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Abstract

Grapevine (Vitis vinifera) is one of the most important perennial crop plants in worldwide.

Understanding of developmental processes like flowering, which impact quality and quantity

of yield in this species is therefore of high interest. This gets even more important when con-

sidering some of the expected consequences of climate change. Earlier bud burst and flow-

ering, for example, may result in yield loss due to spring frost. Berry ripening under higher

temperatures will impact wine quality. Knowledge of interactions between a genotype or

allele combination and the environment can be used for the breeding of genotypes that are

better adapted to new climatic conditions. To this end, we have generated a list of more than

500 candidate genes that may play a role in the timing of flowering. The grapevine genome

was exploited for flowering time control gene homologs on the basis of functional data from

model organisms like A. thaliana. In a previous study, a mapping population derived from

early flowering GF.GA-47-42 and late flowering ‘Villard Blanc’ was analyzed for flowering

time QTLs. In a second step we have now established a workflow combining amplicon

sequencing and bioinformatics to follow alleles of selected candidate genes in the F1 individ-

uals and the parental genotypes. Allele combinations of these genes in individuals of the

mapping population were correlated with early or late flowering phenotypes. Specific allele

combinations of flowering time candidate genes within and outside of the QTL regions for

flowering time on chromosome 1, 4, 14, 17, and 18 were found to be associated with an

early flowering phenotype. In addition, expression of many of the flowering candidate genes

was analyzed over consecutive stages of bud and inflorescence development indicating

functional roles of these genes in the flowering control network.

Introduction

The reproductive developmental cycle of grapevine spans two years (S1 Fig). Grapevine plants

need intense light and high temperatures to initiate inflorescences during spring, which

develop and flower during the subsequent summer [1]. The ongoing tendency to higher tem-

peratures in spring due to global warming causes earlier bud burst and flowering [2]. As a
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consequence, late spring frost is an increasing risk to viticulture, which may cause significant

crop loss [3]. Together with flowering the onset of ripening is shifted towards earlier dates

[4,5] and the ripening process occurs under warmer conditions. This influences berry compo-

sition [6], affects wine quality and promotes e.g. fungi infection. Grapevine breeding programs

aim to develop new varieties enabling the production of high quality grapes and maintenance

of wine typicity in a changing environment. Making use of late flowering genotypes may be

one approach to compensate for earlier ripening. Understanding the flowering process in

grapevine and determining factors that lead to early or late flowering may help to control vari-

ation in berry production [7].

Detailed knowledge of pathways controlling flowering is available in crop species and the

woody plant poplar, but especially the model species A. thaliana and rice [8,9]. With the avail-

ability of a Vitis reference genome sequence [10–14], gene homologs to A. thaliana floral

development pathway genes or genes involved in photoperiod or vernalization responses

could be identified in the grapevine genome. Most of these are flowering signal integrators, flo-

ral meristem identity genes, and flower organ identity genes, such as MADS box genes, like

VvMADS8 that promotes early flowering and the VvFT/TFL1 gene family [15–17]. The expres-

sion of VvFT—the ortholog of the A. thaliana FLOWERING LOCUS T—is associated with sea-

sonal flowering induction in latent buds and the development of inflorescences, flowers, and

fruits [18]. The expression of the LEAFY ortholog VvFL is correlated with inflorescence and

flower development [15]. VvFUL-L and VvAP1—homologs of the A. thaliana genes FUL and

AP1—are suggested to act on the specification of flower organ identity as their expression

appears in early developmental stages of lateral meristems and is maintained in both inflores-

cence and tendril primordia [16,19].

Due to the high heterozygosity and severe inbreeding depression, the first filial generation

(F1) is used for QTL (quantitative trait loci) mapping in V. vinifera. This is different to other

crop or model species (and is called a double pseudo test cross approach; [20,21]). Several QTL

for the timing of developmental stages such as flowering time have been identified [2,22,23].

One locus contributing to flowering time control (FTC) was reported in 2006 [24]. Six QTL on

different chromosomes (chr) in the mapping population GF.GA-47-42 x ‘Villard Blanc’ were

described in [23]. The detected QTL are localized on chr 1, 4, 8, 14, 17, 18 and 19. Three of

them (chr 1, 14 and 17) were also found in another mapping population derived from the

genotypes V3125 and ‘Börner’ [23]. MADS-box genes with a proposed impact on flowering

time such as VvFL, VvFUL-L and VvAP1 were annotated within FTC QTL regions in Vitis.
Further, examples of flowering time gene homologues in such QTL regions include CON-
STANS-like genes on chr 1, 4 and 14 and the MADS-box genes, VvFLC1 und VvFLC2 (Vitis
vinifera FLOWERING LOCUS C 1 & 2), which are highly expressed in buds [25].

The observation that either very early or very late flowering seems to be inherited by specific

combinations of alleles at several loci, while all mixed combinations lead to an intermediate

flowering type indicates an additive effect. The data further suggest a dominant effect for early

flowering, with the responsible alleles being inherited from either ‘Bacchus’ or ‘Seyval’, the

parents of the breeding line GF.GA-47-42 [23]. In order to link certain alleles of the sequenced

genes to the flowering time phenotype, the two allele sequences of a given gene in a heterozy-

gous diploid plant have to be determined (allele phasing).

Short read sequencing technologies still suffer from producing ambiguous haplotype phase

sequences. Determining the haplotype phase of an individual is computationally challenging

and experimentally expensive; but haplotype phase information is crucial in various analyses,

such as genetic association studies, the reconstruction of phylogenies and pedigrees, genomic

imputation, linkage disequilibrium, and SNP tagging [26,27, 28,29]. In diploid organisms like

grapevine, generally both alleles of a given gene are expressed. Different alleles can show
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different expression patterns, which can consequently result in varying manifestations of traits.

The determination of these alleles is an important step in the dissection of corresponding

traits. Among other approaches, haplotypic information can be obtained from DNA sequence

fragments to reconstruct the two haplotypes of a diploid individual. A sequence fragment that

covers at least two variant sites in a genome can link those variants together and thus phase

them. When fragments are long enough to encompass multiple variant sites and the sequenc-

ing coverage is sufficiently high to provide overlaps between fragments, fragments can be

assembled to reconstruct longer haplotypes [30].

For haplotype or allele phasing a variant discovery process is necessary beforehand. The

two mainly used methods are based on Shotgun Genome Assembly (SGA) or on amplicon

sequencing. SGA generates phasing information without knowledge of the surrounding

sequence, the library coverage needs to be high and it is computationally very challenging to

distinguish paralogous repeats from polymorphism but it does not require sequence informa-

tion for the loci. Amplicon sequencing, which includes the amplification of a genomic region

by PCR, requires sequence information of the target locus for primer design and can be done

very effectively. However, it is not practical for large-scale projects [31].

In this work, we used a F1 population of V. vinifera, with the aim to associate allele

sequences of several FTC candidate genes with the phenotype of flowering time in order to

identify alleles influencing and controlling this trait using amplicon sequencing. Gene expres-

sion was analyzed in different time courses of bud and flower development in order to further

investigate and confirm the role of FTC candidate genes.

Materials and methods

Plant material

The mapping population GF.GA-47-42 x ‘Villard Blanc’ was crossed in 1989 using the breed-

ing line GF.GA-47-42 (‘Calardis Musque’; ‘Bacchus Weiss’ x ‘Seyval’) and the cultivar ‘Villard

Blanc’ (Seibel 6468 x ‘Subereux’). The 151 F1 individuals were planted in the vineyards at the

Institute for Grapevine Breeding Geilweilerhof in Siebeldingen (49˚13’05.0"N 8˚02’45.0"E) in

Southwestern Germany (www.julius-kuehn.de/en/grapevine-breeding) in 1996. The offspring

shows notable segregation for the trait "flowering time" as the maternal breeding line GF.GA-

47-42 and its parents are early flowering while the paternal line ‘Villard Blanc’ as well as its

parents flower rather late. QTL analysis for flowering time was carried out using a SSR

marker-based genetic map of the biparental population [32].

Phenotyping of the mapping population GF.GA-47-42 x ‘Villard Blanc’ was performed for

flowering time (full bloom) in nine years (1999, 2009–2016) as described in [23] (Table 1, S1

Table). For determination of the median of flowering time for each individual, the days of the

flowering period of each year were numbered whereas the first day of the flowering period was

numbered with one, the second day with two, etc. These numbers were then divided by the

length of the flowering period. The resulting values were used to calculate the median. Values

for global radiation and accumulated temperature from November 1st of the previous year

until the day of full bloom were obtained from the DLR (www.wetter.rlp.de) and refer to the

location of the vineyard at Siebeldingen, Germany. For gene expression analysis of FTC target

genes, leaves, buds, and inflorescences from early flowering GF.GA-47-42 were collected at

several consecutive time points starting from latent winter buds until inflorescences shortly

before full bloom within the developmental cycle that was completed over the two consecutive

years 2012 and 2013. Moreover, in 2013, sampling of buds on consecutive time points before

dormancy in winter was continued. The development of the plants was described using BBCH

codes [33]. Plant tissue from four different GF.GA-47-42 plants was harvested into liquid
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nitrogen. We decided in favor of single samples but many time points to detect trends in

expression levels. Table 2 shows an overview of the collected samples.

FTC candidate gene prediction

For the identification and characterization of putative flowering time control (FTC) genes,

functional data from well studied model species (available from [34]) was used to exploit the

grapevine genome for homologous genes. Using BLAST (e-value cut off below 1e-25) [35] pro-

tein sequences of candidate genes from A. thaliana and other model species were compared

against the Vitis protein sequences (PN40024-12xv0, Genoscope gene prediction 12X.v0

Table 2. Samples collected from grapevine genotype GF.GA-47-42 for the analysis of trends in gene expression

levels.

Date of sample collection Developmental stage of sample BBCH code

Developmental cycle 2012/2013:

December 20th, 2012 dormant bud BBCH 0

March 8th, 2013 dormant bud BBCH 0

March 22nd, 2013 swelling bud BBCH 0–5

April 12th, 2013 swelling bud BBCH 5–9

April 26th, 2013 buds/first leaf unfolded BBCH 11

May 3rd, 2013 buds/1-3 leaves unfolded BBCH 11–13

June 7th, 2013 inflorescences & leaves BBCH 53

June 14th, 2013 inflorescences & leaves BBCH 55

June 17th, 2013 inflorescences BBCH 57

Developmental cycle 2013/2014:

July 22nd, 2013 buds & leaves /

August 2nd, 2013 buds /

August 8th, 2013 buds & leaves /

August 16th, 2013 buds /

August 22nd, 2013 buds & leaves /

September 5th, 2013 buds /

September 19th, 2013 leaves /

Listed are the developmental stage of the sampled tissue and the corresponding BBCH code.

https://doi.org/10.1371/journal.pone.0214703.t002

Table 1. Dates of flowering periods of the mapping population GF.GA-47-42 x ‘Villard Blanc’ and the amount of global radiation at the location of the vineyards

(Geilweilerhof) if available.

Year Start of flowering

period

(days after January

1st)

End of flowering

period

(days after January

1st)

Length of flowering

period

(days)

Global radiation at beginning of flowering

period

(KWh/ m2)

Global radiation at end of flowering

period

(KWh/ m2)

1999 165 178 14 / /

2009 156 170 15 / /

2010 170 180 11 / /

2011 147 157 11 531 579

2012 153 169 17 511 596

2013 168 183 16 516 597

2014 150 161 12 518 567

2015 156 167 12 536 595

2016 168 177 10 502 548

https://doi.org/10.1371/journal.pone.0214703.t001
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(www.genoscope.cns.fr/externe/GenomeBrowser/Vitis/) and the CRIBI gene prediction 12X.

v2 [12]). Results were manually checked for additional evidence from the literature.

For functional annotation of FTC candidate genes, the method of reciprocal best hits

(RBH) [36] was applied. A RBH pair consists of two sequences from different sets of

sequences, each displaying the highest genome wide score in the other data set. Genomic

sequences of FTC genes were compared against protein sequences of V. vinifera and A. thali-
ana with blastx. If a gene displayed several transcripts, the longest sequence was used. Using

tblastn the hit showing the highest score was compared back against V. vinifera coding genes.

When the original query was found to have the highest score, the resulting RBH pair was

considered.

To establish unique genes, we used the Vv (Vitis vinifera) prefix followed, for almost all

genes, by the gene name deduced from the Arabidopsis annotation. In many cases the Vitis
genome holds several putative homologs for known FTC genes from model crops, leading to

low number of RBHs between Vitis and Arabidopsis genes. In order to distinguish these Vitis
genes, the one with the highest BLAST score to the query gene got the name extension “a”, the

second best the “b”.

Amplimer design

Genes for targeted allele phasing (target genes) through amplicon sequencing were selected

out of the identified FTC candidate genes. The cDNA sequences of target genes were used as

query in a BLAST against the grapevine reference sequence PN40024-12xv0. Genomic DNA

sequences were extracted in addition to 1,000 bp from the 5’- and 3’-UTR regions. Primers

were designed for overlapping amplimers (S2 Table) of up to 8 kb using the tool Primer3 [37].

DNA isolation and amplicon generation

Extraction of genomic DNA was performed from young leaf tissue. The leaf material was

grounded under liquid nitrogen and subsequently used for DNA isolation with the DNeasy

Plant Maxi Kit (Qiagen, Hilden, Germany) according to manufacturer’s protocols. The puri-

fied DNA was quality checked via gel electrophoresis and quantified using a NanoDrop spec-

trophotometer (Peqlab, Erlangen, Germany). Amplicons were amplified by long range PCR

(98˚C 30 sec, 15 cycles of 10 sec 98˚C, 30 sec 72˚C– 57˚C, 5 min 72˚C, 25 cycles 10 sec 98˚C,

30 sec 58˚C, 5 min 72˚C and finally 2 min 72˚C).

Target gene sequences were amplified from 37 individuals of the mapping population GF.

GA-47-42 x ‘Villard Blanc’ including the parental lines and 35 F1 individuals with early, inter-

mediate and, late flowering time phenotypes (S3 Table).

Library preparation and amplicon sequencing

Amplicon sequencing was carried out on a MiSeq (Illumina, San Diego, USA) in seven runs.

All amplicons belonging to a respective individual were pooled in equimolar amounts, frag-

mented by sonification using a Bioruptor (Diagenode, Denville, USA) and subsequently used

for library preparation. The libraries were prepared as recommended by Illumina (TruSeq

DNA Sample Preparation v2 Guide). Adaptor-ligated fragments were size selected on a two

percent low melt agarose gel to an average insert size of 500 bp. Fragments that carry adaptors

on both ends were enriched by PCR. Final libraries were quantified using PicoGreen (Quant-

iT, Fisher Scientific, Schwerte, Germany) on a Fluostar platereader (BMG labtech, Ortenberg,

Germany) and quality checked by HS-Chips on a 2100 Bioanalyzer (Agilent Technologies,

Santa Clara, USA). Up to 20 libraries were pooled and sequenced on an Illumina MiSeq plat-

form with 2 x 250 bp read length using the Illumina MiSeq v2 reagents. After sequencing,
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basecalling and demultiplexing and FASTQ file generation was performed using a casava-

based in house script.

Read processing and mapping

Adapter trimming of raw reads and quality filtering of reads with a window of four consecutive

bases that exhibited a quality value below 30 was performed using Trimmomatic [38]. Bases at

the heads and tails of the reads with quality values below 30 were cropped using Trimmomatic.

Before and after trimming the tool FastQC (www.bioinformatics.babraham.ac.uk/projects/

fastqc) was used to check the quality of the reads. Between 11.5 and 35.6% (20.2% on average

[standard deviation (SD): 5.5%]) of reads were dropped through trimming. Trimmed reads

were mapped to the grapevine reference sequence PN40024 12x.v2 [14] using the BWA-MEM

algorithm which is suitable for long reads with default parameters [39]. Mapping was per-

formed for each individual separately. Instead of the entire reference sequence the target gene

sequences only were chosen for mapping in order to prevent false positive mapping results.

The SAM format files were converted to BAM format files and sorted using SAMtools [40].

Readgroups were added and duplicated reads removed using Picard Tools (https://

broadinstitute.github.io/picard/). Besides PCR duplicates unpaired reads were removed from

the mapping files. About 15% of amplicons failed to be amplified or sequencing depth was

below 20.

Allele phasing of target genes

In order to separate the two alleles of the sequenced target genes (phasing), a workflow using

the Genome Analysis Toolkit (GATK) [41] was established (Fig 1). After read alignment, the

quality of the alignments was improved in two ways. Firstly, local realignments around InDels

were performed using InDelRealigner of GATK [41] to reduce the number of misalignments.

Occasionally, the presence of insertions or deletions in individuals with respect to the refer-

ence genome sequence leads to misalignments of reads to the reference, especially when InDels

are covered at the start or end of a read. Such misalignments lead to many false positive SNPs.

Secondly, base quality scores of reads in the aligned mapping files were recalibrated using

BaseRecalibrator of GATK in order to correct for variation in quality with machine cycle and

sequence context. Thus, more accurate and more widely dispersed quality scores are provided.

Using the HaplotypeCaller of GATK variants were called for each individual separately.

The ploidy parameter was set to 12 for variant calling. It was performed in gVCF mode for F1

individuals and the parental lines of the population GF.GA-47-42 x ‘Villard Blanc’. Cases of

allele dropout were identified, in which the missing allele leads to genotyping errors. Since we

were working with an F1 population and by applying Mendelian constraints it was possible to

determine which allele was missing within the population GF.GA-47-42 x ‘Villard Blanc’, but

its sequence remained unknown. After variant calling, resulting variant files from individuals

of the population were merged using GATK’s GenotypeGVCFs in order to apply further

downstream steps on all samples together. At each position of the input gVCFs, this tool com-

bines all spanning records and outputs them to a new variant file. Raw variants were hard-fil-

tered according to GATK’s "Best Practices" recommendations [42,43]. In addition, variants

with read coverage depth and genotype quality below 20 were filtered out. For the determina-

tion of allele-specific sequences initially physical phasing was performed using HapCUT [30].

Fragments were defined from the sequenced reads. Haplotype-informative reads that cover at

least two heterozygous variants were extracted from the aligned file using the tool extractHairs

from HapCut and used for the assembly of haplotypes. The information of polymorphic sites

was passed to HapCUT through a variant file. A maximum number of 600 iterations were
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Fig 1. Workflow using the Genome Analysis Toolkit (GATK). The workflow uses the high-coverage genotype sequence variation information and the family

relationship for phasing.

https://doi.org/10.1371/journal.pone.0214703.g001
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used to run HapCut and the reference sequence was provided in order to extract reads cover-

ing both SNPs and InDels. Using various python scripts, intervals in which phasing could be

performed in individuals of the population GF.GA-47-42 x ‘Villard Blanc’ including the

parents and F1 individuals were determined and homozygous alternative variants were added

to the variant files. Using GATKs FastaAlternateReferenceMaker FASTA-format files with

alternate sequences were created for each individual within the regions in which allele phasing

could be performed.

A nomenclature system was created for the alleles of genes within the population GF.GA-47-

42 x ‘Villard Blanc’ (S4 Table). The system distinguishes between fourteen different cases, where

four, three, or two different allele sequences can be present at a locus or all sequences can be iden-

tical. Moreover, it distinguishes between various combinations of two or three different

sequences. E, as in E1, E2 and E0, refers to “early” and originates from early flowering GF.GA-

47-42, while L, as in L1, L2 and L0 refers to “late” and originates from late flowering ‘Villard

Blanc’. N means that both GF.GA-47-42 and ‘Villard Blanc’ share one or more alleles. N1 means

that E1 and L1 are alike, while N2 means that E2 and L2 are alike. N means that either L2 and E1

or E2 and L1 are alike. Na means that E1, E2, and L1 are alike. Nb means that E1, E2, and L2 are

alike. Nc means that E1, L1, and L2 are alike. Nd means that E2, L1, and L2 are alike. Descriptions

for allele combinations that distinguish between which of the two alleles of one parental line is

alike the two alleles of the other line (as in NaNa x NaL2) was implemented in order to be able to

track patterns of allele combinations throughout QTL regions and closely neighboring genes.

Correlation analysis. To test for the correlation of an allele and the flowering time pheno-

type, a Wilcoxon Rank-Sum test was carried out between a dichotomous variable (the presence

or absence of an allele) and a continuous variable (flowering time). The null hypothesis

assumed that the median of flowering time between groups of individuals carrying a certain

allele or not is equal. When p-values below 5% were found, the null hypothesis was rejected

and an association between an allele and the flowering time phenotype was found to exist.

Marker development and testing of the whole mapping population

After creating haplotype specific allele sequences through amplicon sequencing and the subse-

quent bioinformatic pipeline, markers were designed for haplotype specific PCRs. Obtained

allele sequences of target genes were scanned for InDel structures differing between the paren-

tal alleles. Variants with low coverage or low quality were filtered out. In the case that InDels

were filtered out, the actual allele sequence can be greater than the calculated one. The

sequence information was used for subsequent STS (Sequence-Tagged Sites) marker design

with the Primer3 tool [37]. Primers had an optimum Tm of 58–60˚C, with PCR products dif-

fering in size between 100–400 bp for multiplexing purposes (S7 Table). Forward primers were

labeled at the 5’end with one of the fluorescent dyes 6-FAM (blue), HEX (green), TAMRA (yel-

low) or ROX (red). Allele distributions were analyzed over all 151 F1 individuals of the map-

ping population GF.GA-47-42 x ‘Villard Blanc’. PCRs were carried out with the QIAGEN

multiplex PCR kit (Qiagen GmbH, Hilden, Germany) following the instructions of the manu-

facturer in three multiplexes combining different product sizes and fluorescent dyes. Resulting

PCR products were analyzed on an ABI 3110xl Genetic Analyzer (Applied Biosystems, Foster

City, USA) and the results compared with the respective phenotype of the tested individual

(i.e. early, intermediate or late flowering).

RNA extraction and sequencing

Total RNA was extracted from up to 100 mg of liquid nitrogen ground tissue using the Spec-

trum Plant Total RNA kit (Sigma-Aldrich, Taufkirchen, Germany) according to the
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manufacturer’s instructions for protocol B. After on-column DNase treatment with the DNase

I Digest Set (Sigma-Aldrich, Taufkirchen, Germany) the RNA was quantified. RNA-libraries

for each time point were prepared according to the Illumina TruSeq RNA Sample Preparation

v2 Kit using an input of 1 μg of total RNA. RNA-Seq (1x 135 bp) was performed on an Illu-

mina Rapid HiSeq-1500 Run. One barcoded library was created for each of the time points.

RNA-Seq read processing for analysis of gene expression kinetics

Read trimming and quality control was performed as described above in “Read processing and

mapping”. Sequence read data are available from SRA accession SRP153932. The reads were

mapped to the grapevine reference sequence PN40024 12x.v2 [14] using tophat2 [44] which is

capable of performing split read mapping. The maximal intron size was set to 3000, otherwise

default parameters were used. Resulting BAM-format files were sorted and indexed using

SAMtools [40]. With HTSeq [45] mapped reads were counted for each gene. Using normalized

read counts differential gene expression was analyzed using the R-package DESeq2 [46].

DESeq2 performs normalization by calculating a geometric mean for each gene across sam-

ples. In each sample the counts for a gene is then divided by this mean. In order to perform an

analysis of expression without replicates, the counts were modeled as a smooth function of

time, and an interaction term of the condition with the smooth function was included. Likeli-

hood ratio test of DESeq2s with a reduced design, which does not include the interaction term,

was then applied. Genes with small p-values from this test are those showing a time-specific

effect.

Results

Phenotypic evaluation of the mapping population

The 151 F1 individuals of the segregating population and their parental lines were phenotyped

for time of full bloom as indicated in S2 Fig showing the timing of flowering in days after Janu-

ary 1st. The length of the flowering period varied considerably between 10 days (2016) and 17

days (2012) [23]. The greatest portion of individuals within the population reached full bloom

in approximately the first third of the flowering period. Within the mapping population, early

flowering is inherited from the maternal genotype GF.GA-47-42.

Identification of FTC candidate genes

Functional data from A. thaliana and other model organisms was systematically exploited to

identify FTC candidate genes in the Vitis reference genome sequence. More than 500 homolo-

gous genes were identified which are distributed over all chromosomes including the unan-

chored, random part of the sequence (S5 Table). Some of the genes are absent from the CRIBI

annotations, but were included in the previous annotations, provided by Genoscope. To our

knowledge the majority of the identified FTC candidate genes was not analyzed or even men-

tioned in a previous publication. As expected, an enrichment of the FTC candidate genes (75)

annotated within the FTC QTL regions was found. In several cases we identified more than

one homologous sequence in the grapevine genome with a single copy Arabidopsis query. In

these cases not necessarily the gene with the highest sequence similarity is the one in the FTC

QTL region, nor the one with the highest expression in flowering related tissues. For instance

the RAV genes VvRAV1b and VvRAV1c are located within the QTL regions on chr 1 and chr

14, respectively, whereas the RAV1a is located on chr 11 outside of any FTC QTL.

Many of the FTC candidate genes are transcription factors involved in flower development

and morphogenesis such as members of the AP2/EREBP family [47] and homeodomain
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proteins [48]. About eight MYB-transcription factors that participate in cell cycle control in

many living taxa [49] were among the identified FTC candidate genes in Vitis. Several other

protein families were among the FTC candidate genes, such as a dozen GRAS and FRIGIDA

proteins that are involved in flowering time and plant development. FRIGIDA proteins are

required for the regulation of flowering time by upregulating FLC expression. Allelic variation

at the FRIGIDA locus is an important determinant of natural variation in the timing of flower-

ing [50]. The GRAS (GAI, RGA, SCR) family is a very important family of proteins involved in

flowering in grapevine. GRAS proteins participate in GA signaling, which influences numer-

ous aspects of plant growth and development [51]. Remarkably sixteen SQUAMOSA PRO-

MOTER BINDING PROTEIN (SBP)-domain proteins, that are known from other plants as

transcriptional activators involved in a variety of processes such as flower and fruit develop-

ment, plant architecture, GA signaling, and the control of early flower development [52] are

candidates.

Allele phasing

From our comprehensive list of V. vinifera FTC candidates the 72 most promising genes were

chosen as targets for amplicon sequencing (S6 Table), many of which are located in flowering

related QTL regions on chr 1, 14, and 17 [23]. The average read depth of coverage was 286

(SD: 276) and for most samples sequencing depth was between 100 and 300. Variants in the

analyzed lines were detected with a density between 1.02 and 1.63 variants per 100 bp most of

which were SNPs.

In order to link certain alleles of the sequenced candidate genes to the flowering time phe-

notype, the two alleles of genes had to be reconstructed from the mix of sequenced fragments

of the two alleles. The phasing of alleles was performed on the basis of sites polymorphic

between the two alleles of a gene.

Aside from recombination events, a parent-offspring pair must share one haplotype for

each chromosome and thus one identical-by-descent allele for every gene. Hence, Mendelian

constraints could be applied to validate the obtained allele-specific sequence. Alleles of the cho-

sen 72 target genes studied could be identified in 46 cases (S6 Table; S1 File).

In 23 cases four different allele sequences could be found, three allele sequences in 18 cases,

two in four cases and in one case (VIT_217s0000g00150; VvFL) only one allele sequence,

meaning that all individuals of the population were homozygous for the respective locus. This

fits the expectation since grapevine is highly heterozygous. The number of allele sequences has

been deduced from regions of the genes in which phasing was performed. The lengths of the

phased intervals were between 204 and 8,285 bp (S6 Table).

Correlation analysis of an allele and the flowering time phenotype

Allele sequences of the progeny of the mapping population GF.GA-47-42 x ‘Villard Blanc’

were compared against the allele sequences of the parental lines to determine the inheritance

pattern within the population for each gene. In order to find alleles correlating with the pheno-

type of flowering time, a correlation analysis between the phased alleles of FTC target genes

and flowering time phenotypes was performed. Several sets of phenotypic data were used. For

the years 1999, 2009–2016 a correlation analysis was performed using days after January 1st of

the respective year. Additionally for the years 2011–2016 values of accumulated temperature

above 3˚C from November 1st of the previous year and global radiation in KWh/m2 from Janu-

ary 1st were considered.

After the reconstruction of inheritance patterns within the parental lines and the 35 ana-

lyzed F1 individuals of the mapping population GF.GA-47-42 x ‘Villard Blanc’ through the
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amplicon sequencing approach and subsequent bioinformatic analysis, the numbers of indi-

viduals harboring each of the alleles was determined and a correlation analysis between alleles

of FTC target genes and the flowering time phenotype was performed for 43 genes. A correla-

tion between alleles and flowering time could be observed for several genes on chr 1, 4, 14, 17,

18, and within unassigned contigs. Correlation values differed depending on whether days,

accumulated temperature or global radiation was used as phenotypic data. As an example Fig

2 shows allele combinations in the parental lines of the population GF.GA-47-42 x ‘Villard

Blanc’ and the p-values of the correlation of alleles unique to one of the lines. Values equal and

below 0.05 were considered to be significant and the lower the p-value the higher is the corre-

lation. In total for 16 FTC target gene alleles a significant correlation with either an early or

late flowering phenotype could be found.

The L2 alleles, inherited from the paternal line ‘Villard Blanc’, of VvSEP4 (SEPALLATA 4),
VvBS2, VvHUA2a, VvRAV1b, and VvGAI1 (chr 1) correlate with late flowering, strengthen the

importance of the FTC QTL on chr1. The E1 alleles of the two genes VvWNK6 (V. vinifera
WITH NO LYSIN KINASE 6) and VvTM6 (V. vinifera TOMATO MADS-BOX 6), both located

on chr 4 and inherited from the early flowering maternal line, were found to strongly correlate

with early flowering. The p-values calculated from the median (Fig 2 is p = 0.007 and values

down to p = 0.003 were observed for single years. Table 3 shows the p-values of correlation for

different sets of phenotypic data related to VvWNK6 and VvTM6. Most of the significant cor-

relations are obvious regardless the year or scale of phenotyping (days after January 1st, accu-

mulated temperature or global radiation). The differences in correlation among years are due

to the seasonal weather conditions of the respective year, which influence both the flowering

time and the length of the flowering period. A significant correlation between the E1 allele of

VvWNK6 and the flowering time phenotype could not be observed in 2016 for neither days

after January 1st, accumulated temperature or global radiation. In 2015, the correlation was

not significant for days after January 1st but, albeit only slightly, for the other two sets of phe-

notypic data. Other genes, such as VvMFT (V. vinifera MOTHER of FT and TFL1) showed sig-

nificant correlation in 2016 but not in 2013.

Compared to the reference sequence, the E1 allele of VvWNK6 (chr 4) was found to harbor

a variation in the terminal exon (SNP at chr4:21997435/ C! T) leading to an amino acid

exchange from threonine to methionine. Fig 3 shows the distribution of allele combinations

for VvWNK6 among individuals of the mapping population. Early flowering is associated with

the E1 allele inherited from the maternal ‘Bacchus’ allele of GF.GA-47-42.

Application of the pipeline for amplicon sequencing in a heterozygous

plant for subsequent marker design

Amplicon sequencing was performed in 35 F1 individuals and the parents of the mapping pop-

ulation. In order to investigate the resulting allele distributions over all 151 F1 individuals of

the mapping population GF.GA-47-42 x ‘Villard Blanc’, STS markers were designed from the

allele sequences that enabled an easy allele-specific genotyping. The information obtained

from amplicon sequencing of the FTC target genes proved usable for both deduction of segre-

gation patterns and marker design for investigating allele distribution over the whole mapping

population. Table 4 gives an overview of the segregation patterns as analyzed for all 151 F1

individuals. From 15 markers 12 showed a segregation pattern matching the segregation pat-

tern that was obtained through allele phasing. The markers GAVBInd_019 and GAVBInd_020

were not designed using the obtained allele sequences of GF.GA-47-42 and ‘Villard Blanc’,

since suitable InDels were not available. Therefore, these markers were designed based on

InDels upstream of the phased regions. Observed product sizes can deviate from the expected
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ones by 1–2 bp due to the limited accuracy of the used fragment analyzing method. Observed

and expected product sizes can deviate (markers GAVBInd_004, GAVBInd_014, and GAV-

BInd_019) and hence segregation patterns since the measuring method cannot reliably resolve

differences in a very low bp range (1–4 bp). See S7 Table for further details.

Expected data were obtained through amplicon sequencing; observed data were gained by

analyzing 151 F1 individuals of the mapping population GF.GA-47-42 x ‘Villard Blanc’ with

Fig 2. Correlation between alleles of FTC target genes and flowering time phenotype. Given are the allele

constitutions of the parental lines for each gene and the allele counts of the amplicon sequenced F1 individuals. The

median of flowering time (calculated from days after January 1st of the years 1999 and 2010–2016) of individuals

carrying the counted is given in brackets. The higher the value of the median, the later the flowering phenotype of the

F1 individuals. Color coded are the p-values for the E alleles and L alleles in the up to 35 F1 individuals. Significant

correlation values are in bold and italic. Genes located in QTL regions are marked in grey. Differences in allele counts

between the years are due to missing data points. “E” alleles are inherited from GF.GA-47-42, while "L" alleles originate

from ‘Villard Blanc’. "N" means that both GF.GA-47-42 and ‘Villard Blanc’ share one or more alleles. "E0": E1 = E2,

"L0": L1 = L2, "N1": E1 = L1, "N2": E2 = L2. "N": L2 = E1 or E2 = L1, "Na": E1 = E2 = L1, "Nb": E1 = E2 = L2. „n.d.”: not

determined. Further explanations are given in S4 Table.

https://doi.org/10.1371/journal.pone.0214703.g002
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STS markers located within the FTC target genes. ab x cd: four alleles/both parents heterozy-

gous, hk x hk: 2 alleles/both parents heterozygous, ef x eg: 3 alleles/both parents heterozygous,

lm x ll: 2 alleles/ mother heterozygous, nn x np: 2 alleles, father heterozygous. x: amplification

failed. See S6 Table for further information.

Using the results of marker segregation across the 151 F1 individuals, a correlation analysis

between alleles and flowering time phenotypes was performed. The correlation results of

marker analysis support those of allele phasing (Table 5). See S8 Table for further details.

Analysis of gene expression kinetics

Variation in expression could be detected in both time courses 2012/2013 and 2013/2014 for

various FTC candidate and target genes when testing for time-specific effects. Between conse-

cutive developmental stages of bud differentiation before dormancy (August 2nd to September

5th, 2013 time series 1, Table 2) differences in expression could be detected for the MADS tran-

scription factor VvTM8 as well as the protein kinase encoding gene VvWNK5. VvTM8 encodes

a MIKC transcription factor whose A. thaliana homologue AtTM8 has been shown to be

involved in the specification of flower organ identity [25].

In a time course of dormant buds (BBCH 0) until after bud burst when leaf formation had

already begun (BBCH 11–13), 58 of the FTC candidate genes were found to show a BBCH or

developmental stage-dependent expression. Several of these genes are squamosa binding pro-

teins, MADS- and MYC transcription factors that are known to influence floral development.

Most of these genes show a variation in gene expression due to an up or down regulation

towards developmental stages during inflorescence maturation. In order to test for expression

Table 3. P-values of the correlation between the E1 allele distribution of VvWNK6 and VvTM6 in relation to dif-

ferent sets of phenotypic data using 35 amplicon sequenced F1 individuals.

VvWNK6 (E1) VvTM6 (E1)

Days after January 1st/ 1999 0.032 0.023

Days after January 1st/ 2009 0.012 0.009

Days after January 1st/ 2010 0.18 0.19

Days after January 1st/ 2011 0.033 0.063

Days after January 1st/ 2012 0.047 0.041

Days after January 1st/ 2013 0.008 0.012

Days after January 1st/ 2014 0.015 0.029

Days after January 1st/ 2015 0.067 0.063

Days after January 1st/ 2016 0.177 0.098

Median for days after January 1st/ 1999–2016 0.012 0.009

Accumulated Temp. above 3˚C/ 2011 0.027 0.109

Accumulated Temp. above 3˚C/ 2012 0.03 0.091

Accumulated Temp. above 3˚C/ 2013 0.004 0.058

Accumulated Temp. above 3˚C/ 2014 0.003 0.016

Accumulated Temp. above 3˚C/ 2015 0.046 0.186

Accumulated Temp. above 3˚C/ 2016 0.177 0.098

Global radiation (KWh/m2)/ 2011 0.027 0.109

Global radiation (KWh/m2)/ 2012 0.03 0.091

Global radiation (KWh/m2)/ 2013 0.004 0.058

Global radiation (KWh/m2)/ 2014 0.003 0.016

Global radiation (KWh/m2)/ 2015 0.046 0.186

Global radiation (KWh/m2)/ 2016 0.177 0.098

https://doi.org/10.1371/journal.pone.0214703.t003
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variation between consecutive developmental stages of bud development before inflorescence

structures become externally visible, inflorescences collected after bud break were excluded

Fig 3. Distribution of allele combinations for VvWNK6 (chr 4) among 35 selected individuals of the mapping

population GF.GA-47-42 x ‘Villard Blanc’. The date of flowering was counted in days from the 1st of January and the

data was subsequently classified according to six stages for flowering time following (1 = very early flowering; 2 = early

flowering; 3 = medium early flowering; 4 = medium late flowering; 5 = late flowering; 6 = very late flowering). For

visualization flowering classes 1 and 2, 3 and 4, and 5 and 6 were merged.

https://doi.org/10.1371/journal.pone.0214703.g003

Table 4. Comparison of the expected and observed allele sizes (bp) and segregation patterns of several FTC target genes.

Gene Marker name

Expected product sizes Expected segregation Observed

product sizes

Observed segregation

GF.GA-

47–42

‘Villard Blanc’ GF.GA-47-42 ‘Villard Blanc’

VvHLH74 GAVBInd_009 147/155 155/155 lmxll 137/146 146/146 lmxll

VvBHLH74 GAVBInd_010 230/233 234/230 hkxhk 231/237 231/237 hkxhk

VvHUA2 GAVBInd_001 452/455 437/456 bbxcd 454/454 441/454 nnxnp

VvCOL10 GAVBInd_004 197/195 197/196 hkxhk 195/197 195/197 hkxhk

VvCOL10 GAVBInd_004 197/195 197/196 efxeg 194/196 195/196 efxeg

VvCOL10 GAVBInd_005 146/115 155/155 lmxll 110/142 110/110 lmxll

VvWNK6 GAVBInd_019 N/A N/A N/A 210/x 217/218 abxcd

VvWNK6 GAVBInd_019 N/A N/A N/A 210/x X lmxll

VvFPA GAVBInd_007 362/353 363/365 efxeg 363/x X lmxll

VvGAMYBc GAVBInd_014 401/422 435/426 abxcd 407/428 432/437 abxcd

VvGAMYBc GAVBInd_014 401/422 435/426 abxcd 457/x X lmxll

VvCOL5 GAVBInd_015 196/199 199/199 lmxll 195/198 198/198 lmxll

VvTOE3 GAVBInd_016 276/275 268/275 efxeg 279/282 272/279 efxeg

VvTOE3 GAVBInd_017 139/144 144/144 lmxll 136/140 140/140 lmxll

VvPRR37b GAVBInd_018 281/286 286/286 lmxll 281/286 286/286 lmxll

VvGAIb GAVBInd_006 231/241 231/236 efxeg 231/245 231/237 efxeg

VvFLKa GAVBInd_012 133/182 182/182 lmxll 128/178 178/178 lmxll

VvFLKa GAVBInd_013 213/217 213/213 abxcd 211/215 211/215 hkxhk

VvFUL2 GAVBInd_020 N/A N/A N/A 443/433 414/444 abxcd

VvSVP2 GAVBInd_008 236/247 248/248 lmxll 238/244 X lmxll

https://doi.org/10.1371/journal.pone.0214703.t004
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from the analysis. Genes with different expression kinetics when the time course was extended

to include visible inflorescences, are those showing a clear variation in gene expression

between buds and inflorescence. In total 67 of such “inflorescence-specific genes” were identi-

fied (S9 Table).

After excluding inflorescences, several genes were found showing an obvious time-depen-

dent expression. They cluster into two groups: genes upregulated in winter during bud dor-

mancy (Fig 4, upper part) and genes upregulated towards inflorescence development (Fig 4,

lower part). Most of these genes encode BZIP-, MADS- or MYC-transcription factors, which

Table 5. P-values of correlation between alleles and the phenotype of flowering time.

Gene Marker

name

Segregation GF.GA-47-42 x ‘Villard Blanc’ p-values of correlation

between alleles and

phenotypes

Allele numbers Median

GF.GA

-47-42

‘Villard Blanc’ GF.GA-

47-42

‘Villard

Blanc’

GF.GA-47-42 ‘Villard Blanc’

VvbHLH49 E1E2 x L1L2 0.438 0.77 13 14 12 15 0.48 0.62 0.56 0.48

GAVBInd_009 lm x ll

(m = E1)

0.32 / 64 67 / / 0.48 0.5 / /

VvHUA2 E1E2 x L1L2 0.076 0.04 14 12 11 15 0.41 0.665 0.41 0.66

GAVBInd_001 nn x np

(p = L1)

/ 0.02 / / 67 65 / / 0.47 0.51

VvCOL10 E1E2 x L1L2 0.018 0.097 12 15 12 15 0.41 0.67 0.48 0.66

GAVBInd_005 lm x ll (m = E2) 0.295 66 68 / / 0.46 0.505 / /

GAVBInd_004 ef x eg (f = E2, g = L2) 0.4 0.39 54 75 68 61 0.48 0.5 0.5 0.5

VvWNK6 E1N2 x L1N2 0.007 0.703 25 10 19 16 0.55 0.725 0.61 0.575

GAVBInd_019 ab x cd 0 0.573 81 67 66 82 0.45 0.54 0.475 0.5

GAVBInd_019 lm x ll 0 / 81 67 / / 0.45 0.54 / /

VvFPA E1E2 x L1L2 0.536 0.257 7 28 20 15 0.55 0.6 0.6 0.55

GAVBInd_007 lm x ll (m = E2) 0.7 / 53 79 / / 0.48 0.5 / /

VvGAMYBc E1E2 x L1L2 0.691 0.68 16 19 27 8 0.57 0.61 0.6 0.625

GAVBInd_014 ab x cd (a = E1, b = E2, c = L1, d L2) 0.45 0.79 70 59 96 33 0.5 0.5 0.5 0.46

VvCOL5 E1E2 x L1L2 0.445 0.567 15 19 19 15 0.66 0.6 0.59 0.6

GAVBInd_015 lm x ll (m = E2) 0.81 / 67 64 / / 0.48 0.5 / /

VvTOE3 E1E2 x L1L2 0.231 0.943 19 15 12 22 0.56 0.61 0.605 0.57

GAVBInd_016 ef x eg (f = E2, g = L2) 0.23 0.85 69 66 68 67 0.5 0.49 0.5 0.5

GAVBInd_017 lm x ll (m = E2) 0.13 / 71 65 / / 0.5 0.48 / /

VvPRR37b E1E2 x L1L2 0.73 0.431 14 14 9 19 0.595 0.61 0.6 0.59

GAVBInd_018 lm x ll (m = E1) 0.88 / 67 66 / / 0.48 0.5 / /

VvGAIb E1E2 x L1L2 0.027 0.059 12 16 13 15 0.665 0.41 0.69 0.46

GAVBInd_006 ef x eg (f = E1, g = L2) 0 0.25 80 55 70 65 0.45 0.58 0.48 0.51

VvFLKa E1E2 x L1L2 0.069 0.392 7 19 15 11 0.67 0.49 0.6 0.55

GAVBInd_012 lm x ll (m = E2) 0.01 / 79 59 / / 0.46 0.56 / /

VvFUL2 E1E2 x L0L0 0.003 / 12 13 / / 0.725 0.41 / /

GAVBInd_020 ab x cd 0 0.93 58 89 67 80 0.575 0.44 0.5 0.49

VvSVP2 E1E2 x L1L2 0.05 0.064 17 17 15 19 0.49 0.6 0.41 0.61

GAVBInd_008 lm x ll (m = E2) 0.86 / 62 66 / / 0.48 0.5 / /

Data from both the allele phasing workflow (first row) and marker analysis (second row) based on days after January 1st on the median of the years 1999 and 2009–2016.

Marker analysis was performed in 151 F1 individuals of the population GF.GA-47-42 x ‘Villard Blanc’, while allele phasing was performed in 35 F1 individuals. Number

of alleles over the analyzed F1 individuals and the median of each, are given in the same order as in column 3. ab x cd: four alleles/both parents heterozygous, ef x eg: 3

alleles/both parents heterozygous, lm x ll: 2 alleles/ mother heterozygous, nn x np: 2 alleles, father heterozygous.

https://doi.org/10.1371/journal.pone.0214703.t005
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regulate other flowering related genes. Downregulation towards bud burst and inflorescence

maturation was found for transcription factor genes involved in circadian rhythm such as

VvGRP2A (Glycine Rich Protein 2A), VvRVE1 (REVEILLE), VvTICb (TIME FOR COFFEE)

and VvELF3 (EARLY FLOWERING3). Moreover, genes coding for transcription factors

involved in gibberellic acid (GA) biosynthesis were found to be upregulated during bud dor-

mancy. Numerous other genes like VvHUA2b (ENHANCER OF AGAMOUS), which is

involved in the repression of floral transition and flower development, were found to be upre-

gulated during bud dormancy.

For most of the genes (Fig 4) an up- or downregulation in expression is observed between

the first and the second time point during bud dormancy. Many genes also show an up- or

downregulation in expression between the third and the fourth time point when swelling buds

are developing.

The gene expression for the amplicon sequenced target genes in buds and inflorescences is

shown in Fig 5. Some genes are not expressed at all, while some are only expressed before dor-

mancy or in inflorescence tissue. However, up- or downregulation in gene expression mainly

occurs when swelling buds develop. Genes involved in floral development, such as VvSEP3
and 4, VvAP1, and VvTM6 show an increased expression in developing inflorescences.

VvTM6 is a MADS-box B-class floral identity gene influencing the development of petals and

stamen [53,54]. In Vitis all three B-class floral homeotic genes (VvPI, VvAP3 and VvTM6) are

highly expressed in inflorescences (S3 Fig).

For three selected time points, bud/inflorescence samples and the corresponding leaf from

the same node were collected and differential gene expression was analyzed between leaves

and the associated bud/inflorescence. Fig 6 shows a heatmap of the FTC candidate genes with

expression differences between leaves and buds/inflorescences. With few exceptions, all genes

with expression differences between leaves and buds or inflorescences are downregulated or

not expressed in leaves.

Discussion

FTC candidate genes

A large number of FTC candidate genes inside and outside of known flowering QTLs in grape-

vine were identified. Although the identification relies mostly on sequence homology to previ-

ously known genes from other plants, the putative functional connection via e.g. Pfam,

literature search or the performed RNA-Seq experiments substantiate the reliability of the pre-

diction. This comprehensive gene list opens the door for investigations on e.g. flowering time

networks in the future. On the one hand, compared to Arabidopsis thaliana there is probably

an overestimation of FTC candidate genes in Vitis. On the other hand the high complexity and

long duration of bud initiation and flower development may require a large number of genes.

Allele phasing of target genes

A workflow for the phasing of amplicon sequenced genes using Illumina short-read sequenc-

ing of a diploid organism was established and successfully applied to separate alleles in regions

with a length of up to 8.3 kb. By analyzing inheritance patterns within a family of parents and

F1 individuals, we could show that the inheritance of alleles of neighboring genes within a

Fig 4. Heatmap of FTC candidate genes showing variations in their expression over consecutive time points of bud

development from dormancy until appearance of inflorescence in grapevine variety GF.GA-47-42. Time series from

December 20th, 2012 to May 3rd, 2013. LFC-threshold: 2 = expression fourfolded, -2 = expression quartered. Shown are rlog

transformed counts.

https://doi.org/10.1371/journal.pone.0214703.g004
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QTL remains largely constant throughout the QTL. Since grapevine has a highly heterozygous

genome and suffers from inbreeding depression, we used a F1 mapping population and fol-

lowed a double pseudo-testcross strategy [55]. Therefore, a lower recombination frequency

Fig 5. Heatmap of gene expression of amplicon sequenced FTC candidate genes in GF.GA-47–42 at different

developmental stages of buds and inflorescences. LFC-threshold: 1 = expression doubled, -1 = expression halved. rlog

transformed counts are shown.

https://doi.org/10.1371/journal.pone.0214703.g005

Fig 6. Heatmap of FTC candidate genes showing expression variations between leaves and their prompt buds/ inflorescences. LFC-threshold:

2 = expression fourfolded, -2 = expression quartered. Shown are rlog transformed counts.

https://doi.org/10.1371/journal.pone.0214703.g006
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was expected compared to typical F2 mapping populations in other plant species. The con-

stancy of the inheritance pattern of alleles of closely neighboring genes indicates the function-

ality and applicability of the established allele phasing method.

For the phasing of alleles, a mapped read or read pair needs to encompass two or more het-

erozygous sequence positions. The phase of the heterozygous sequence positions can be deter-

mined since each read or pair of reads is obtained from a single haplotype. Read lengths after

trimming was distributed between 80 and 300 bp with an average insert size of ~500 bp. When

variants were located farther apart than the maximum length that could be spanned by a read

pair, alleles could not be phased despite the presence of variants. Moreover, the allele fre-

quency, calculated from the read coverage of variants can vary despite being amplified from

the same allele. The amount of reads covering a variant can differ from one variant to the next.

When dealing with extremely biased allele frequencies, this can lead to some variants being

detected while others remain undetected. In such cases allele phasing was unsuccessful. Some

amplicons could hardly be amplified at all. This is likely due to a high diversity at the primer

binding sites between the reference sequence and the plant lines analyzed in this work.

The use of paired-end sequencing is highly advantageous in haplotype phasing as it covers

variants that are spaced at distances longer than the technology’s read length limit. Read length

in high-throughput sequencing is constantly increasing and technologies are evolving rapidly.

With the rise of third generation technologies, capable of producing even longer reads, many

of the difficulties associated with haplotype phasing might soon be alleviated as such data may

permit direct phasing from sequence reads [26].

Correlation analysis

We were able to detect a correlation between alleles of FTC target genes and flowering time for

several QTL regions, which supports the role of these regions in the timing of flowering. Flower-

ing time is highly dependent on the weather conditions of the respective and previous year. There-

fore, correlation values vary between the years, as observed e.g., for VvWNK6 in 2016 (Table 3).

Alleles of FTC target genes within a QTL region on chr 1 were found to rather correlate

with late, while QTL regions on chr 4 and 14 were found to correlate with early flowering.

With one exception, all analyzed F1 individuals carrying alleles correlating with flowering time

from two of the QTL regions on chr 1, 4, and 14 or all three of them were either intermediate-

early, early, or very early flowering. The correlation for the QTL regions on chr 4 and 14 was

more stable than for chr 1 indicating a stronger affect of these QTLs in the timing of flowering.

The investigation of epistatic effects between these QTL regions could contribute to the clarifi-

cation of the genetic factors that influence and control flowering time in grapevine.

Correlation values between alleles of FTC target genes and flowering time phenotypes

could be largely supported by genetic marker analysis. Deviations can be due to the measuring

method that can occasionally lead to deviations of up to a few bp in product size. In order to

distinguish the maximum putative number of alleles at a single locus within a bi-parental F1

population of a diploid organism, the marker needs to be capable of distinguishing between

four different alleles.

Classic high informative marker analysis requires InDels / SSRs that distinguish between

the maximum number of different alleles with polymorphic differences of at least two bp in

size at a specific locus. The usage of blocks of tightly linked polymorphisms and treating each

haplotype of these blocks as a separate allele can produce highly polymorphic markers. In addi-

tion, it also uses SNPs and InDels shorter than two bp to distinguish between the alleles. This

leads to a higher resolution compared to classic marker analysis and the detection of a higher

number of different alleles.
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The correlation of alleles of FTC genes with flowering time phentoypes is based on the

genotypic data on one hand, which is obtained through the allele phasing workflow, from

amplicon sequencing, mapping and variant calling to the final establishment of allele

sequences. On the other hand, the correlation analysis is based on the phenotypic data, which

is also prone to errors. Phenotyping of flowering time was performed on a daily basis through-

out the flowering phase. Differences in the timing of flowering shorter than one day are there-

fore not recorded. Moreover, phenotyping is a subjective process when different people work

on the recording of phenotypic data and hence a possible error source.

As already mentioned, the timing of flowering depends clearly on environmental parame-

ters, especially weather and climatic conditions. These are most probably non-genetic factors

causing the differences in the flowering periods between the respective years. In 2016, for

example, flowering in the population GF.GA-47-42 x ‘Villard Blanc’ started on June 17th being

very late compared to other years (Table 2). However, the flowering period was very short,

ending after only 10 days on June 26th. Global radiation is distributed between ~502 and ~536

KWh/m2 at the beginning of flowering in the analyzed population and between ~548 and

~597 KWh/m2 at the end of it. While flowering occurred very late in 2016 compared to other

years, the amount of global radiation until the first day of the flowering period was less than in

the other years. This shows that the amount of solar radiation before flowering initiation was

small which might have had an impact on the timing of flowering.

In some cases the p-value of correlation is significant although the medians are nearly equal

or equal. This is because the Wilcoxon Rank-Sum test is a rank sum tests and not a median

test. It ranks all of the observations from both groups and then sums the ranks from one of the

groups and compares it with the expected rank sum. Therefore, it is in rare cases for groups

possible to have different rank sums and yet have equal or nearly equal medians.

VvHUA2a of which an amplicon sequenced allele from ‘Villard Blanc’ was found to corre-

late with late flowering is a floral homeotic gene. It’s homologue in A. thaliana, HUA2, regu-

lates the expression of the floral homeotic class-C gene AGAMOUS (AG) and FLC [56]. This

suggests a role of VvHUA2 in the delay of flowering.

An allele of VvGAI1 from late flowering ‘Villard Blanc’ was found to correlate with late

flowering. Mutants of VvGAI1 are insensitive to gibberellic acid and form inflorescences

instead of tendrils. These mutants show a correlation between inflorescence development and

increased VvFL expression, a floral developmental gene [57]. In A. thaliana, GAI acts as a

repressor of LFY and SOC1 and thus represses flowering.

From the amplicon sequenced and early flowering individuals (median data) of the popula-

tion GF.GA-47-42 x ‘Villard Blanc’, 90% were found to carry the VvTM6 E1 allele inherited

from GF.GA-47-42. Only 10% of plants that carry the other maternal allele are early flowering.

VvTM6 is a MADS-box B-class floral identity gene and influences the development of petals

and stamen. In A. thaliana, mutants exhibit a transformation of petals to sepals and stamen to

carpels. B-class floral homeotic genes either belong to the paleoAPETALA3 or to the PISTIL-

LATA (PI) gene lineage, which are paralogous and resulted from a duplication event before

the emergence of angiosperms. The paleoAP3 lineage underwent a further duplication event at

the base of the core eudicots resulting in the two sublineages euAP3 and TM6 (named after the

Tomato MADS-box gene 6) [57]. A TM6 homologue is absent in A. thaliana [53,58,59]. In

grapevine, all three B-class floral homeotic genes were found to be highly expressed in inflores-

cences (Fig 5) but not in leaves (Fig 6). [25] showed that VvTM6 (VvAP3.2) is expressed in

fruits, while the expression of VvAP3 (VvAP3.1) and VvPI is more restricted to flowers. Also,

[53] showed that the expression of VvTM6 is higher in carpels, fruits, and seeds than in petals.

Due to the expression of VvTM6 in carpels and during berry development and ripening, it was

suggested to play an important role in grapevine fruit development [25]. The expression of
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VvTM6 increases towards inflorescence maturation, which is followed by berry formation and

ripening. This is consistent with its role during berry development and ripening.

All early flowering amplicon sequenced individuals of the population GF.GA-47-42 x ‘Vil-

lard Blanc’ were observed to carry the E1 allele of VvWNK6 (Fig 3). In A. thaliana WNK6 has

been shown to be involved in circadian rhythm [60]. WNKs are a subfamily of serine/threo-

nine protein kinases with a lysine residue essential for ATP-binding, which is located in kinase

subdomain I instead of subdomain II as common among all other kinases [61]. It has been sug-

gested that WNK gene family members regulate flowering time in A. thaliana by modulating

the photoperiod pathway. For instance, APRR3, a component of the clock-associated APRR1/

TOC1 quintet is a substrate of WNK1 in A. thaliana. T-DNA knockout mutants of AtWNK1
are delayed in flowering time while T-DNA knockout mutants of AtWNK2, 5, and 8 flower

early [62]. WNK6 transcription is downregulated in AtABI4 mutants, which show an early

flowering phenotype [63]. In A. thaliana, ABI4 negatively regulates flowering through directly

promoting FLC transcription, a negative regulator of flowering [64]. This might indicate that

VvWNK6 is involved in the delay of flowering. VvWNK6 expression was detected in leaves,

buds, and inflorescences of the early flowering GF.GA-47-42. Both alleles E1 and E2 are

expressed at a similar level. However, all individuals of the mapping population carrying the

E1 allele of VvWNK6 flower early. This suggests that either the E1 allele of VvWNK6 itself

might contribute to early flowering or alleles of other nearby-genes inherited together with E1

of VvWNK6. Further analysis should include the investigation of sequence variations leading

to an alteration of the amino acid sequence and the functionality of the protein.

Gene expression kinetics

Many of the analyzed FTC candidate genes show variations in expression pattern in the course

of the developmental cycle, supporting their role in flowering time control. Genes coding for

transcription factors and other proteins involved in inflorescence architecture, floral transition

and flower development are usually upregulated after bud burst, while genes coding for pro-

teins that repress flowering in diverse manners typically show an upregulation during bud dor-

mancy (Fig 5). Among the genes showing downregulation towards bud burst and

inflorescence maturation are transcription factors involved in circadian rhythm such as

VvGRP2A (Glycine Rich Protein 2A), VvRVE1 (REVEILLE1), VvTICb (TIME FOR COFFEE)

and VvELF3 (EARLY FLOWERING3). It is not unexpected to detect different gene expression

kinetics for genes involved in circadian rhythm since sampling was performed at the same

time of the day over the entire time course. However, the period from daybreak until the time

of sampling varies throughout the year and the different seasons.

AtGRP7, the homologue of VvGRP2A in A. thaliana, undergoes circadian oscillations with

peak levels in the evening [65]. RVE is a MYB-like transcription factor that controls auxin lev-

els, promotes free auxin and hence plant growth during the day [66]. TIC and ELF3 are com-

ponents of the circadian clock in A. thaliana. ELF3 is a circadian clock gene that contributes to

photoperiod-dependent flowering in plants [67–69]. Our findings thus suggest a similar

impact of these genes in grapevine.

Moreover, genes coding for transcription factors involved in GA biosynthesis were found

to be upregulated during bud dormancy. GAs are inhibitors of flowering in many fruit species

but their role in grapevine varies with the stage of bud development. The initiation and devel-

opment of lateral meristems is promoted by GAs as well as their development into tendrils,

while inflorescence development is suppressed by GAs. Thus GA is a promoter of flowering at

an early stage but acts as an inhibitor of flowering later on and promotes vegetative growth

[19]. SPY (SPINDLY), whose Vitis homologue VvSPY was found to be upregulated during bud
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dormancy, is a negative regulator of GA response in A. thaliana and functions with GI
(GIGANTEA) in pathways controlling flowering [70]. In Vitis the role of SPY in GA signaling

is still unclear. It could be shown that treatment of grapevine plants at pre-bloom stage with

GA led to rachis elongation and a downregulation of VvSPY in the rachis [71]. In A. thaliana
GA signaling is initiated through its binding to the GA INSENSITIVE DWARF1 (GID1)

receptors. This allows subsequent interaction between GID1 and DELLA proteins (GA

INSENSITIVE [GAI], REPRESSOR OF GAI-3 [RGA], RGA-LIKE1 [RGL1], RGL2, and

RGL3). DELLA proteins are transcriptional repressors and downregulate GA response genes.

In the presence of gibberellin, the stable GID1-GA-DELLA complex is recognized by the

SCFSLY1 complex which ubiquintylates the DELLA proteins and causes their degradation by

the 26S proteasome [72,73]. It has been reported previously that GID1-transcripts are upregu-

lated during bud dormancy in grapevine while transcripts of DELLA are downregulated [74].

Similarly, we found that the GID1B receptor transcript is upregulated during bud dormancy

while the DELLA-protein SLR1-like (SLENDER RICE 1 LIKE) are downregulated. This con-

firms the promoting role of GID1B in plant growth, and the development of lateral meristems

in dormant buds and indicates that SLR1-like is responsive for the mediation of the suppres-

sion of inflorescence development through GA.

In our analyses, numerous other genes involved in the repression of floral transition and

flower development were found to be upregulated during bud dormancy. HUA2-like genes,

which play a role in the repression of floral transition [75], are upregulated during bud dor-

mancy in Vitis. The KNOTTED1-like homeobox gene BP (BREVIPEDICELLUS) was found to

be upregulated towards grapevine bud burst and inflorescence maturation. In A. thaliana BP
controls distal pedicel growth and thus inflorescence architecture [76,77]. ER (ERECTA) and

other KNAT (KNOTTED-LIKE) genes, are involved in inflorescence architecture in A. thaliana
[78,79], were also found to be upregulated towards bud burst, which indicates their function in

inflorescence development. Genes for SQUAMOSA promoter-binding proteins, known to be

involved in flower development [80], were downregulated during bud dormancy while upre-

gulated during flower formation in grapevine. The BEL-like gene (VvBELa and b) and the

Vitis STM orthologue VvSBH1 were also found to be upregulated during bud dormancy. STM

and the A. thaliana homeobox-gene BEL1 build a complex, which maintains the indetermi-

nacy of the inflorescence meristem [81].

MYC transcription factors VvbHLH74 and VvbHLH63 show large variations in gene

expression over time with a peak in expression around March when buds are swelling. CIB1
(cryptochrome-interacting basic-helix-loop-helix), the A. thaliana homologue of VvbHLH63,

plays a role in CRY2 (cryptochrome 2)-dependent regulation of flowering time. Crypto-

chromes (CRY) are blue-light receptors that mediate light response. In yeast and A. thaliana,

CIB1 interacts with CRY2 when blue light is available. It promotes CRY2-dependent floral ini-

tiation together with additional CIB1-related proteins and stimulates FT transcription [82].

Hence, VvbHLH74 and VvbHLH63 might be involved in light dependent floral initiation.

ELF-like genes as well as a CONSTANS-like gene (VvCOL16) and CDF genes (CYCLING
DOF FACTORS) were upregulated during bud dormancy. DOF proteins delay flowering by

repressing CO transcription [83]. ELF3, ELF4, and TOC1 function in the primary, phyto-

chrome-mediated light-input pathway to the circadian oscillator in A. thaliana. TOC1 is neces-

sary for light-induced CCA1 (CIRCADIAN CLOCK ASSOCIATED 1)/ LHY (LATE
ELONGATED HYPOCOTYL) expression [84]. Mutants of elf4 show attenuated expression of

CCA1 and early flowering in non-inductive photoperiods, which is probably caused by ele-

vated amounts of CONSTANS (CO), a gene that promotes floral induction [85]. ELF4 is a flow-

ering pathway gene that may play a key role in signaling processes regulating dormancy

induction in grapevine [86].
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MBD9, whose A. thaliana homologue—AtMBD9 is related to the inhibition of flowering

[87] and suggested to have a role in bud development through an interaction with FLC in A.

thaliana [86], is upregulated during bud dormancy in grapevine. VvSPAR2 (SUPPRESSOR OF
PHYA RELATED2) is upregulated during bud dormancy and downregulated towards inflores-

cence development. Its homologue in A. thaliana represses photomorphogenesis by negatively

regulating the transcription factor HY5 (ELONGATED HYPOCOTYL 5), which promotes

photomorphogenesis [88,89].

Conclusion

Here, we have reported a new workflow for amplicon sequencing including allele phasing in

the highly heterozygous species grapevine. Our genetic association study revealed a significant

correlation between alleles of selected FTC target genes and flowering time phenotypes within

and outside of previously mapped QTL regions for flowering time on chr 1, 4, 14, 17, and 18.

The discovery of a correlation between alleles of FTC target genes and the timing of flowering

for genes within previously defined QTL regions supports the role of these QTLs in the timing

of flowering. The analysis of gene expression kinetics revealed strong changes in expression

pattern for many FTC candidate genes over the consecutive developmental stages. A shift

between an up- or downregulation in expression mostly occurred between dormant and swell-

ing buds, or toward inflorescence maturation when the young inflorescence structures at the

shoots grow out of the buds and become externally visible. These time-dependent expression

profiles underline the role of many FTC candidate genes in the control of flowering time.

Moreover, many FTC candidate genes were found to be expressed in buds and inflorescences

but not in leaves. This tissue specificity further confirms their role in flowering time and floral

development.

The knowledge of genes and loci that influence flowering time and play a role in early flow-

ering may allow the selection of genotypes not carrying these alleles through grapevine breed-

ing programs. To meet the expected change of climate conditions late flowering cultivars

might be better adapted, especially in the present cool climate areas.

For future research, grapevine cultivars are to be analysed for alleles of flowering time con-

trol genes correlating with early or late flowering in order to further investigate the role of

these alleles in the timing of flowering and study epistatic and additive effects between QTL

regions influencing the timing of flowering.
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