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Abstract

Conventional traffic crash analyzing methods focus on identifying the relationship between

traffic crash outcomes and impact risk factors and explaining the effects of risk factors,

which ignore the changes of roadway systems and can lead to inaccurate results in traffic

crash predictions. To address this issue, an innovative two-step method is proposed and a

support vector regression (SVR) model is formulated into state-space model (SSM) frame-

work for traffic crash prediction. The SSM was developed in the first step to identify the

dynamic evolution process of the roadway systems that are caused by the changes of traffic

flow and predict the changes of impact factors in roadway systems. Using the predicted

impact factors, the SVR model was incorporated in the second step to perform the traffic

crash prediction. A five-year dataset that obtained from 1152 roadway segments in Tennes-

see was employed to validate the model effectiveness. The proposed models result in an

average prediction MAPE of 7.59%, a MAE of 0.11, and a RMSD of 0.32. For the perfor-

mance comparison, a SVR model and a multivariate negative binomial (MVNB) model were

developed to do the same task. The results show that the proposed model has superior per-

formances in terms of prediction accuracy compared to the SVR and MVNB models. Com-

pared to the SVR and MVNB models, the benefit of incorporating a state-space model to

identify the changes of roadway systems is significant evident in the proposed models for all

crash types, and the prediction accuracy that measured by MAPE can be improved by

4.360% and 6.445% on average, respectively. Apart from accuracy improvement, the pro-

posed models are more robust and the predictions can retain a smoother pattern. Further-

more, the results show that the proposed model has a more precise and synchronized

response behavior to the high variations of the observed data, especially for the phenome-

non of extra zeros.
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1. Introduction

Traffic crashes result in countless fatalities, injuries, many dollars expenses in medical and

property lost. To reduce the number of traffic crashes, many models and approaches have

been developed to investigate the relationship between the impact factors and traffic crash out-

comes and intend to provide effective traffic safety countermeasures. Lord and Mannering [1]

provided a comprehensive review about the methodologies that previously applied to traffic

crash analyses along with their strengths and weaknesses. Though these studies provide valu-

able insights to enhance the traffic safety, it is important to note that crash estimation and

crash prediction require different methodologies and approaches. With regards to the crash

estimation, the relationships between crash counts and impact factors, such as geometric

design features, traffic factors, and environmental characteristics have been analyzed in

numerous previous studies [2–8].

Varieties of statistical models that are based on Poisson distribution as well as some exten-

sions of the Poisson models, including negative binomial (NB) and Poisson-lognormal models

have been proposed for traffic crash estimations over the years. These models focused on a thor-

ough understanding of the factors that affect the occurrences of traffic crashes. To better esti-

mate the likelihood of crashes and provide guidance for policies and countermeasures that aim

at reducing the number of crashes, issues such as the effects of unobserved heterogeneities, spa-

tial and temporal correlations, the possibility of roadway segments shifting among multiple

crash states have been addressed in the evolution of methodological alternatives in the field of

traffic crash analyses. To account for the unobserved heterogeneity from one roadway entity to

another, the random-parameter feature has been incorporated in these generalized Poisson

models and the estimated parameters are allowed to vary across each individual observation in

the dataset [9]. To address the correlation issues in crash data, the bivariate/multivariate models,

such as multivariate Poisson model [10], the bivariate NB model [11], the multivariate Poisson-

lognormal model [12–14], the multivariate zero-inflated Poisson model [15], and the multivari-

ate random-parameters zero-inflated NB regression model [16] have been applied in highway-

safety research to jointly model more than one crash type simultaneously, since the counts of

specific crash types are not independent. Zeng and Huang [17] and Zeng et al. [18, 19] addressed

the spatial and temporal correlation issues in the modelling process for traffic crash analyses.

The estimated parameters of the explanatory variables do not directly show the magnitude

of the effects on the expected frequency for all levels and injury severities. With the estimated

parameters and an average value of individual impact factor, marginal effects can be estimated

to measure a unit increase in the variable resulting in an average increase (decrease) in the

number of crashes. The calculation formulas and implications of marginal effects for dummy

variables and continuous variables are different [20]. As a continuous variable has changed,

the crash frequency and severity are adversely affected, such that the elasticity indicates the

effect of the corresponding factor on crash frequency at each severity level. For a dummy vari-

able, the elasticity effects are computed by changing the value of the variable from 0 to 1 or

from 1 to 0. In other words, for the subsample of observed roadway entities that the variable

takes a value of 0, changing the value of variable to 1; and for the subsample that the variable

takes a value of 1, changing the value of variable to 0. Then the shifts of expected frequencies

would be summed up in the two subsamples after reversing the sign of the subsample, and an

effective percentage change in aggregate frequency would be estimated and computed. Hence,

the elasticity effects of dummy variables could be interpreted as the percentage change at the

expected crash frequency due to the change in the dummy variable from 0 to 1.

Fu and Chiou [21] proposed an integrated model under the multinomial generalized Pois-

son (MGP) framework to analyze traffic crashes and the elasticity effects of significant
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variables have been reported to better understand the impact of contributing factors. The

results showed that the traffic characteristics have greater effects on crash frequency and sever-

ity compared to the geometric variables. Anastasopoulos and Mannering [22] explored the

usage of random-parameters models in analyzing crash frequencies. The average marginal

effects were computed and the results showed that the average marginal effects generated by

the standard NB and random-parameters NB models can be quite different. Wang and Kockel-

man [23] proposed a heteroscedastic ordered logit model to study the effects of various vehicle,

environmental, roadway, and occupant characteristics on the crash severity. The elasticties

were estimated to provide some insight into the implications of the estimation results. The

zero-inflated count models and nested logit models were proposed by Lee and Mannering [24]

to analyze run-off-roadway traffic crashes on a 96.6-km section of highway in Washington

State. The analyses identified a wide range of factors that significantly contribute to the fre-

quency and severity of run-off-roadway traffic crashes and the marginal effects of significant

factors were computed to provide a guideline on the effectiveness of potential traffic safety

countermeasures. It can be concluded that, even the marginal effects can provide some

insights, they only estimate an average change that caused by one variable. To obtain some

comprehensive results, in terms of superior predictions of traffic crashes for roadway system, a

more appropriate method is needed.

As research progressed, the limitations of the statistical model quickly became obvious and

machine learning methods including Artificial Neural Network (ANN), Support Vector

Machine (SVM) models, and deep learning models have been proposed as methodological

alternatives because of their ability to work with massive amounts of multi-dimensional data.

Compared to the models that developed for traffic crash estimations, the studies that investi-

gated the predictive models to forecast traffic crashes are relatively limited. Over the past 20

years, only a few studies have proposed the predictive models that specifically analyze the traf-

fic crashes.

ANN and Bayesian neural network (BNN) models have been proposed to address the traffic

safety problems for many years. Although ANN and BNN models have similar multilevel net-

work structures, they are different in forecasting the traffic crashes. The weights in ANN are

assumed to fix and the weights of BNN follow a probability distribution. Hence, the predic-

tions of BNN need to be integrated over all the probability weights. Abdelwahab and Abdel-

Aty [25] employed two well-known ANN paradigms to analyze the traffic safety of toll plazas.

The results showed that the Radial Basis Functions (RBF) neural network was the best model

for analyzing driver injury severity. Chang [26] compared the performances of NB regression

model and ANN in traffic crash predictions. The results showed that ANN is a consistent alter-

native method for analyzing crash frequency. Xie, Lord, and Zhang [27] evaluated the applica-

tion of BNN models for predicting traffic crashes by using data collected in Texas. The results

showed that back-propagation neural network (BPNN) and BNN models outperform the NB

regression models in terms of traffic crash prediction. Akin and Akbas [28] proposed an ANN

model to predict intersection crashes in Macomb County of the State of Michigan. The results

showed that ANN model is capable of providing an accurate prediction (90.9%). Kunt, Agha-

yan, and Noii [29] employed a genetic algorithm (GA), pattern search, and ANN models to

predict the severity of freeway traffic crashes. The results showed that the ANN provided the

best predictions. Jadaan, Al-Fayyad, and Gammoh [30] developed a traffic crash prediction

model using the ANN simulation with the purpose of identifying its suitability for predicting

traffic crashes under Jordanian conditions. The results demonstrated that the estimated traffic

crashes are close to actual traffic crashes. Zeng and Huang [31] proposed a stable and opti-

mized ANN for crash injury severity prediction. With a convex combination algorithm and a

function approximation algorithm, the proposed ANN showed superior performances. Other
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modified ANN models including the studies of Huang et al. [32] and Zeng et al. [33, 34] also

confirmed that the modified ANN models have better performances compared to the statistical

models. In summary, though ANN and BNN models show better approximation properties

than traditional statistical approaches, these models often cannot be generalized to other data

sets [1].

The SVM models that are based on statistical learning theory and structural risk minimiza-

tion have been employed for traffic safety analyses [35, 36]. Li et al. [36] evaluated the applica-

tion of SVM models for predicting traffic crashes. The results showed that the SVM models

predict crash data more effective and accurate than traditional NB models. In addition, the

findings indicated that the SVM models provide better (or at least comparable) performance

than BPNN models and do not over-fit the data. Ren and Zhou [37] proposed a novel

approach that combines particle swarm optimization (PSO) and SVM for traffic crash predic-

tion. The results showed that the predictions of PSO-SVM are better than that from BP neural

network. Yu and Abdel-Aty [38] proposed the SVM models with different kernel functions

to evaluate real-time crash risk. The results showed that the SVM model with RBF kernel has

better performance compared to the SVM model with linear kernel and Bayesian logistic

regression model. Dong, Huang, and Zheng [11] proposed a SVM model to handle multidi-

mensional spatial data in crash prediction. The results showed that the SVM models outper-

form the non-spatial models in terms of model fitting and predictive performance. In

addition, the SVM models provided better goodness-of-fit compared with Bayesian spatial

model with conditional autoregressive prior when utilizing the whole dataset as the samples.

Chen et al. [39] employed the SVM models to investigate driver injury severity patterns in roll-

over crashes. The results showed that the SVM models produce reasonable predictions and the

polynomial kernel outperforms the Gaussian RBF kernel. Overall, it has been found that the

SVM models showed better or comparable results to the outcomes predicted by ANN/BNN

and other statistical models. However, like ANN and BNN, the SVM models often cannot be

generalized to other data sets and they all tend to behave as black-boxes, which cannot provide

the interpretable parameters as statistical models do.

Apart from the ANN/BNN and SVM models, other machine learning methods have been

introduced in traffic safety analyses. Abdel-Aty and Haleem [40] employed a multivariate

adaptive regression splines (MARS) to predict vehicle angle crashes. The results showed that

MARS outperformed the NB models. The proposed MARS models showed promising results

after screening the covariates using random forest and the findings suggested that MARS is an

efficient technique for predicting traffic crashes at unsignalized intersections. Deep learning is

a recently developed branch of machine learning method and has been successfully applied in

speech recognition, visual object recognition, object detection, and many other domains such

as drug discovery and genomics [41, 42]. Compared to the conventional machine learning

techniques that were limited in their ability to process data in their raw form, deep learning

construct computational models aiming to extract inherent features in data from the lowest

level to the highest level. Though the deep learning methods have shown outstanding perfor-

mances in many applications [41], the applications of deep learning in the field of transporta-

tion are relatively few and only focusing on the topic of traffic flow prediction [43–45].

In this study, we proposed an innovative two-step method and a support vector regression

(SVR) model is formulated into SSM framework for traffic crash prediction. To identify the

dynamic evolution process of the roadway systems that are caused by the changes of traffic

flow, a state-space model was developed in the first step to predict the changes of impact fac-

tors in roadway systems. Using the predicted impact factors, the SVR model was incorporated

in the second step to predict the traffic crashes. To validate the model effectiveness, a five-year

dataset that obtained from 1152 roadway segments in Tennessee was employed and a SVR
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model and a multivariate negative binomial (MVNB) model were developed as the benchmark

methods.

2. Methodologies

Conventional traffic crash predictions ignore the changes of roadway systems, which can lead

to inaccurate predictions. To address this issue, we designed a two-step method and a SVR

model is formulated into SSM framework (referred to as SSM-SVR approach) for traffic crash

prediction. Specifically, the state-space model is proposed to capture the dynamic evolvement

between the impact variables and the control input variables for a roadway segment. The esti-

mation results are incorporated into the SVM model to improve the prediction accuracy. The

flowchart of the proposed SSM-SVR approach for traffic crash prediction is shown in Fig 1. A

roadway segment is assumed to a system and the effects of impact factors on traffic crashes

were captured by the state variables. With the traffic flow as the control input, the system state

is changing by time. Other unobserved factors were considered as process and sensor noise in

the proposed state-space model. The proposed state-space model for traffic crash prediction

assumes that the state of roadway entity at time t evolves from the prior state at time t-1

according to Eq (1).

xtþ1 ¼ Atxt þ Btqt þ wt ð1Þ

Where xt is the state vector at time t, qt is the vector containing any control inputs, At is the

state transition matrix, Bt is the control input matrix that applies the effect of each control

input parameter in the vector qt on the state vector, and vector wt denotes process noise that is

zero-mean, white Gaussian, stochastic process with covariance matrixes Q.

Eq (1) reflects the dynamic evolvement between the state variables and the control input

variables for a roadway segment. The roadway geometric design features, traffic control meth-

ods, pavement conditions, and environmental characteristics have been considered as the state

variables. With the state transition matrix, the upgrade information can be incorporated and

the current state can evolve into the next state. On the other hand, the control input variables

represent the needs of upgrading.

To evaluate how the changes of geometric design features, pavement conditions, traffic con-

trol methods, and environmental characteristics affect traffic safety, the regression models

have been embedded in the proposed state-space model. Assuming that yt = lnλt, and λ is the

number of observed traffic crashes, the measurement equation of the roadway segment can be

written as:

yt ¼ Ctxt þ vt ð2Þ

where Ct is the transformation vector that maps the state vector into the measurement domain,

and vt is the vector that contains the measurement noise terms for each observation in the

measurement vector, which is assumed to be zero mean Gaussian white noise with covariance

R.

For k types of crashes, the transformation vector can be written as:

Ct ¼
Xk

i¼1

bi1;
Xk

i¼1

bi2; � � � ;
Xk

i¼1

bij

" #

ð3Þ

where β is an estimable parameter and j is the number of variables in the state vector.

The Kalman Filter (KF) [46, 47] can provide an algorithm to determine an estimate of xt.
However, with the unknown measurement noise covariance R, the KF method is
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Fig 1. Flowchart of the proposed approach for traffic crash prediction.

https://doi.org/10.1371/journal.pone.0214866.g001
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inappropriate. To obtain better estimates, the Variational Bayesian Adaptive Kalman Filter

(VB-AKF) [48–50] is employed and the Markovian dynamic model prior distribution for the

unknown measurement noise covariance can be jointly represented by the filtering distribu-

tion of the state and covariance matrix and approximated with the free-form variational Bayes-

ian approximation as follows:

pðxt;Rtjy1:t� 1Þ � NðxtjX̂t;PtÞIWðRtjvt;VtÞ ð4Þ

where X̂t and Pt are given by the standard KF, and vt and Vt are the parameters of the inverse

Wishart (IW) distribution.

The proposed VB-AKF algorithm is different compared to the KF algorithm. For the pre-

diction, Eq (5) is computed after projecting the error covariance P�t . For the update process,

set vt ¼ v�t þ 1 and the update of the measurement noise covariance, as shown in Eq (5), is

added at the end.

Rjþ1

t ¼ ð
vt� 1 � d � 1

vt � d � 1
ÞR�t þ ð

1

vt � d � 1
ÞHtP

jþ1

t HT
t þ ð

1

vt � d � 1
Þðyt � HtX̂

jþ1

t Þðyt

� HtX̂
jþ1

t Þ
T

ð5Þ

where v�t and R�t are prior parameters, v�t ¼ rðvt� 1 � d � 1Þ þ d þ 1 and R�t ¼ BRt� 1B
T , ρ is a

real number and 0<ρ�1, which controls the forgetting of the previous estimates of the measure-

ment covariance matrix by decreasing the degrees of freedom exponentially, and B is a matrix

0<|B|�1, which can be used to model the deterministic dynamics of the covariance matrix.

The proposed models estimate a state by using a form of feedback control. In other words,

the filter estimates the state at some time and then obtains feedback in the form of measure-

ments. As such, the predictor equations are projecting forward the current state and error

covariance estimates to obtain the a priori estimates for the next time step. The measurement

update equations are using for incorporating a new observation into the a prior estimate to

obtain an improved a posteriori estimate. With the estimated states, a specifically designed

SVR model is proposed to predict traffic crashes. In the proposed SVR model, given a set of

training samples {(x1, y1), (x2, y2), . . ., (xN, yN)} with xi2Rd and yi2R, the linear regression

model can be expressed as

f ðxÞ ¼ oφðxÞ þ b ð6Þ

where φ(x) represents the high-dimensional feature spaces, which are nonlinearly mapped

from the input space x, ω = [ω1, ω2, . . ., ωN]T represents the vector or regression coefficients

and b denotes the bias. The regression problem can be solved by the following constrained

optimization problem

min
1

2
kok

2
þ E
XN

i¼1

Lεðxi; yi; f Þ ð7Þ

s:t:

yi � o � φðxiÞ � b � εþ xi

o � φðxiÞ þ b � yi � εþ x
�

i

xi; x
�

i � 0

8
>>>><

>>>>:

where E is a regularization parameter, ε is the tolerance threshold and Lε is a ε-insensitive loss
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function that penalizes errors larger than ±ε, ξi and ξi
�

represent slack variables to make con-

straints feasible.

To handle the nonlinearity in regression problem, the training sample (xi, xj) can be substi-

tuted with a kernel function K(xi, xj), which linearizes the relationship between xi and yi [51].

By introducing the Lagrange multiplies, the nonlinear optimization problem can be formu-

lated as

max �
1

2

XN

i¼1

XN

j¼1

ðai � a
�

i Þðaj � a
�

j ÞKðxi; xjÞ �
XN

i¼1

ðai � a
�

i Þyi � ðai þ a
�

i Þε ð8Þ

where K(xi, xj) denotes kernel function. The commonly used kernel functions include the lin-

ear kernel K(xi, xj) = xi-xj, polynomial kernel K(xi, xj) = (xi�xj+1)d, and the radial-basis function

(RBF) kernel K(xi, xj) = exp(-γ||xi-xj||2), where d and γ are the kernel parameters. The Lagrange

multiplies αi, αi
� can be determined by solving Eq (8) with constraints and the regression func-

tion is given by

f ðxÞ ¼
XN

i¼1

ðai � a
�

i ÞKðx; xiÞ þ b ð9Þ

By incorporating kernel function K, the input x can be replacing by a mapping into feature

space ψ(x), as shown in Fig 2. Through solving a quadratic programming problem, the pro-

posed SVR model searches for the nonlinear regression function that is linear in high-dimen-

sional feature space. With nonlinear kernel functions and a number of identified support

vectors, the proposed SVM model is obtained to predict the traffic crashes. Because the

Fig 2. Graphical illustration of the proposed SSM-SVR approach for traffic crash prediction.

https://doi.org/10.1371/journal.pone.0214866.g002
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formulation embodies the structural risk minimization principle, which has superior perfor-

mances compared to the conventional empirical risk minimization principle that used in the

ANN method, the proposed SVR has enhanced the ability of prediction and can avoid over-fit-

ting issue. Another merit of the proposed SVR is that instead of minimizing the observed

training error, the SVR model attempts to minimize the generalized error bound so as to

achieve generalized performance.

3. Data description

Data that obtained from the Tennessee Department of Transportation (TDOT) are employed

to assess the performances of the proposed SSM-SVR models in terms of the ability to predict

traffic crashes across injury severities. We complied with the terms of service of the TDOT

about the data. Two data sets, including Tennessee Roadway Information Management System

(TRIMS) and Pavement Management System (PMS) are incorporated through common vari-

able id_number, which is a combination of county, county sequence, route type, and route

number. After screening the combined data set, state routes 001, 033, 062, 071, 115, 168, 169,

and 331 that contain 1152 segments, with an average segment length of 0.82 miles were chosen

for analyses. Extensive data cleaning and consistency checks were conducted and the crash

data on those state route roadways from 2010 to 2014 were employed in the study. In TRIMS,

the crash data have five categories, including fatal crashes, incapacitating injury crashes, non-

incapacitating injury crashes, possible-injury crashes, and property damage only (PDO)

crashes. Because there are significant differences in the number of crash counts across injury

severities and the number of fatal crashes is much less compared to the number of other crash

categories, a classification method has been used for the incorporation of injury outcomes.

According to pervious literature [52–54], the fatal crashes and incapacitating injury crashes

have been incorporated and referred to as major injury crashes. Correspondingly, the possi-

ble-injury crashes and PDO crashes have been incorporated and referred to as no-injury

crashes. The non-incapacitating injury crashes are referred to as minor injury crashes. The

final dataset includes 320 (2.74%) major injury crashes, 2879 (24.66%) minor injury crashes,

and 8474 (72.59%) no-injury crashes. Individual roadway segment experienced from 0 to 29

crashes per year with a mean of 2.03 and a standard deviation of 1.79.

The road inventory records on those state route roadways including traffic factors, geomet-

ric design features, and environmental characteristics were linked to the crash data. Important

measurements of traffic factors considered in this study include thousand passenger car annual

average daily traffic (AADT) per lane, thousand truck AADT per lane, and posted speed limit.

The thousand passenger car AADT per lane from 2010 to 2014 varies from 0.38 to 35.24 with a

mean of 3.25 and a standard deviation of 1.36 and the thousand truck AADT per lane from

2010 to 2014 varies from 0.03 to 6.09 with a mean of 0.25 and a standard deviation of 0.13. The

variable of posted speed limit has been considered as a categorical variable and two categories

have been considered with a threshold value of 55 mph. For 49.83 percent (2870) roadway seg-

ments, the posted speed limit is less than 55 mph and 50.17 percent (2890) roadway segments,

the posted speed limit is greater than 55 mph.

Eight geometric design features have been considered for analyses, since they might have

potential impacts on traffic crashes. Among them, the segment length, degree of horizontal

curvature, median widths, and outside shoulder width have been considered as the continuous

variables and the number of through lanes, lane widths, median type, and shoulder type have

been considered as the categorical variables. The variable of segment lengths varies from 0.09

to 12.57 with a mean of 0.82 and a standard deviation of 1.30. The analyzed degree of horizon-

tal curvature varies from 0.00 to 14.42. For the variables of median widths and outside
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shoulder widths, the values vary from 0.00 to 11.92 and from 1.68 to 10.12, respectively. The

analyzed number of through lanes have three categories, including six lanes (1465, 25.43%),

four lanes (2730, 47.40%), and two lanes (1565, 27.17%). Three types of lane widths have been

examined, including 12 ft. (1170, 20.31%), 11 ft. (3340, 57.99%), and 10 ft. (1250, 21.70%). The

analyzed median types have been classified into three categories, including two-way left turn

lanes (TELTL) (785, 13.63%), raised median (1375, 23.87%), and no median (3600, 62.50%).

Three types of shoulders have been examined, including pavement (1995, 34.64%), gravel

(2510, 43.58%), and dirt (1255, 21.79%).

Other than the traffic factors and geometric design features, the characteristics of pavement

and environment might affect the likelihood of crash occurrences. Two pavement condition

indicators, including international roughness index (IRI) and rut depth (RD) have been ana-

lyzed as continuous variables. The analyzed IRI that is calculated using a quarter-car vehicle

math model varies from 25.35 to 195.90 with a mean of 76.88 and a standard deviation of

34.11. The variable of RD that is measured with a laser/inertial profilograph varies from 0.05 to

0.66 with a mean of 0.15 and a standard deviation of 0.07.

Important measurements of environmental characteristics considered in this study include

terrain type, land use type, and indicator for lighting. All the environmental variables have

been analyzed as categorical variables. The terrain type has been classified into two categories,

mountainous terrain type (2410, 41.84%) and rolling terrain type (3350, 58.16%). Three land

use types are examined, which include residential land use (2770, 48.09%), commercial land

use (1695, 29.43%), and rural land use (1295, 22.48%). Two lighting conditions that indicate

whether lighting devises are provided at the roadway segments were considered. The data

show that 54.86 percent (3160) roadway segments have lighting devises, and the others (2600,

45.14%) don’t have lighting devices. The descriptive statistics of continuous variables and cate-

gorical variables are shown in Tables 1 and 2, respectively. We complied with the terms of ser-

vice of the TDOT about the data.

4. Modelling results

The data from 2010 to 2013 were used to train the proposed SSM-SVR model and the data of

2014 was used as a verifying set. The obtained coefficients from a regression model are used as

Table 1. Summary statistics of analyzed continuous variables.

Variable Mean Std. Dev. Min. Max.

Independent variable
The number of major injury crashes per year per roadway segment 0.06 0.28 0 3

The number of minor injury crashes per year per roadway segment 0.50 1.19 0 12

The number of no injury crashes per year per roadway segment 1.47 2.98 0 24

Traffic factors
Thousand passenger car AADT per lane 3.25 1.36 0.38 35.24

Thousand truck AADT per lane 0.25 0.13 0.03 6.09

Geometric design features
Segment length (miles) 0.82 1.30 0.09 12.57

Degree of horizontal curvature 1.67 3.55 0.00 14.42

Median widths 1.74 2.34 0.00 11.92

Outside shoulder widths 3.29 2.58 1.68 10.12

Pavement factors
International roughness index 76.88 34.11 25.35 195.90

Rut depth (in.) 0.15 0.07 0.05 0.66

https://doi.org/10.1371/journal.pone.0214866.t001
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the initial values for the matrixes of A, B, and C in the proposed models and the MATLAB was

employed for model development. Kernel selection and parameters optimization are two key

issues of the SVR models. The RBF kernel is chosen, since the RBF kernel can handle the non-

linear relationship between impact factors and outputs with less parameter [55]. Based on the

definition of -γ = 1/k, where k means the number of impact factors, -γ is correspondingly set

to 1/21 in the further modeling process. To optimize the parameters of the SVR model (E and

ε) and address the potential over-fitting issue, the cross-validation approach [56, 57] is

employed to perform the parameter search. To identify better E and ε, the training set is

divided into four subsets with equal size and one subset is tested using the predictor trained on

the remaining three subsets. A grid search was performed over a pre-defined parameter space

and the model with the highest prediction accuracy (i.e. lowest cross-validation error) was

employed. First parameter search space have a greater range and defined from 2−10 to 210 by

experiment. The result shows the optimum parameter space is from 2−5 to 25 for E and from

2−2 to 22 for ε with the converged mean square error (MAE) of 0.39. Second parameter search

space is performed based on the results of first search. With a MAE of 0.23, the results show

that final optimized E converging to a value of 22.63 and ε converging to a value of 0.25. The

searching process and results for the proposed model are shown in Fig 3. The optimized SVR

model was used as part of the proposed SSM-SVR model to perform the traffic crash

prediction.

To verify the effectiveness of the proposed SSM-SVR model, other than comparing to the

observed values, a SVR model and a MVNB model were developed as the benchmark methods.

The RBF kernel is also adopted by the developed SVR model and the same searching process is

Table 2. Summary statistics of analyzed categorical variables.

Variable Category Frequency Percent

Traffic factor
Posted speed limits <55 mph 2870 49.83

�55 mph 2890 50.17

Geometric design features
Number of through lanes 6 1465 25.43

4 2730 47.40

2 1565 27.17

Lane widths (ft) 12 1170 20.31

11 3340 57.99

10 1250 21.70

Median type Two-way left turn lanes (TWLTL) 785 13.63

Raised median 1375 23.87

No medians 3600 62.50

Shoulder type Pavement 1995 34.64

Gravel 2510 43.58

Dirt 1255 21.79

Environmental factors
Terrain type Mountainous 2410 41.84

Rolling 3350 58.16

Land use type Residential 2770 48.09

Commercial 1695 29.43

Rural 1295 22.48

Indicator for lighting Lighting exists on the roadway segments 3160 54.86

No lighting devices 2600 45.14

https://doi.org/10.1371/journal.pone.0214866.t002
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used for parameter optimization. Final model yields to a prediction MAE of 0.22 with a E of

34.56 and a ε of 3.55. The developed SVM and MVNB models have been used to predict the

traffic crashes for the analyzed 1152 roadway segments. Three commonly used indexes, includ-

ing Mean Absolute Percentage Error (MAPE), Mean Absolute Error (MAE), and Root Mean

Squared Error (RMSE) have been used to assess the model performances in terms of predic-

tion accuracy and robustness.

To predict the traffic crashes in 2014, we are assuming that the values of impact factors in

2014, including geometric design features, traffic control methods, pavement conditions, and

environmental characteristics are unknown. The traffic flow variables including thousand pas-

senger car AADT per lane and thousand truck AADT per lane can be estimated. For the pro-

posed SSM-SVR model, the prediction part used the estimated traffic flow variables and

predicted state variables that obtained from the SSM as the input variables. For the developed

SVR and MVNB models, the values of impact factors in 2013 and estimated traffic flow vari-

ables were used as the input variables. Table 3 shows the comparison between the observation

in 2014 and the inputs for the developed models. Compared to the current observation in 2013

(input for the SVR and MVNB models), the predicted state variables from SSM (input for the

proposed SSM-SVR model) are closer to the observation in 2014. In other words, using pre-

dicted impact factors is a better alternative for the prediction when the further roadway condi-

tions are unknown. Using current observation in 2013 and predicted state variables that are

obtained from SSM to substitute the real values of observation in 2014 produces an average

MAPE of 9.17% and 4.67%, respectively.

The prediction results are shown in Table 4.The results show that the proposed SSM-SVR

models have superior performances compared to the SVR model and MVNB model. The pre-

dicted distribution of the proposed SSM-SVR model is closed to the observed distributions

that measured by the summary statistics of distribution. The predicted means of the proposed

SSM-SVR model are 0.043, 0.417, and 0.919 for major, minor, and no-injury crashes, respec-

tively, which are closed to the observed means of 0.049, 0.385, and 0.997. In addition, the pre-

dicted distribution ranges that are measured by minimum values and maximum values are as

same as the observed values for all crash types. The SVR model and MVNB model have

Fig 3. Searching process and results based on the 4-fold cross validation: (a) first search; (b) contour plot

corresponding to first search; (c) second search; (d) contour plot corresponding to second search.

https://doi.org/10.1371/journal.pone.0214866.g003
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comparable performances. The predicted means of the SVR model are 0.056, 0.432, and 1.110

and the predicted mean of the MVNB model are 0.057, 0.440, and 1.135. Though the SVR

model performs better compared to the MVNB model in terms of prediction accuracy, the

MVNB models have better robustness. The predicted maximum values from MVNB model

are 5, 10, and 21 for major, minor, and no-injury crashes, respectively, which are closed to the

observed values compared to the predicted values from SVR model.

The accuracy loss of the MVNB models can be explained by the unpredictable part of their

standard specification forms, which cannot adequately address stochastic changes in the evolu-

tion process of roadway systems. Compared to the MVNB models, the SVR models can better

handle the stochasticity and nonlinearity of the spatial-temporal evolution of the traffic

crashes. The results can be explained by the adaptive tuning of the parameters and the dynamic

mapping between the input and output. However, the SVR models do have the limitations,

such as large variances in the prediction results, which demonstrate the lack of consistency

Table 3. Comparison between the observation in 2014 and the inputs for the developed models.

Variable Observed value in

2014

Input for SVR and MVNB

models

MAPE

(%)

Input for the proposed

models

MAPE

(%)

Continuous variables
Thousand passenger car AADT per lane 3.67 3.30 10.08 3.83 4.33

Thousand truck AADT per lane 0.28 0.27 5.36 0.29 2.86

Segment length (miles) 0.82 0.82 0.11 0.82 0.54

Degree of horizontal curvature 1.67 1.67 0.05 1.63 2.58

Median widths 1.66 1.87 12.79 1.70 2.36

Outside shoulder widths 3.00 3.14 4.89 3.05 1.78

International roughness index 69.87 73.38 5.02 68.91 1.37

Rut depth (in.) 0.14 0.15 4.20 0.15 3.96

Categorical variables
Posted speed limits <55 mph 534 466 12.73 573 7.30

�55 mph 618 686 11.00 579 6.31

Number of through lanes = 6 325 381 17.23 355 9.23

= 4 511 490 4.11 470 8.02

= 2 316 281 11.08 327 3.48

Lane widths (ft) = 12 210 191 9.05 202 3.81

= 11 668 641 4.04 677 1.35

= 10 274 320 16.79 273 0.36

Median type = two-way left turn lanes (TWLTL) 157 169 7.64 165 5.10

= raised median 249 206 17.27 260 4.42

= no medians 746 777 4.16 727 2.55

Shoulder type = pavement 333 281 15.62 326 2.10

= gravel 442 432 2.26 406 8.14

= dirt 377 439 16.45 420 11.41

Terrain type = mountainous 528 452 14.39 495 6.25

= rolling 624 700 12.18 657 5.29

Land use type = residential 630 647 2.70 624 0.95

= commercial 273 235 13.92 300 9.89

= rural 249 270 8.43 228 8.43

Indicator for lighting = lighting exists on the roadway

segments

638 702 10.03 606 5.02

= no lighting devices 514 450 12.45 546 6.23

https://doi.org/10.1371/journal.pone.0214866.t003
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and robustness. A possible explanation is that the SVR models can implicitly embed time cor-

relation in the hidden layer. When the model is trained with two crash data with different pat-

terns, the results can be an intermediate estimation that leads to inaccurate predictions for all

crash data. After further examination, the SVM models are often found to highly overpredict

or underpredict traffic crashes when crash counts have large variations. Overall, the perfor-

mances of MVNB and SVR models are not robust when the data meet certain conditions, such

as extra zero counts that are commonly found in the traffic crash data. The problem is solved

with the proposed SSM-SVR models, which can capture almost all observed values in the vali-

dation data set.

The findings show that the predictions from the proposed SSM-SVR models have signifi-

cant improvements over the SVR and MVNB models, in both accuracy and robustness. The

predicted crash counts of the proposed SSM-SVR model are 50, 480, and 1059 for major,

minor, and no-injury crashes, which mean a prediction MAPE of 10.714%, 8.352%, and

Table 4. Results of traffic crash prediction.

Major injury crashes Minor injury crashes No-injury crashes Total

Observation

Observed mean 0.049 0.385 0.997 1.430

Observed Std. Dev. 0.302 1.102 2.095 2.350

Observed min 0 0 0 0

Observed max 3 10 19 19

Observed counts 56 443 1148 1647

SSM-SVR approach

Predicted mean 0.043 0.417 0.919 1.379

Predicted Std. Dev. 0.295 1.115 2.092 2.343

Predicted min 0 0 0 0

Predicted max 3 10 19 19

Predicted counts 50 480 1059 1589

MAPE (%) 10.714 8.352 7.753 3.522

MAE 0.005 0.060 0.173 0.215

RMSD 0.072 0.245 0.467 0.512

SVR model

Predicted mean 0.056 0.432 1.110 1.599

Predicted Std. Dev. 0.314 1.134 2.222 2.472

Predicted min 0 0 0 0

Predicted max 3 9 21 22

Predicted counts 65 498 1279 1842

MAPE (%) 16.071 12.415 11.411 11.840

MAE 0.018 0.195 0.496 0.593

RMSD 0.135 0.442 0.728 0.851

MVNB model

Predicted mean 0.057 0.440 1.135 1.632

Predicted Std. Dev. 0.404 1.108 2.167 2.445

Predicted min 0 0 0 0

Predicted max 5 10 21 21

Predicted counts 66 507 1307 1880

MAPE (%) 17.857 14.447 13.850 14.147

MAE 0.021 0.398 0.548 0.780

RMSD 0.177 0.700 0.771 1.123

https://doi.org/10.1371/journal.pone.0214866.t004
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7.753%. The overall performances of the proposed SSM-SVR models for all crashes show an

extra 8.318% improvement over the SVR models and an 10.625% improvement over the

MVNB models. It is clear that the predictions obtained from the proposed SSM-SVR models

are superior to those that are obtained from the SVR and MVNB models. The greatest differ-

ence is demonstrated for the major injury crashes where the proposed SSM-SVR model yields

a MAPE of 10.741% compared to a MAPE value of 16.071% from the SVR models and a

MAPE value of 17.857% from the MVNB models. The differences in the models for the minor

injury crashes and no-injury crashes are also very important. The differences between the pro-

posed SSM-SVR model and the MVNB model are 6.095% and 6.098% for minor injury crashes

and no-injury crashes.

The proposed SSM-SVR models have better performances in terms of small error variances

than the comparison models, since the proposed approach incorporates a state-space model to

estimate the changes of roadway systems and a SVR model to identify the relationship between

the impact factors and traffic crashes. The best-performing result of the proposed SSM-SVR

model for major injury crashes yields a MAE of 0.005 and a RMSD of 0.072. The proposed

SSM-SVR model performs worse for no-injury crashes, with a MAE of 0.173 and a RMSD of

0.467. However, it is still better than the predictions resulting from the SVR model and MVNB

model. Compared to the SVR model, the MAE improvement of the proposed SSM-SVR

model ranges from 1.869 to 2.500 with a mean of 2.210, and the RMSD improvement ranges

from 0.063 to 0.261 with a mean of 0.174. Compared to the MVNB model, the MAE improve-

ment of the proposed SSM-SVR model ranges from 2.171 to 5.638 with a mean of 3.603, and

the RMSD improvement ranges from 0.652 to 1.859 with a mean of 1.320. Clearly, the

improvement is significant for the proposed SSM-SVR models over the SVR and MVNB mod-

els. Therefore, the proposed SSM-SVR model seems to be a superior alternative for traffic

crash predictions.

The result demonstrates that the proposed SSM-SVR models are better than the SVR and

MVNB models, which ignores the potential changes of roadway systems. Compared to the

SVR and MVNB models, the benefit of incorporating a state-space model to identify the

changes of roadway systems is significant evident in the proposed SSM-SVR models for all

crash types, and the prediction accuracy that measured by MAPE can be improved by 4.360%

and 6.445% on average, respectively. Apart from accuracy improvement, the proposed

SSM-SVR models are more robust and the predictions can retain a smoother pattern. When

incorporating the combination characteristics of state-space model and SVR model, the use of

the predicted impact factors as the input is found to be meaningful in the prediction. There is

an apparent improvement in the results when using predicted impact factors. Table 4 shows

some improvements are achieved by including the predicted impact factors for the traffic

crash predictions by using the SVR models, and this is also found to be the case when the pre-

dicted impact factors are incorporated into the MVNB models. In addition, compared to the

MVNB model, the SVR model has better performance. The predicted MAPE, MAE, and

RMSD can be improved by 2.085%, 0.086, and 0.114 on average. The predicted results are

compared to the observed values and the results are shown in Fig 4.

As it is shown in Fig 4, the proposed SSM-SVR model can capture the general trend of the

traffic crashes and timely reflect a portion of the upward and downward shifts in the trend. In

addition, the proposed SSM-SVR model enables the predicted traffic crashes to retain a

smoother pattern, which is less sensitive to the high-frequency variations of traffic crashes, in

contrast to the pattern obtained from the SVR and MVNB models. In other words, we believe

that the robustness of the proposed SSM-SVR models is an advantage. The predictions

obtained by the proposed SSM-SVR model are more responsive to the actual variations of traf-

fic crashes and, hence, more accurate in comparison to the predictions obtained by the SVR
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and MVNB models. This is because the proposed SSM-SVR model incorporates information

in both the sate-space model and SVR model and identifies dependence effects of the roadway

systems. The accuracy gain, resulting from the proposed SSM-SVR models, increases in those

cases where the performances of the state-space model are also increased. The prediction

results show that proposed SSM-SVR model has a more precise and synchronized response

behavior to the high variations of the observed data, especially for the phenomenon of extra

zeros. The performances of individual predictors show that the SVR and MVNB models pro-

vide a responsive, but time-delayed representation of the fluctuation pattern, resulting in

higher prediction errors compared to the proposed SSM-SVR models.

5. Conclusions

To perform a comprehensive analysis that aims to predict traffic crashes and alternatively,

reduce traffic crashes and enhance traffic safety and operation efficiencies, an innovative two-

step method that incorporates a SVR model into a SSM framework is proposed for traffic

crash prediction. To describe the dynamic evolution process of the roadway systems, a state-

space model was developed in the first step. With the traffic flow as the control input, the sys-

tem state is changing by time and the effects of impact factors on roadway system were cap-

tured by the state variables. The SVR model was formulated into the second step to predict the

traffic crashes by using the predicted impact factors from the state-space model. The perfor-

mances of the proposed models were verified by using a five-year dataset that obtained from

1152 roadway segments in Tennessee and comparing to a SVR model and a MVNB model.

The results and findings provide sufficient evidence for the following conclusions:

1. The results show that the proposed model has superior performances in terms of prediction

accuracy compared to the SVR and MVNB models. The proposed models result in an aver-

age prediction MAPE of 7.59%, a MAE of 0.11, and a RMSD of 0.32. The overall perfor-

mances of the proposed SSM-SVR models for all crashes show an extra 8.318%

improvement over the SVR models and an 10.625% improvement over the MVNB models

that measured by MAPE.

Fig 4. Comparison of model performances. (a) Predicted value of proposed SSM-SVR model vs. observed value. (b)

Predicted value of SVR model vs. observed value. (c) Predicted value of MVNB model vs. observed value.

https://doi.org/10.1371/journal.pone.0214866.g004
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2. Compared to the SVR and MVNB models, the benefit of incorporating a state-space model

to identify the changes of roadway systems is significant evident in the proposed SSM-SVR

models for all crash types, and the prediction accuracy that measured by MAPE can be

improved by 4.360% and 6.445% on average, respectively.

3. The proposed SSM-SVR models are more robust and the predictions can retain a smoother

pattern. The results show that the proposed SSM-SVR model has a more precise and syn-

chronized response behavior to the high variations of the observed data, especially for the

phenomenon of extra zeros.

The findings suggest that the proposed model is a superior alternative for traffic crash pre-

dictions. Other machine learning methods can be incorporated into the proposed framework

for traffic crash prediction. However, the characteristics of traffic crashes, such as the integer

nature with a significant amount of zeros, might be problematic for the application of other

machine learning methods. Further investigation of the proposed models includes the

improvement of prediction accuracy with other supplemental machine learning methods.
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