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Abstract

Background

Pulmonary hypoplasia, characterized by incomplete alveolar development, remains a major

cause of mortality and morbidity in congenital diaphragmatic hernia. Recently demonstrated

to differentiate from a common bipotent progenitor during development, the two cell types

that line the alveoli type 1 and type 2 alveolar cells have shown to alter their relative ratio in

congenital diaphragmatic hernia lungs.

Objective

We used the nitrofen/bisdiamine mouse model to induce congenital diaphragmatic hernia

and accurately assess the status of alveolar epithelial cell differentiation in relation to the

common bipotent progenitors.

Study design

Pregnant Swiss mice were gavage-fed with nitrofen/bisdiamine or vehicle at embryonic day

8.5. The administered dose was optimized by assessing the survival, congenital diaphrag-

matic hernia and facial abnormality rates of the exposed mouse pups. NanoCT was per-

formed on embryonic day 11.5 and 16.5 to assess the embryonic and early canalicular

stages of lung development. At embryonic day 17.5 corresponding to late canalicular stage,

congenital diaphragmatic hernia lungs were characterized by measuring the lung weight/

body weight ratio, morphometry, epithelial cell marker gene expression levels and alveolar

cell type quantification.

Results

Nitrofen/bisdiamine associated congenital diaphragmatic hernia lungs showed delayed

development, hypoplasia with morphologic immaturity and thickened alveolar walls.
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Expression levels of distal epithelial progenitor marker Id2 increased, alveolar type 1 cell

markers Pdpn and Hopx decreased, while type 2 cell markers pro-SPC and Muc1 remained

constant during the canalicular stage. The number of Pdpn+ type 1 alveolar cells also

decreased in congenital diaphragmatic hernia lungs.

Conclusion

The mouse nitrofen/bisdiamine model is a potential model allowing the study of congenital

diaphragmatic hernia lung development from early stages using a wide array of methods.

Based on this model, the alveolar epithelium showed a decrease in the number of alveolar

type 1 cell in congenital diaphragmatic hernia lungs while type 2 cell population remains

unchanged.

Introduction

Congenital diaphragmatic hernia (CDH) is a structural anomaly characterized by variable

degrees of defects in the diaphragm. During pregnancy, abdominal contents enter the chest via

the defect, leaving insufficient space for normal lung development. The resulting pulmonary

hypoplasia remains one of the critical factors determining the outcomes in CDH newborns

[1–3]. CDH lungs show parenchymal underdevelopment with delay of alveolar growth, fewer

bronchial branches and alveoli [4,5]. The pathogenesis of lung hypoplasia related to CDH is

still not fully comprehended.

Further insights into the pathophysiology of CDH necessitate specific animal models.

These have been developed using surgical, teratogenic, and genetic techniques. The earliest

models relied on surgically induced diaphragmatic defects in fetuses that had, until that

moment, normal lungs and diaphragm [6–8]. These, therefore, are less informative about the

etiology and mechanisms responsible for the early-onset disturbed lung development. On the

other hand, the genetic models have added extra information about CDH pathophysiology

[7,9,10]. A number of gene mutations which induce diaphragmatic defects have been identi-

fied in mice. However, disruption of these genes explains only a minority of CDH cases, leav-

ing a large number of genetic abnormalities yet to be identified. Another widely used CDH

model is the teratogenic nitrofen (2,4-dichloro-40-nitrodiphenyl ether) model [7,11]. Nitrofen

is a herbicide that induces congenital anomalies in rodent fetuses. Depending on the dosage,

timing, and species, the anomalies can include diaphragmatic defects, pulmonary hypoplasia,

immaturity, and vascular anomalies [11–14]. Other chemicals have also been identified as

teratogens causing CDH including bisdiamine or N,N0-octamethylenebis (dichloroacetamide).

Bisdiamine is a spermatogenesis inhibitor which can cause CDH in rats [14,15]. A combina-

tion of nitrofen and bisdiamine (N/B) has been shown to induce CDH in mice [16]. This

model enables researchers to comprehensively study CDH lung development at molecular, tis-

sue and system levels.

The main function of the mammalian lung is gas exchange between the blood and the exter-

nal environment. The two major alveolar epithelial cell (AEC) types that constitute the gas

exchange compartment are alveolar type 1 (AT1) and type 2 (AT2) cells [17–22]. In CDH-

associated lung hypoplasia, the ratio of AECs is known to be altered, which was thought to be

due to the differentiation of AT2 into AT1 cells [23,24]. Although the histological abnormali-

ties in CDH lungs have been well described, less is known about the underlying spatiotemporal
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differentiation patterns and their molecular mechanisms. Recent studies reveal a population of

bipotent progenitors (BP) expressing markers of both AT1 and AT2 cells. These BPs differenti-

ate into mature AT1 or AT2 cells by upregulating markers of the corresponding cell fate, and

downregulating markers of the alternative cell fate during lung development [25,26]. As other

CDH models in previous studies did not address their presence, visualizing BPs together with

the differentiated alveolar cells could give a more detailed insight into the alveolar cell numbers

and fates in CDH. To allow spontaneous monitoring of multiple cell types, a murine model is

ideal as the number of cellular markers of interest have been identified in mice.

We used a mouse teratogenic model to accurately study the differentiation pattern of AECs

in CDH lungs with regards to BPs. The dissection of the pathophysiological mechanisms that

govern cell fate in CDH may enable the development of novel strategies in the treatment of

CDH and the associated pulmonary hypoplasia.

Materials and methods

The teratogenic CDH mouse model

Time-mated pregnant CD1 mice were provided by the Animalium at KU Leuven. Females

caged with males were checked the morning after mating for the presence of a vaginal plug as

an indication of mating. Noon of the day on which a vaginal plug was detected was considered

E0.5. All procedures involving animals and the study protocol were approved by the Ethics

Committee for Animal Experimentation of the Faculty of Medicine, KU Leuven (project num-

ber: P033/2016).

To induce CDH, 15 mg of 2,4-Dichloro-1-(4-nitrophenoxyl) benzene (nitrofen)

(RDP00053EB, Thermo Fisher Scientific) and 0–10 mg of N,N’- Octamethylenebis (2,2-

dichloroacetamide) (bisdiamine) (sc-295819A, Santa Cruz Biotechnology) dissolved in olive

oil (O1514, Sigma) was gavage fed as a single dose under light anesthesia (2 min of Isoflurane

2.5%) at E8.5 [16]. In randomly allocated control animals, the same volume of vehicle (olive oil

or OO) was given without N/B. The mice were euthanized at E11.5, E16.5, or E17.5. All fetuses

were delivered by cesarean section. Embryos were harvested by cesarean section and anesthe-

tized by hypothermia on ice. Then the lungs were carefully dissected, weighed and either fixed

in formaldehyde solution 4% before embedding in paraffin or snap frozen in liquid nitrogen

in accordance with the planned subsequent experiments.

Embryonic lungs were allocated into two groups for analysis: CDH group (from pups con-

firmed as having N/B-induced CDH with an observed defect in the diaphragm) and control

group (from pups of which the mothers were fed with vehicle). The experimental timeline is

shown in Fig 1.

Immunohistochemistry

Lungs from E17.5 embryos were fixed in formaldehyde solution 4% (4078–9001, Klinipath) at

room temperature for 2 hours, washed in phosphate buffered saline (PBS) for 1 hour and later

embedded in paraffin blocks. 4 μm-thick whole lung sections were processed following the

standard deparaffinization and immunostaining protocol. Primary antibodies used were as fol-

lows: rabbit anti-proSPC (1:900, Abcam Cat# ab90716, RRID:AB_10674024), and hamster

anti-Pdpn (1:1000, Abcam Cat# ab11936, RRID:AB_298718). The following secondary anti-

bodies were used at 1:500: Goat anti-hamster; Alexa Fluor 488 (ab180063, Abcam); Goat anti-

rabbit; Alexa Fluor 555 (A-21430, Thermo Fisher Scientific). Nuclei were either stained with

Hoechst dye (B2261, Sigma) or DAPI from the Vectashield mounting medium (H1200, Vec-

torLab Inc). Images were captured on a Zeiss LSM 880 (Oberkochen, Germany).
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Immunostaining quantification

Slides from either controls or mutants were immunofluorescently stained for pro-SPC and

Pdpn. Three images were taken from similar areas of each slide so that the total number of

counted cells exceeded 1000. For pro-SPC and Pdpn quantification, the number positive cells

and DAPI+ cells in the entire field were semi-automatedly counted to determine the percent-

age of positive cells using QuPath software by utilizing the fast cell counting and positive cell

detection functions [27]. Then the percentage of positive cells over the total of counted cells

were evaluated for each sample.

Quantitative RT-PCR

Total RNA was extracted from snap-frozen lungs using the Tripure isolation reagent

(11667165001, Roche Diagnostics) according to the manufacturer’s protocol. Quantitative

real-time polymerase chain reaction (RT-qPCR) was performed using Platinum SYBR Green

qPCR SuperMix-UDG (11744500, R223-01, Thermo Fisher). Real-time qPCR was performed

using a StepOnePlus Real-Time PCR thermal cycling block system (Applied Biosystems, Life

Technologies). The mRNA levels of target genes were normalized to the Hprt mRNA level

using the 2−ΔΔCt method [28]. The error bars display the calculated maximum (RQMax) and

minimum (RQMin) of the range of fold change which were calculated by incorporating the

standard deviation of the ΔΔCt value into the fold difference calculation. Primers used for RT-

qPCR are listed in S1 Table.

Morphometry

Lungs were embedded in paraffin, and 4μm midsagittal sections were stained with hematoxy-

lin and eosin. Sections were scanned with a slide scanner (AxioScan). Afterwards, a purpose-

designed Fiji plug-in randomly selected 250x250μm fields. For each lung, the mean linear

intercept of parenchymal airspace (Lma) and mean wall transactional length (Lmw) were cal-

culated using a stereological tool software STEPanizer based on a previously described method

based on overlapping a 36-point grid on 15 fields per lung [8,29–32]. Lma reflects the index of

the size of the airspaces the air spaces and Lmw is an index of the thickness of alveolar septa.

Nano-CT

N/B and OO administered pregnant CD1 mice were euthanized at E11.5 or E16.5 days

by cervical dislocation. The embryos were dissected, washed with PBS and fixed in 4%

Fig 1. Schematic depicting time points for congenital diaphragmatic hernia induction by nitrofen/bisdiamine (N/B) and lung harvesting for specific assessment

methods. Pregnant CD1 mice were gavage-fed with N/B on E8.5. For nanoCT assessment, whole pups were harvested on either E11.5 or E16.5. For RT-qPCR analysis,

histology or immunohistochemistry analysis, fetal mouse lungs were harvested on E17.5.

https://doi.org/10.1371/journal.pone.0214793.g001
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paraformaldehyde overnight. Each sample was submerged in a 0.1 N iodine solution for 24

hours on a rotator at room temperature. Iodine solution was changed every 8 hours [33]. The

nanoCT system utilized was a Phoenix NanoTom M (GE Measurement and Control Solutions,

Germany) equipped with a Diamond-Tungsten target. E11.5 embryos were scanned at a volt-

age of 90 kV and a current of 180 μA. E16.5 embryos were scanned at a voltage of 50 kV and a

current of 142 μA. The exposure time was 500 ms. Reconstruction was performed using Phoe-

nix datos|x CT software. Representative images and videos of 3D volume renderings were cre-

ated using CTvox software (Bruker, Belgium) (S1 File). Pseudocoloring of the lungs in the

images was done using the free software GNU Image Manipulation program (GIMP 2.10).

Statistical analysis

Statistical analysis of significance was calculated based on unpaired 2-tailed t-tests using SPSS

20.0 (IBM Corp., Armonk, NY) or GraphPad Prism 7.0 software (GraphPad Software, Inc.,

San Diego, CA). All data except RT-qPCR are presented as mean ± SEM (as indicated in the

figure legends). �p<0.05, ��p<0.01, ���p<0.001, ����p<0.0001 were considered statistically

significant.

Results

Nitrofen/bisdiamine-induced CDH results in delayed lung development

before the end of diaphragm formation

We tested different concentrations of administered N/B, including the combination that has

earlier been shown to induce CDH in the mouse model [16]. These concentrations resulted in

diaphragmatic defects, yet also consistently in the presence of facial abnormalities (S2 Fig).

The latter has not been described previously in details. When given without bisdiamine, 15mg

nitrofen resulted in 0% of CDH. Hence, we kept the nitrofen constant at 15mg while changing

the bisdiamine concentration to investigate its dosage effects on survival, CDH and facial

abnormality rates. Increased concentration of bisdiamine did not affect the survival rate. How-

ever, too low a concentration of bisdiamine (0 or 1mg) resulted in a low CDH rate (<0.2),

while high doses (dose to be specified) were associated with a high rate of facial abnormalities

(S2 Fig). Hence, we opted for a N/B combination of 15mg/3mg, which had the lowest rate of

facial abnormalities while the CDH rate was still above 50%. In the N/B cohort, we only

included the pups with an obvious diaphragmatic defect at necropsy. Additional abnormalities

related to this dose were detected from the nanoCT scans by a trained clinician who is famil-

iarized with interpreting CT scans (S2 Table).

Nano-CT analysis was performed at either embryonic (E11.5) or early canalicular stage

(E16.5). At E11.5, when the diaphragm has not yet finished its formation, N/B-exposed pups

showed a delay in lung branching compared to the control cohort (OO) (Fig 2A). At E16.5 a

clear diaphragmatic defect with intrathoracic migration of abdominal organs could be seen in

more than 50% of the investigated N/B-exposed pups (Fig 2B).

Nitrofen/bisdiamine results in lower lung weight/body weight ratios

(LBWR) and histological lung hypoplasia

N/B-exposed mice had lung hypoplasia evidenced by lower LBWR in CDH lungs at E17.5,

compared to controls (0.0193 ± 0.0008, n = 14 vs 0.0360 ± 0.0006, n = 25, p<0.0001) (Fig 3).

Histologic assessment of E17.5 lungs revealed that CDH fetuses exhibit lungs with morpho-

logic immaturity, including diminished alveolar airspaces, thickened alveolar walls and

increased interstitial tissue (Fig 4A). Lung morphometry confirmed these observations as
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mean transactional wall length (Lmw) (p<0.0001) were significantly increased in N/B-CDH

pups compared to controls (Fig 4B and 4C). We did not observe much difference in the

fibrotic degree between CDH and controls using Masson’s Trichrome staining (S6 Fig).

Fig 2. Nitrofen/bisdiamine caused lung development delay since embryonic stage. (A) Nano-CT sections of E11.5

(embryonic) and (B) E16.5 (early canalicular) mouse embryos allow visualizing lungs of nitrofen/bisdiamine (N/B) pups with

regards to other organs. Lungs are pseudocolored in yellow. (A) Lungs showed delayed development at early embryonic stage

when diaphragm has not finished its formation in a N/B pup compared to olive oil (OO) control. (B) At E16.5, N/B can induce

CDH pup with diaphragmatic hernia through which the liver herniates into the thoracic cavity.

https://doi.org/10.1371/journal.pone.0214793.g002
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AT1 cell markers are decreased and AT2 cell markers remain stable in

CDH lungs

Real-time quantitative PCR (RT-qPCR) was performed on E17.5 lungs to assess the alveolar

epithelial marker expression. Analysis of gene expression in mouse CDH lungs demonstrated

that mRNAs associated with cell cycle progression (Nmyc) (p = 0.126) and those associated

with differentiated AT2 cells (Sftpc, Muc1) (p = 0.624 and p = 0.698) were not different from

the controls. However, distal epithelial progenitor markers Id2 (fold change 1.25, range 1.08–

1.44) was increased (p<0.01). More significantly, mRNAs typically associated with AT1 cells

(Hopx, Pdpn) were significantly decreased in CDH pups (Hopx fold-change 0.73, range 0.58–

0.90) (Pdpn fold-change 0.52, range 0.43–0.63) (p<0.01 and p<0.0001) (Fig 5).

AT1 (Pdpn+) cell numbers are reduced while AT2 (proSPC+) cell numbers

remain constant in CDH lungs

To determine whether the change in gene expression of AT1 and AT2 markers reflects a modi-

fication at the protein level in N/B-induced CDH lungs, immunofluorescence was performed

in E17.5 lungs. Staining for AT2 marker proSPC was combined with the AT1 marker Pdpn in

order to evaluate their expression and localization at E17.5 (S3 Fig). Cells with both markers

were counted as BPs. Confocal microscopy corroborated the RT-qPCR results by showing a

marked decrease in Pdpn expression in the distal alveolar epithelium of CDH lungs while

proSPC expression was the same in both groups (Fig 6A). Quantitively, the percentage of

Fig 3. Congenital diaphragmatic hernia pups had lower lung weight/body weight ratio compared to the olive oil controls.

Lung weight–to–body weight ratio was significantly decreased in the N/B-induced CDH group. Data indicate means ± SEM.

N = 14–25. ����p< 0.0001, Student’s t-test.

https://doi.org/10.1371/journal.pone.0214793.g003

Decreased proportion of alveolar type 1 cells in congenital diaphragmatic hernia mouse lungs

PLOS ONE | https://doi.org/10.1371/journal.pone.0214793 April 17, 2019 7 / 17

https://doi.org/10.1371/journal.pone.0214793.g003
https://doi.org/10.1371/journal.pone.0214793


Fig 4. Congenital diaphragmatic hernia lungs showed thickened alveolar walls and increased interstitial tissue. (A) Representative

histological images of control and CDH lungs revealed that CDH rodents exhibited wall thickening and rudimentary alveoli. Scale bars

represent 100 μm. Morphometry analysis of mean linear intercept of parenchymal airspace (Lma) (B) and mean transactional wall

length (Lmw) (C) showed an increase in the thickness of the septa of the parenchymal air-spaces. Data indicate means ± SEM. N = 6.
����p< 0.0001, Student’s t-test.

https://doi.org/10.1371/journal.pone.0214793.g004
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Pdpn+ cells was lower in the lungs from N/B CDH animals (35.1 ± 3.522, n = 4 in controls;

14.33 ± 1.122, n = 6 in CDH) (p<0.001), whereas the number of proSPC+ cells was not signifi-

cantly different (14.05 ± 3.75, n = 4 in controls; 7.539 ± 0.6618, n = 6 in CDH) (p = 0.0672)

(Fig 6B and 6C). The decrease of AT1 cells in CDH lungs was confirmed by immunofluores-

cence staining for another AT1 marker Hopx+ (S5 Fig). The percentage of the BP (Pdpn+/

proSPC+) was not significantly different between the CDH and control groups (3.22 ± 0.5905,

n = 4 in controls; 2.182 ± 0.2574, n = 6 in CDH, p = 0.1044) (S4 Fig).

Discussion

Herein, we used a mouse teratogenic model of CDH by N/B induction to further elucidate the

status of AEC differentiation in hypoplastic lungs associated with CDH. N/B-induced CDH

fetuses showed lung hypoplasia with lower LBWR and thickened alveolar wall, in association

with early lung delay shown by nanoCT analysis. The expression of AT1 markers in the CDH

lungs were significantly decreased while AT2 markers remained unchanged at both gene

expression and protein levels compared to the controls (Fig 7).

We were interested to see if the mouse teratogenic model displays a clinical CDH pheno-

type similar to the rat nitrofen model. N/B administration in mice results in lung hypoplasia as

early the embryonic phase and later a diaphragmatic defect with migration of abdominal

organs into the thoracic cavity at canalicular stage resembling the rat model and human condi-

tion [24,34–36]. Lung hypoplasia was also observed using validated outcome measures

Fig 5. RT-qPCR analysis of congenital diaphragmatic hernia lungs showed an increase in distal epithelial progenitor and a decrease in

type 1 alveolar cells. E17.5 CDH lungs demonstrated a decrease in mRNAs identifying alveolar epithelial type I cells (Hopx, Pdpn) while

distal epithelial progenitor marker Id2 was increased. Graph showing the mean values of fold change of E17.5 CDH relative to those of olive

oil control lungs. Both CDH and control values were relative to those of the internal control gene Hprt, with CDH values representing the

fold change relative to that of controls, which was converted to 1. For each gene, 6 pups were analyzed per group. Error bars represent the

range of fold changes derived from ΔΔCt standard deviations (Fold change = 2(-ΔΔCt)). ��p< 0.01, ��� p< 0.001, Student’s t-test.

https://doi.org/10.1371/journal.pone.0214793.g005
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including LBWR and pulmonary morphometry. LBWR was significantly lower in the N/B-

induced CDH fetuses compared to controls, which parallels CDH rabbit and rat models [37–

42]. At E17.5 in mouse pups, corresponding to human week 24–26, the LBWR of the CDH

lungs was at 0.0193, which also agrees with postmortem studies where an indication of pulmo-

nary underdevelopment is based on a LBWR from lower than 0.015 to 0.022 [43,44].

The CDH mouse model allowed us to gain a better insight into CDH lung development as

we could use a much broader range of assessments including whole-fetus nanoCT, RT-qPCR

Fig 6. Nitrofen/bisdiamine-induced congenital diaphragmatic hernia lungs showed a decrease in the number of AT1 cells and no change in AT2 cells.

Confocal representative images (A) and quantification of olive oil control (n = 4) and CDH lungs (n = 6) with antibodies to Pdpn (green) (B) and pro-SPC

(red) (C) and showed a significant decline in the population of AT1 Pdpn+ cells. Nuclei stained with DAPI (blue). Scale bars represent 20 μm. Total number

of cells counted per sample is higher than 1000 cells. Data shown are means ± SEM. ���p< 0.001, Student’s t-test.

https://doi.org/10.1371/journal.pone.0214793.g006
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and immunofluorescence co-staining of multiple markers of interest. In addition to the left

sided herniation and lung hypoplasia at E16.5, nanoCT revealed that lung development was

delayed as early as the embryonic stage E11.5 when the diaphragm has not finished its forma-

tion. This is in line with other teratogenic CDH models where abnormal lung development

occurs independently of those resulting secondarily to the diaphragm defects [45–48]. Lung

histology confirms the delay in lung development in CDH lungs with morphologic immaturity

in combination with increased medial wall thickness similar to other models [37,38,40,49].

The status of AECs differentiation in hypoplastic lungs associated with CDH is still unclear

and controversial, both in human and in animal models [23,50–52]. We determined the rela-

tive levels of AT1 and AT2 by RT-qPCR and immunofluorescence imaging. Our observation

is aligned with previous findings showing that AT1 cell density is decreased in CDH lungs

[23,24,53]. One possible explanation would be that AT1 cells trans-differentiate into AT2 in

CDH lungs [54,55]. However, if this is the case, one would expect an increase in the AT2 popu-

lation. Yet, our results suggest no significant difference in the number of AT2 number in CDH

lungs. Another possibility is that the differentiation from the BP cell towards AT1 is inhibited

due to a decrease in CDH lung parenchyma stretch as mechanical forces have been shown to

be required for AT1 cell differentiation [56].

As the number of AT2 cells remained unchanged in our CDH pups, our results disagreed

with previous studies where the number of AT2 cells and their surfactant production were

found to be deficient in CDH [23,24,51,52]. There may be several reasons for these disparate

results. One possibility is that previous studies analyzed AEC differentiation status before BP

cells were extensively described. This could induce counting errors as these progenitors

express both AT1 and AT2 markers. As most of these studies evaluated the number of AT2

and AT1 cells based on light microscopic morphology or separate staining of proSPC and

Pdpn, identification errors of cell types cannot be excluded. In our study, we performed co-

staining for markers that allowed us to discriminate AT1, AT2 and BP, and count them sepa-

rately. Thus, our results might represent a more accurate evaluation of AT1 and AT2 ratios in

CDH lungs. Our results are also in line with studies where no benefit associated with surfactant

therapy was found for term infants with a prenatal diagnosis of isolated CDH [57,58].

A limitation of our model is the potential developmental effect of N/B teratogenicity on the

fetal mice. Unlike the rat model, the teratogenic effects in mice seem to be broader and maxil-

lofacial abnormalities were noticed. It remains unclear if these abnormalities contribute to the

effects seen on lung development. However, as abnormalities do not occur in all individuals

and a wide array of developmental assessments can be used, this model still provides valuable

information with regard to alveolar epithelial differentiation status in CDH-induced lung

hypoplasia.

In conclusion, we have shown that the mouse teratogenic model is an elegant model that

accommodates visualizing CDH lung development in great depth at early gestational ages. It

has potential for wider use in the study of the pathogenesis of CDH, given the cornucopia of

molecular methods such as transcriptomics and proteomics. We detected a decrease in AT1

cells in the late canalicular stage of lung development in CDH lungs while AT2 cells number

was not significantly different. To identify which of the aforementioned scenarios is the true

origin of this change, further research where lineage tracing can be used to follow the BPs

choice of differentiation into either AT1 or AT2 in CDH lungs is required. This will lead to a

Fig 7. Graphical summary of our findings. Nitrofen/bisdiamine-induced congenital diaphragmatic hernia fetuses showed delayed lung development from the

embryonic stage (E11.5). At late canalicular stage (E17.5), the expression of AT1 markers in the CDH lungs were decreased compared to the controls while AT2

markers were not significantly altered.

https://doi.org/10.1371/journal.pone.0214793.g007
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greater understanding of CDH etiology, therefore aiding in identifying novel therapeutic tar-

gets in the near future.
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S1 Fig. Diaphragmatic defect in E17.5 pups. Nitrofen/bisdiamine administration at E8.5 cre-
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the dashed circle.
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S2 Fig. Different doses of bisdiamine affected the survival, congenital diaphragmatic her-

nia and facial abnormality rates per mother. (A) The survival rate was calculated by number

of survived pups/ number of sacs detected per mother on harvesting day. (B) CDH rate was

calculated by number of CDH pups (with visible diaphragmatic defect and herniation)/num-

ber of survived pups. (C) Facial abnormality rate was calculated by number of pups with facial

abnormality/number of survived pups. Each dot represents a single mom. Bars represent

means ± SEM. (D) Representative image of abnormal face in an E16.5 pup vs an olive oil con-

trol pup.
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S3 Fig. Identification of alveolar type 1 and alveolar type 2 cells.
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S5 Fig. Percentage of Hopx+ AT1 cells in CDH vs normal lungs. Confocal representative

images (A) and quantification of olive oil (n = 4) and CDH lungs (n = 6) with antibodies to

Hopx (red), Pdpn (green) and pro-SPC (blue) confirmed the decline in the population of AT1

cells in CDH lungs. Nuclei stained with DAPI (white). Scale bar represent 20um. Total number

of cells counted per sample is higer than 1000 cells. Data shown are means ± SEM. ��p< 0.01,

Student’s t-test.

(TIF)

S6 Fig. Histochemical staining for fibrosis by Masson’s trichrome stain in CDH and nor-

mal control lungs.

(TIF)
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scan.
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S2 File. A 3d-reconstructed olive oil control fetus from nanoCT scan.

(MP4)
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