantly less than 0 at

1% level. These results show that the response to different swings in portfolio returns is

strongly asymmetric. This is consistent with findings reported above. By comparing the

adjusted R-squared between Table 5 and Table 2, we can see that incorporating the downside

risk into the volatility index can enhance monitoring effectiveness (37.9% and 37.6% for

DSVXD
I;t and DBEXD

I;t in Table 5, and 36.7% for ΔSVXI,t in Table 2). The results confirm that

measures incorporating downside risk are better measures of fear gauge.

Volatility forecasting: Out of sample evidence

Besides the in-sample forecasting evidence, here we further compare the volatility predictabil-

ity by examining the out-of-sample tests for four volatility predictors: HVI, VIXI, SVXI, and

SVXD
I. Specifically, we use a rolling fixed window approach. Every day, each forecasting

model is estimated with a fixed rolling window to obtain the one-month-ahead volatility fore-

cast. To ensure robustness, we use a one-year window, a two-year window and a three-year

window. The out-of-sample forecasting accuracy is judged by three criteria: root-mean-square

error (RMSE), mean-absolute error (MAE) and mean-absolute-percentage error (MAPE).

Table 6 reports the estimation results for the average values of RMSE, MAE and MAPE

across 49 industries in three different rolling windows. First, HVI performs the worst among

four volatility measures, regardless of criterion or rolling window. For instance, in the one-

year rolling window case, the average RMSE values for VIXI, SVXI, and SVXD
I are all around

0.083, while it is 0.100 for HVI. Second, in almost all the scenarios, SVXD
I is the best predictor,

Table 5. Regression results of rate change of SVXD
I and ΔBEXI against returns of industry portfolios.

Dep Variable Average of R2 Average of Intercept Average of β1 for RI,t Average of β2 for RI,t
-

Panel A ΔSVXD
I 37.9%

Coef -0.001� -0.514��� -0.222���

p-value 0.051 0.000 0.001

Std Err 0.000 0.019 0.031

Panel B ΔBEXI 37.6%

Coef -0.001� -0.397��� -0.171���

p-value 0.055 0.003 0.002

Std Err 0.000 0.015 0.025

This table presents the average OLS estimates of regressions in Eq (23). The regressions take the following general form

DSVXD
I;t ¼ aþ b1RI;t þ b2R

�

I;t þ ε

All coefficients, p-values, and standard errors are an average of the corresponding measures from 49 regressions on all industry portfolios. Independent variables

include RI, daily return of the corresponding industry portfolio; and RI- daily return of the corresponding industry portfolio conditional on whether the return is below

0, i.e. RI = min(RI, 0). The dependent variable is the daily return of SVXDI, where DSVXD
I;t ¼ lnðSVXD

I;t=SVX
D
I;tÞ. The return data are from 4 January 1996 to 29 April

2016. To correct for autocorrelation and heteroskedasiticity, we use the Newey-West estimator for covariance matric with automatically selected lags as in Newey and

West [33].

���, ��, and � denote significance at the 0.01, 0.05, and 0.10 level, respectively.

https://doi.org/10.1371/journal.pone.0215032.t005
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with SVXI and VIXI being the second and third best predictors. Overall, the out-of-sample

forecasting results reiterate the earlier in-sample test findings.

Economic value of volatility timing

This section investigates the economic value of using various predictors to forecast monthly

industry volatility. We start from assuming an investor has a negative exponential utility func-

tion:

U ¼ � e� g~w ; ð24Þ

where ~w represents the wealth of the investor, and γ refers to the coefficient of the investor’s

risk aversion. The expected utility takes the form of:

EðUÞ ¼
R þ1
� 1
� f ð~wÞe� g~wd~w; ð25Þ

where f ð~wÞ is the density function of ~w, and expression of f ð~wÞ depends on the distribution of

~w.

In this study, for the sake of comparability with the literature on volatility timing [39–41],

we choose normality for the distribution of ~w. Following [42] and [43], suppose that ~w is dis-

tributed normally with mean, μ, and standard deviation, σ, the density of ~w:

f ð~wÞ ¼
e�
ð~w � mÞ2

2s2

s
ffiffiffiffiffiffi
2p
p ; ð26Þ

Substituting Eq 26 into Eq 25, and making a few rearrangements, we have:

EðUÞ ¼ � e� gðm� 0:5gs2Þ; ð27Þ

Table 6. Out-of-sample volatility forecasting results.

Panel A: 1-year rolling window

RMSE MAE MAPE

HVI 0.1005 0.0665 27.8261

VIXI 0.0838 0.0555 23.2998

SVXI 0.0832 0.0554 23.3153

SVXD
I 0.0832 0.0554 23.3428

Panel B: 2-year rolling window

RMSE MAE MAPE

HVI 0.1086 0.0753 32.7627

VIXI 0.0879 0.0593 25.196

SVXI 0.0868 0.0587 24.9739

SVXD
I 0.0867 0.0586 24.961

Panel C: 3-year rolling window

RMSE MAE MAPE

HVI 0.1102 0.0783 35.130

VIXI 0.0906 0.0621 26.763

SVXI 0.0894 0.0613 26.417

SVXD
I 0.0891 0.0611 26.370

This table reports the out-of-sample forecasting results from January 1996 to April 2016 with a fixed rolling window

approach. We report average values of RMSE, MAE and MAPE for 49 industries in the 1-year window, 2-year

window, and 3-year window.

https://doi.org/10.1371/journal.pone.0215032.t006
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Henceforth, the objective of the investor is to maximize the expression of μ−0.5γσ2, which

leads to the mean-variance utility function.

Since in our setting, the investor’s wealth depends on the return of the portfolio invested,

that is ~w ¼ w0ð1þ RpÞ, where w0 is the initial wealth, the maximum problem is equivalent to:

U½EtðRp;tþ1Þ; s
2

p;tþ1
� ¼ EtðRp;tþ1Þ � 0:5gs2

p;tþ1
; ð28Þ

where Et(Rp,t+1) and s2
p;tþ1

respectively are the conditional mean and variance of the portfolio

returns. We set γ to a realistic estimate of 3, as suggested by [44] and [45]. We also use values

of γ of 4 and 5 for robustness and sensitivity analysis.

In the volatility timing strategy, the investor allocates wealth between an industry portfolio

and a risk-free asset using a volatility predictor to maximize utility gains. The portfolio return

is Et(Rp,t+1) = rf,t+1+kt(Et(RI,t+1)−rf,t+1), where kt is the portfolio weight of industry portfolio I,
Et(RI,t+1) is the conditional expected return of the industry portfolio, and rf,t+1 denotes the

risk-free rate, which is known ex-ante. The portfolio variance is s2
p;tþ1
¼ k2

ts
2
I;tþ1

, where s2
I;tþ1

denotes the conditional variance of industry portfolio I. The optimal weight for industry I is

given by:

kt ¼
EtðRI;tþ1Þ � rf ;tþ1

gs2
I;tþ1

; ð29Þ

The current study focuses on monthly realized volatility forecasting, so we assume the port-

folio is rebalanced monthly. We set the month t expected return as the historical mean using

return data up to period t. The expected variance of portfolio I, s2
I;tþ1

, is based on the two-year

rolling out-of-sample forecast using Eq 10, with one of four different volatility measures (HVI,

VIXI, SVXI, and SVXD
I) as the predictor. The accuracy of volatility forecasting determines the

performance of this volatility timing strategy. Our benchmark strategy is the buy-and-hold

strategy of the respective industry portfolios, I.
To be consistent with our utility specification in Eq 24, we compare the performance of dif-

ferent strategies based on the certainty equivalent return (CER) gain of a volatility timing strat-

egy relative to that of a naïve buy-and-hold strategy:

CER ¼ ðRp � 0:5gs2

pÞ � ðRnaive � 0:5gs2

naiveÞ: ð30Þ

Intuitively, the CER gains of Eq 30 are the incremental management fees that the investor is

willing to pay to invest in the volatility timing strategies based on the volatility forecasts over

the buy-and-hold strategy.

Table 7 presents the average performance of 49 industries from January 1998 to April 2016.

In Panel A, we assume there is no transaction cost. We first examine the basic case of γ equal

to 3. The results on CER gains reveal that all the volatility timing strategies outperform the

buy-and-hold strategy. SVXD
I again performs best: the investor is prepared to pay a hefty incre-

mental annual management fee of 311 basis points bps to have access to predictive regression

based on SVXD
I , instead of the buy-and-hold strategy. In contrast, the investor is only willing

to pay 249 bps for the strategy using HVI. Moreover, the management fees that the investor is

willing to pay to be involved with the volatility timing strategy using SVXD
I increase from 331

bps (γ = 3) to 590 bps (γ = 4) and 866 bps (γ = 5). This result suggests that volatility timing is

especially important for risk-averse investors.

The volatility timing strategy requires monthly rebalancing, so its performance might be

sensitive to transaction costs. With this in mind, we analyze the impact of transaction costs on

our results. Following [46] and [47], we define the transaction cost adjusted portfolio return as
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follows:

�Rp;tþ1 ¼ Rp;tþ1 � rð1þ Rp;tþ1ÞjDwtþ1j; ð31Þ

where �Rp;tþ1 is the transaction cost adjusted portfolio return, Rp,t+1 is the pre-adjusted portfolio

return, ρ is the transaction cost parameter, and is set to be 0.0025, and Δwt+1 is the change of

weight from month t to month t+1.

Panel B of Table 7 presents the results for transaction cost adjusted performance. It clearly

shows that, even when we account for transaction cost, volatility timing strategies based on

VIXI, SVXI, and SVXD
I , still largely outperform the buy-and-hold strategy and the volatility

timing strategy based on HVI. Consistent with Panel A, SVXD
I generates the highest CER gain

(269 bps) for γ = 3, and again, economic values are larger when the investor is more risk-averse

(CER gains of 544 bps for γ = 4 and 829 bps for γ = 5).

In summary, this section uses a volatility timing strategy to show that the strong forecasting

abilities of the industry volatility indices (VIXI, SVXI, and SVXD
I ) have significant economic

value for investors.

Conclusion

This paper is novel in that it proposes a general equilibrium framework to price volatility in

the same manner as is the case for all securities in the market, following Arrow and Debreu

[6]. Using state prices estimated from S&P 500 index options, we illustrate how we can derive

ex-ante volatility measures SVXI for industry portfolios, in which there are no traded options.

The SVXI measures generate superior forecasting abilities for the future realized volatility and

serve as qualified fear gauges. We show that our approach is flexible and general by extending

Table 7. Out-of-sample portfolio performance: Monthly rebalancing.

Panel A: Without Transaction Cost

γ = 3 γ = 4 γ = 5

Predictor CER (bps) CER (bps) CER (bps)

BH N/A N/A N/A

HVI 249 528 816

VIXI 326 586 863

SVXI 330 589 865

SVXD
I 331 590 866

Panel B: With Transaction Cost (0.25%)

Predictor CER (bps) CER (bps) CER (bps)

BH N/A N/A N/A

HVI 193 486 816

VIXI 266 540 863

SVXI 269 543 865

SVXD
I 270 544 866

This table reports the monthly out-of-sample portfolio allocation results from January 1998 to April 2016. We

compare five strategies: buy-and-hold (BH), volatility timing based on HVI, volatility timing based on VIXI, volatility

timing based on SVXI, and volatility timing based on SVXD
I. We report average annualized certainty equivalent

return (CER) gains for 49 industries under risk aversion coefficients of 3, 4, and 5. The CER gain (expressed in

annualized basis points) is for a mean-variance investor who allocates between the industry portfolio and risk-free

asset using the volatility timing strategy, relative to the naïve buy-and-hold passive strategy (BH). Panel A presents

the results without transaction cost and Panel B presents the results counting for transaction cost.

https://doi.org/10.1371/journal.pone.0215032.t007
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it to downside risk and upside opportunity. Finally, we demonstrate that the superior forecast-

ing ability of our general equilibrium volatility measure can create significant economic value

through a simple volatility timing strategy. Our findings, together with the fact that the indus-

try volatility indices can be easily constructed under the general equilibrium framework, offer

practitioners an appealing alternative tool for managing volatility. Our general equilibrium

framework is not limited to pricing volatility, but can be applied to price any moments of the

return distribution.
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