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Abstract

The use of virtual laboratories is growing as companies and educational institutions try to

expand their reach, cut costs, increase student understanding, and provide more accessible

hands on training for future scientists. Many new higher education initiatives outsource lab

activities so students now perform them online in a virtual environment rather than in a class-

room setting, thereby saving time and money while increasing accessibility. In this paper we

explored whether the learning and motivational outcomes of interacting with a desktop vir-

tual reality (VR) science lab simulation on the internet at home are equivalent to interacting

with the same simulation in class with teacher supervision. A sample of 112 (76 female) uni-

versity biology students participated in a between-subjects experimental design, in which

participants learned at home or in class from the same virtual laboratory simulation on the

topic of microbiology. The home and classroom groups did not differ significantly on post-

test learning outcome scores, or on self-report measures of intrinsic motivation or self-effi-

cacy. Furthermore, these conclusions remained after accounting for prior knowledge or goal

orientation. In conclusion, the results indicate that virtual simulations are learning activities

that students can engage in just as effectively outside of the classroom environment.

Introduction

The use of simulated labs is booming as companies and educational institutions try to expand

their reach, cut costs, increase student understanding, and provide more accessible hands on

training for future scientists [1]. Furthermore, there is a strong trend to move educational

activities online with the immergence of educational formats such as Massive Open Online

Courses (MOOCs) [2,3], providing a number of advantages such as flexibility and the ability

to access a large number of students. In 2002 a total of 1,602,970 university students took at

least one course online. By 2011 6,714,792 students took one or more online classes, represent-

ing an increase 318.9% [4]. This trend is continuously increasing and Arizona State University

(ASU) in collaboration with Google Daydream and the educational technology company
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Labster have recently launched a fully online biology degree course that uses simulations

instead of physical lab activities [1]. The course includes 30 three-dimensional lab simulations

that are used by students online rather than at the university. Many universities in the US and

Europe are following this trend, and as of October 2018, there were 16 universities that were in

the process of planning a fully online virtual biology degree with Labster [5].

Reviews and meta-analyses have found that simulations can be effective in promoting

knowledge, developing process skills, and facilitating conceptual change and self-efficacy when

used as supplements to teaching [6–10]. In addition, students experienced significantly more

intellectual intensity, intrinsic motivation, positive affect, and overall engagement when com-

pleting game-based homework compared with regular homework [11]. However, little is

known about the effect of the context in which simulations are used; in particular, unsuper-

vised home contexts versus supervised classroom contexts. A recent study compared a face-to-

face laboratory to a low fidelity virtual laboratory biology simulation in a sample of three hun-

dred undergraduate STEM students over the course of a semester [12]. The results indicated

that there were no significant differences on final grades or motivation between the groups.

However, students experienced a decline in motivation to learn biology over the course. The

study concludes that virtual laboratories may offer an affordable alternative to resource inten-

sive face-to-face laboratories in large-enrollment Biology courses. Another study evaluated the

effectiveness of a virtual method of instruction for a general studies, physical science laboratory

course [13]. In this study, students were able to choose to either use physical or virtual labora-

tory exercises. This study also failed to find any differences between the groups on assessment

scores, attitudes, or personal preferences. Although these studies suggest that there is equiva-

lence when using simulations across settings, comparisons were made between low fidelity vir-

tual simulations and face-to-face laboratory activities that were not completely identical.

Therefore, given the increasing availability of online educational apps, including STEM fields,

it is important to explore whether the quality of student learning from these at home is equiva-

lent to engaging with them, under supervision, in the classroom. Thus, the objective of this

study was to determine whether the learning and motivational outcomes from learning from

high fidelity computer-based science simulation activities during class time are equivalent to

doing them at home, self-directed, on the student’s own time.

In the present study, we investigate the equivalence of using desktop virtual reality science

simulations at home compared to using them under supervision of a teacher in the classroom.

The benefits of establishing equivalence is confidence to off-load these activities from the class-

room without losing any learning outcome benefits. Furthermore, virtual simulations have the

potential of increasing accessibility for all students to high quality laboratory activities [1].

There is increasing interest in extending science simulations from formal (in-school) environ-

ments to informal (at-home) environments [14–16], but there is a need to determine whether

the context of learning—in school versus at home—affects learning outcomes. In this paper,

we explored whether computer-based simulations assigned at home could be as effective for

learning and engagement as when they were used during class time under teacher supervision.

What is the equivalence hypothesis?

The equivalence hypothesis is an extension of Clark’s [17] classic theory of learning with

media, which holds that instructional methods cause learning regardless of the medium used

to deliver the instructional method. Given the growing development of virtual learning envi-

ronments [18–21], we have extended the concept of instructional medium to include the phys-

ical context of learning—that is, learning in virtual reality (VR) at home versus learning in VR

at school. The underlying theory is that learning depends on the cognitive activity of the
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learner during learning, which is primed by the instructional method (e.g., interacting with a

science simulation). To the extent that the same cognitive activity is primed both at home and

at school, the learning and motivational outcomes should be equivalent. According to the

equivalence hypothesis, learning from VR at home should be equivalent to learning from VR

at school due to the instructional method (i.e., interacting with the simulation) being the same.

What is the educational importance of the equivalence hypothesis?

Demonstrating the equivalence of learning outcomes using the same simulation at home or in

the classroom effectively allows for more instructional time and flexibility than if all instruc-

tion must occur in the classroom. Time is a precious resource in education [22]. Researchers

have long recognized the role of instructional time in achieving learning outcomes, as formal-

ized in the time-on-task hypothesis [23]. An important advance in the time-on-task hypothesis

is that researchers should focus on engaged learning time—the time the learner is engaged in

deep cognitive processing during learning—rather than allocated learning time—the time the

teacher provides for learning activities [24]. Spending time at home working on science simu-

lation apps is one way to increase the total amount of engaged time on task. Furthermore, sup-

port for the equivalence hypothesis would mean that a larger and more varied sample of

students would get access to engaging STEM learning activities.

However, not all at-home activities are equally effective, so we focus on a virtual science lab

activity that has been shown to be effective [25–27] and is designed based on cognitive princi-

ples of multimedia learning [28]. Virtual laboratory approaches are becoming increasingly

popular because they enable delivery of cost-effective, student-centered curricula in the face of

increasing student numbers and/or decreased funding [1]; however, there is a paucity of con-

clusive evidence that these yield equivalent outcomes for learning, motivation, and self-efficacy

across different settings [29]. Thus, the educational value of using virtual labs at home depends

on the equivalence of these learning and associated outcomes. Even if the equivalence hypothe-

sis holds in general, it is also relevant to investigate if using lab simulations at home vs. the

classroom is equivalently effective for different groups of students. Two important variables

that could influence learning at home vs. in class are investigated in this study, and are

described in more detail below. These include prior knowledge [30], and goal orientation [31].

Does the equivalence hypothesis hold for students with different levels of

prior knowledge?

We investigated the equivalence hypothesis for students with different levels of prior knowl-

edge because several studies have found that educational activities that work for students with

low prior knowledge do not necessarily work with high-prior knowledge students [30–35].

The expertise reversal effect refers to the reversal of the effectiveness of instructional tech-

niques for learners with differing levels of prior knowledge [30,35]. For simulations at home to

be useful and equivalent to use in a classroom, students with differing levels of prior knowledge

need to experience equivalent outcomes.

Does the equivalence hypothesis hold for students with different forms of

goal orientation?

Another individual difference variable that could influence the equivalence hypothesis is goal

orientation. Achievement goal orientation refers to the reason why students engage in learning

tasks [31]. Achievement goal orientation affects the extent to which students view challenges

as opportunities, persist in the face of difficulties, exert effort, are intrinsically motivated to
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learn, and believe that their abilities can be developed [31]. Holding a mastery orientation, one

in which the goal is to learn or master the content or task, is associated with adaptive patterns

of learning including higher task efficacy, motivation, effort, persistence, and performance.

Performance-approach orientation, where the goal is to demonstrate ability or competence,

has also been associated with high performance; however, performance-avoid orientation,

where the goal is to avoid demonstrating low ability (i.e., to avoid failing), is associated with

poorer performance [36]. Previous research on homework has found that students with high

mastery goals did more science and general homework [37]. Those with high performance-

avoid goals had higher homework anxiety, which is likely to lead them to avoid engaging in

homework [37]. When learning via technology, as in the current study, high mastery goals

were associated with less procrastination [38], but there was no difference in the time engaged

in the learning compared to those with high performance goals [39]. Given differences in

learning engagement and outcomes, especially for homework and when learning online, we

examined the equivalence of science simulations at home and in school for students with dif-

ferent levels of mastery, performance-approach, and performance-avoid goal orientation.

Materials and methods

This research was approved by The University of Glasgow’s College of Medical, Veterinary

and Life Sciences Ethics Committee.

Predictions and analyses

If the equivalence hypothesis is correct we expect that students who engage in computer-based

science simulations at home (home group) will have the same outcomes as students who

engage in the same simulations in their classroom (classroom group) as measured by tests of

learning outcome and motivation (intrinsic motivation and self-efficacy). We report mean dif-

ferences in learning outcome, intrinsic motivation, and self-efficacy as effect sizes with corre-

sponding 95% confidence intervals. Furthermore, we report the 95% Highest Density Interval

(HDI) with respect to the hierarchical t-test model and standardized Bayesian priors [40]. The

HDI is a Bayesian method that estimates the difference in means between two groups and pro-

vides a probability distribution over the difference.

Furthermore, if the equivalence hypothesis holds, the same effect should be observed for

students with different prior knowledge, mastery goal orientation, performance-approach goal

orientation, and performance-avoidance. In this study, we predicted that the students who use

the virtual simulation at home would not differ from students who take the virtual simulation

in the classroom on learning outcome, intrinsic motivation, and self-efficacy after accounting

for prior knowledge, and goal orientations (mastery, performance-approach, and perfor-

mance-avoid). This was addressed using ANCOVA’s adjusting for prior knowledge, and learn-

ing goal orientations respectively and by testing interaction effects. We report effect sizes using

Cohen’s d.

Participants and design

The sample consisted of 112 students (36 males and 76 females) aged from 18 to 41 (M = 20.7

years, SD = 4.4), who were part of a biology course at the University of Glasgow. The experi-

ment employed a between-subjects design, in which students in the course were randomly

assigned to use the same virtual laboratory simulation on the topic of microbiology at home

on their own time (home group; N = 62) or in an assigned classroom setting with teacher

supervision (classroom group; N = 50). Only participants who filled out an informed consent
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to use their data in the study, which is why there was an uneven number of students in the two

groups.

Materials

The materials included a Bacterial isolation virtual lab simulation, participant questionnaire,

learning outcome test, and self-report survey (see Appendix 1 for a list of the items used in the

study). Unless otherwise indicated all surveys used a 5-point Likert scale ranging from (1)

completely disagree to (5) completely agree and were delivered online using Survey Monkey.

Virtual lab simulation. The virtual simulation used in this experiment was entitled ‘Bac-

terial Isolation’ and was developed and produced by an education technology development

firm, Labster (for a short video of the simulation see [41]). This is one lab from a catalogue that

is commercially available from the company (www.Labster.com). The simulation is an immer-

sive and interactive digital environment designed to facilitate learning of key concepts and

techniques in microbiology at a university or college level. Specifically, the concepts covered

were: Understanding the importance of bacterial growth for the investigation of pathological

microorganisms, appreciating the need to work under aseptic conditions, understanding the

concept of a single colony and why plate-streaking techniques work and understanding the

function and role of selective and differential culture media in bacteriology. The key skills

learnt were: inoculation of bacterial culture media, colony screening, use of sterile technique

and plate streaking for the isolation of single colonies. The simulation allowed the user to work

through the procedures in a virtual lab by using and interacting with the relevant lab equip-

ment and the essential content is taught through an inquiry-based learning approach. Students

were guided through simulation by a pedagogical agent who gave specific instructions to help

students progress smoothly through the simulation [42]. In the simulation the virtual lesson

starts off with the learner being presented with a brief introduction to the story behind the lab

scenario and the student’s task in resolving the experimental investigation is outlined. The stu-

dent is tasked with investigating an outbreak of bacterial food poisoning, and has to isolate an

antibiotic-resistant strain of the bacterium from chicken litter samples collected from a poultry

farm, the suspected source of infection. After being introduced to the principles of selective

and differential culture media in microbiology, students are given repeated opportunities to

practice streaking out bacteria onto agar plates, incubate them appropriately, and culture iso-

lated colonies free from contamination. This is a key technique in microbiology lab practice

and has previously been shown to allow students to learn these skills equally as they would

from a real-life lab experience with a teacher [26].

The bacterial isolation simulation includes five different forms of interactivity that are com-

monly used in multimedia learning environments including: dialoguing, controlling, manipu-

lating, searching, and navigating [43]. In the bacterial isolation simulation dialoguing is

achieved through an interaction with the online virtual laboratory instructor and through the

optional selection of additional information through wikilinks. Students are also able to con-

trol the pace of the bacterial isolation simulation by deciding when to proceed with the experi-

ments, by choosing whether to do further reading when prompted to answer multiple-choice

questions, and by controlling the number of times they practice particular components of the

lab. Students are required to manipulate the material by having to practice streaking out bacte-

ria on agar plates. This includes selecting the appropriate culture medium, inocula, and con-

trols used in the experiment. The student has to find the correct tools and prepare them

adequately to work with the required sterile technique that the protocol demands, and finally

has to determine the parameters for successful incubation and growth of the bacteria. Key to

the simulation is the student’s ability to use a sterile nichrome loop to streak out bacteria onto
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an agar plate to be able to grow isolated bacterial colonies, free from contamination. The vir-

tual lab also necessitates the student’s choice for safe disposal of contaminated lab materials.

Furthermore it gives the opportunity to engage in information seeking, by providing wikilinks

(‘Theory’) to written material giving background to the concepts, techniques and materials

they are engaging with. This included expansion on topics of selective and differential culture

mediums, clonal growth of bacteria, and resistance and sensitivity of bacteria to antibiotics.

Finally, students are also provided with interaction by navigation because the learner is in a

virtual lab where they are able to determine the content of the learning episodes by selecting a

piece of equipment from various available sources and deciding what to do next by navigating

around the virtual lab. The simulation typically takes approximately one hour to complete.

Students engaged with the simulation at a point in their course prior to the commencement of

a block of ‘real’ labs in which they would have weekly lab practice in the traditional manner.

The majority of students would have had no prior experience of these techniques (this data not

collected but assumed from knowledge of curriculum) and the theory had not been previously

covered in lectures.

Pre-test survey. This included demographic questions such as gender and year of study,

and scales to measure goal orientation and prior knowledge. Goal orientation was assessed

with three scales from the Patterns of Adaptive Learning Scales (PALS [44]). The scales had

good reliability with Cronbach’s alphas of .76 for mastery, .86 for performance-approach, and

.86 for performance-avoid. Prior knowledge was measured with seven items with response

options ranging from one to five intended to assess the students’ existing knowledge of micro-

biology. The prior knowledge is reported as the average score and the scale had a Cronbach’s

alpha of .82.

Learning outcome tests. The learning outcome test consisted of 10 multiple-choice ques-

tions designed to assess retention of essential material presented in the simulation, and 10 mul-

tiple-choice transfer questions designed to assess the participants’ ability to apply what they

had learned to new situations. Students received one point for each correct answer and 0

points for selecting an incorrect answer in the retention and transfer tests. The quality of the

test was assessed by testing the fit of the items to the Rasch model within the framework of

item response theory [45] using RUMM2030 [46]. The results showed that four items did not

fit the model. The remaining 16 items showed acceptable fit to the Rasch model (χ2[32] =

45.76, p = .055). Furthermore, no multidimensionality was found according to the standard

test proposed by Smith [47] so a single total score (out of 16) was used. The test had acceptable

discrimination for the sample with a person fit index of .62 and Cronbach’s alpha of .72.

Post-test self-report measure. Participants rated their level of intrinsic motivation and

self-efficacy in biology. The intrinsic motivation measure was a 5-item scale adapted from

Deci and Ryan [48]. The self-efficacy scale was an 8-item scale adapted from the Motivated

Strategies for Learning Questionnaire (MSLQ [49]). The scales yielded good reliability, with

Cronbach’s alphas of .89 for intrinsic motivation and .92 for self-efficacy.

Procedure

Students in 2nd and 3rd year microbiology courses (of a 4-year degree program) were invited to

participate in the study. The simulation was used to achieve specific learning outcomes for the

courses, and as such, all students were expected to engage with it. Students were informed

about the study through communications made to them directly during face-to-face lecture

time, and via written information on the campus virtual learning environment. Informed con-

sent was taken in accordance with the stipulations required by the university’s College of Med-

ical, Veterinary and Life Sciences Ethics Committee.
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Students were randomly assigned to the classroom group or home group, with each group

designated to engage with the simulation either at school or at home, respectively. All partici-

pants completed the pre-test survey, not more than a week in advance of engaging with the

simulation. The classroom group had the simulation scheduled in their timetable, allowing

them one hour in a computer lab on campus. The computer lab had the capacity to seat up to

40 students at a time, and the same teaching assistant was present to attend in each session.

The teaching assistant was a final year PhD student with extensive lab tutoring experience with

these students, and was known to them as an experienced lab scientist in this field (i.e., micro-

biology). Students in this group could continue to work on the simulation after the hour if

they desired. On average, they spent 59.21 minutes on the simulation (range 18 to 127 min-

utes). The home group was given free choice with regards to where and when they would

engage with the simulation outside of school. A total of 52 reported taking the simulation at

home and 10 reported taking the simulation somewhere else such as the library, café etc. There

were no differences within this group so the group was combined in the remaining analyses.

They were able to contact staff if they had operational problems (by registering with the web-

site for the simulation) but otherwise were asked to work completely independently of teach-

ing support. Students in this group spent an average of 61 minutes using the simulation

(range: 18 to 125 minutes).

On completion of the simulation, students from both groups were asked to complete the

post-test, which was emailed to them approximately one week after taking the simulation. Stu-

dents in the classroom group responded to the post-test an average of 11.37 days after interact-

ing with the simulation, and those in the home group responded an average of 10.73 days after

interacting with the simulation.

Do the groups differ on basic characteristics?

As a preliminary step, we examined whether the home and classroom groups differed on basic

characteristics, in spite of random assignment. The average prior knowledge score for the

home group (Mean = 3.85, SD = 0.60) and the computer group (Mean = 3.71, SD = 0.70) did

not differ significantly with an effect size of 0.14 (95% CI -0.11 to 0.38). Regarding gender, the

proportion of men in the home group (19 men, 31%) did not differ significantly from the pro-

portion in the classroom group (17 men, 34%). The difference was 3% (95% CI -14% to 21%).

Results

Do the groups differ on learning outcome?

Table 1 shows the summary statistics for the home and classroom groups on the learning out-

come test. As can be seen, the home group (Mean = 11.57, SD = 3.14) and the classroom group

(Mean = 11.12, SD = 3.03) had an effect size difference of 0.14 (95% CI -0.38 to 0.11), thus, the

groups did not differ significantly with respect to learning outcome. The 95% HDI of the dif-

ference ranged from -0.78 to 1.60, meaning that 95% of the posterior distribution was in this

range. These findings support the equivalence hypothesis and constitute the major empirical

contribution of this study.

Do the groups differ on self-reported intrinsic motivation and self-efficacy?

Table 1 also shows the summary statistics for the two groups on intrinsic motivation and self-

efficacy. For motivation, the home group (Mean = 4.10, SD = 0.70) and the classroom group

(Mean = 4.11, SD = 0.65) had an effect size difference of 0.02 (95% CI -0.36 to 0.39). Thus, the

groups did not differ significantly with respect to level of intrinsic motivation. The 95% HDI
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of the difference ranged from -0.24 to 0.26. For self-efficacy, the home group (Mean = 3.70,

SD = 0.62) and the classroom group (Mean = 3.65, SD = 0.64) had an effect size difference of

0.09 for self-efficacy (95% CI -0.36 to 0.39). This also indicates that the groups did not differ

significantly with respect to level of self-efficacy. The 95% HDI of the difference ranged from

-0.21 to 0.19. These findings support the equivalence hypothesis and constitute further empiri-

cal contributions of this study.

Is the equivalence between groups consistent after accounting for prior

knowledge?

As can be seen in Table 2, the inclusion of prior knowledge as a co-variate did not lead to dif-

ferences between the home and the classroom groups on the three dependent measures of

learning outcome, intrinsic motivation, or self-efficacy and there was no statistically significant

evidence of interactions. More specifically the effect size difference with prior knowledge as a

covariate was 0.11 (95% CI -0.28 to 0.50) for the learning outcome (interaction p = 0.1999);

0.10 (95% CI -0.28 to 0.48) for intrinsic motivation (interaction p = 0.0892); and 0.01 (95% CI

-0.37 to 0.39) for self-efficacy (interaction p = 0.6397). We conclude that the lack of differences

between the home and the classroom groups on learning outcome, intrinsic motivation, and

self-efficacy remained after accounting for prior knowledge.

Is the equivalence between groups consistent across learners with different

kinds of goal orientations?

The final three columns of Table 2 indicate that the inclusion of the three goal orientation

variables (mastery, performance-approach, and performance-avoid) as co-variates did not lead

to differences between the home and classroom groups on the three dependent variables in

this study. The effect size difference with mastery orientation as a covariate was 0.11 (95% CI

-0.28 to 0.50) for the learning outcome (interaction p = 0.9886); and 0.11 (95% CI -0.28 to

0.49) for intrinsic motivation (interaction p = 0.3182). However, there was a significant inter-

action for the outcome of self-efficacy (p = 0.0263), where the effect of mastery orientation on

self-efficacy was stronger for the computer group (see Fig 1). The effect size difference with

Table 1. Means, standard deviations, minimum, and maximum scores, effect sizes (with confidence intervals, and 95% High Density Interval (HDI) for the depen-

dent variables used in the study.

Home Classroom

Mean (SD) Min.-Max. Mean (SD) Min.-Max. Effect size (95% CI) 95% HDI�

Learning outcome 11.57 (3.14) 5–16 11.12 (3.03) 2–16 0.14 (-0.24 to 0.53) (-0.78 to 1.60)

Motivation 4.10 (0.70) 2–5 4.11 (0.65) 2–5 0.02 (-0.36 to 0.39) (-0.24 to 0.26)

Self-efficacy 3.70 (0.62) 2–5 3.65 (0.64) 1.38–4.88 0.09 (-0.29 to 0.46) (-0.21 to 0.19)

�: HDI: Highest Density Interval

https://doi.org/10.1371/journal.pone.0214944.t001

Table 2. Effect sizes (with confidence intervals) for the dependent variables without any adjustments, after adjusting for prior knowledge, and after adjusting for

goal orientation respectively.

Effect size (95% CI)

Orig. Adj. for prior knowledge Adj. for mastery orientation Adj. for performance-approach Adj. for performance-avoid

Learning outcome 0.14 (-0.24 to 0.53) 0.11 (-0.28 to 0.50) 0.11 (-0.28 to 0.50) 0.15 (-0.24 to 0.54) 0.16 (-0.23 to 0.54)

Motivation 0.02 (-0.36 to 0.39) 0.10 (-0.28 to 0.48) 0.11 (-0.28 to 0.49) 0.02 (-0.39 to 0.43) 0.00 (-0.40 to 0.40)

Self-efficacy 0.09 (-0.29 to 0.46) 0.01 (-0.37 to 0.39) Interaction 0.12 (-0.28 to 0.53) 0.11 (-0.30 to 0.52)

https://doi.org/10.1371/journal.pone.0214944.t002
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performance-approach orientation as a covariate was 0.15 (95% CI -0.24 to 0.54) for the learn-

ing outcome (interaction p = 0.1424); 0.02 (95% CI -0.39 to 0.43) for intrinsic motivation

(interaction p = 0.6894); and 0.12 (95% CI -0.28 to 0.53) for self-efficacy (interaction

p = 0.4265). The effect size difference with performance-avoid orientation as a covariate was

0.16 (95% CI -0.23 to 0.54) for the learning outcome (interaction p = 0.4730); 0.00 (95% CI

-0.40 to 0.40) for intrinsic motivation (interaction p = 0.3229); and 0.11 (95% CI -0.30 to 0.52)

for self-efficacy (interaction p = 0.6953). This leads us to the conclusion that the lack of differ-

ences between the home and the classroom groups on learning outcome, and intrinsic motiva-

tion remained after accounting for the three different forms of goal orientation. There was an

interaction between mastery orientation and self-efficacy which means that the differences

between the groups (computer vs. home) on the outcome of self-efficacy, differed based on

mastery orientation. Fig 1 illustrates the interaction between these variables across the groups.

Discussion

Empirical contributions

The main empirical contribution of this study is the finding that the equivalence hypothesis—

i.e., students learn as well from computer-based interactive science simulations when they are

Fig 1. Illustration of the interaction between mastery orientation and self-efficacy for the computer and home groups.

https://doi.org/10.1371/journal.pone.0214944.g001
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performed at home as when they are performed in class—was supported. Specifically, the stu-

dents who were assigned the virtual biology laboratory simulation to independently complete

at home in an informal environment performed equally well on the learning outcome test as

the students who used the simulation in a formal classroom environment with teacher supervi-

sion. This result is consistent with the results found in earlier studies [12,13], and add to the

evidence that there is equivalence between students who use virtual simulations at home or in

a classroom context.

A second empirical contribution was the further demonstration of equivalence for motiva-

tion and self-efficacy for the home and classroom groups; i.e., no differences in self-reported

motivation or self-efficacy between the students who took the simulation at home and those

who took it in a formal classroom. Increasing students’ motivation to learn science has been

highlighted as one of the most important potential benefits of using simulations in science

education [16]. The results in this study indicate that this need not involve formal supervision

by teachers, but can be equally achieved via independent engagement in these simulations.

This finding is particularly relevant because there is a growing body of research and interest in

the importance of motivation, the social and cultural context, and feelings of self-efficacy in

supporting learning in STEM [6,16]. The final major empirical contribution of this paper was

the finding that the equivalent outcomes were not dependent on prior knowledge or goal

orientation.

Practical contributions

The main practical contribution of this paper is in developing an evidence-based framework

that can help science educators in planning educational activities that optimize learning and

motivational outcomes for students. One important area of research on the use of simulations

for science learning is the comparison of their value across different educational contexts. This

research question is specifically relevant because there is a rapid increase in the use of virtual

science lab simulations that are administered online1. The results in this study provide initial

support to the use of administering unsupervised lab simulations online. Furthermore, in

more traditional settings, given the limitations on teacher resources, it is relevant to increase

instructional time by assigning online learning activities at home, as homework, blended

instruction, or as part of a flipped classroom. The results of this study show that the quality of

the outcomes from these activities when they are performed at home is equivalent to the out-

comes when they are used in classroom environments, which can free up class time for other

relevant activities. Furthermore, the results can have vast ramifications as they suggest that it is

possible to make STEM more accessible and inclusive by making effective laboratory activities

available to student groups who would not be able participate and have access a physical

STEM laboratory.

Theoretical contributions

The equivalence hypothesis is based on an extension of Clark’s [17] distinction between

instructional media and instructional methods, in which he emphasizes the importance of the

instructional methods impact on learning. In applying the methods-not-media view to the

equivalence hypothesis, the instructional method—that is the interactive science simulation—

should cause the learning, but the medium or context—home or classroom—in which it is

delivered should not. The findings in this study support the equivalence hypothesis because

there were no differences in outcomes between the home and classroom contexts.

This is in contrast to more social constructivist theoretical perspectives of learning that con-

sider the context in which the learning occurs as central to learning itself [50]. In the present
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study, however, context refers simply to the physical location in which a VR activity was

undertaken. We conclude that the virtual context in a carefully designed VR science simula-

tion can be so powerful in and of itself that students become immersed in that virtual context

and can experience a sense of presence regardless of the environment in which they are physi-

cally present. A feeling of presence—which is defined as a psychological state in which virtual

(para-authentic or artificial) physical objects, social actors, and the self, respectively, are experi-

enced as actual entities [51]—is, therefore, a very important variable that could mediate the

importance of the physical context in which the simulation is being used [52–55]. In this way,

the context as experienced by the learner may be equivalent. The findings in this study also

support the idea that the principles of multimedia learning [30] that were implemented in the

bacterial isolation simulation hold equally well in the two contexts under which they were

tested in this study.

Limitations and future directions

While the results of this study support the equivalence hypothesis and the idea that simulations

can be used just as successfully at home, there are some cautions. One limitation was that only

112 of the 289 students enrolled in the biology course (38.75%) agreed to provide their data for

the study. Therefore, it is possible that the sample of participating students was biased in some

way, such as being the more motivated or mastery oriented students. However, we did demon-

strate that differences in prior knowledge or goal orientations, which are known to influence

learning outcomes, did not affect the equivalence of the outcomes. We did find that the rela-

tionship between mastery orientation and self-efficacy was different between the home and

classroom groups. The results suggest that mastery orientation plays a bigger role in predicting

self-efficacy when simulations are used in classroom settings compared to at home. Future

research should investigate if this finding can be replicated in different samples with different

learning material.

There are also several future research efforts needed in order to understand how simula-

tions can be incorporated optimally into the science curriculum. For example, how much and

during which activities should teachers invest time in face-to-face activities compared to online

learning? How should teachers follow-up on simulation activities in the classroom in terms of

exploration, discussions or reflection of the learnt material? How much prior knowledge or

preparation do students need before engaging in a simulation in order to get optimal learning

and motivational outcomes? Our results showed equivalence across students with different lev-

els of prior-knowledge, but is there a minimal amount of prior knowledge before these are

effective learning tools?

Although the results in this study support the equivalence hypothesis, simulations have spe-

cifically been shown to be effective for learning when sufficient guidance is given [56]. The

Bacteria Isolation simulation used in this study included guidance in the form of concrete

instructions by a pedagogical agent, to ensure that students progressed smoothly through the

simulation activities. We reason that when a virtual context is developed in a way to achieve

enough psychological presence, students will perceive the virtual environment to be their pri-

mary learning context. When this happens, optimizing contextual factors within the virtual

environment becomes important for learning [42] and the physical environment becomes less

important. However, more research is needed to investigate likely boundary conditions to the

equivalence hypothesis, as there are potentially settings where individualized classroom guid-

ance is more effective than the guidance that is currently possible in a virtual environment.

Future research should also investigate the role of this guidance and how to individualize it so

that it is optimized to each student’s learning and motivational needs.
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