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Abstract

Starvation is a common stress in fish. The underlying molecular mechanisms associated

with growth depression caused by feeding restriction and compensatory growth are not well

understood. We investigated the effect of fasting and refeeding on the transcriptome profiles

of brain in juvenile S. hollandi using RNA-seq. A total of 4.73 × 108 raw reads were obtained

from nine brain samples. De novo transcriptome assembly identified 387,085 unigenes with

2.1×109 nucleotides. A total of 936 annotated unigenes showed significantly differential

expression among the control, fasting, and fasting-refeeding groups. The down-regulated

differentially expressed genes (DEGs) during fasting were mainly associated with cell cycle,

DNA replication, and mitosis. The up-regulated DEGs were mainly related to glucose and

lipid metabolism, material transportation, and transcription factors. Most decreased DEGs

during fasting were restored to normal levels after refeeding. Comparing with the control

group, genes associated with protein synthesis, stimulus response, and carbohydrate

metabolism were significantly over-expressed and pro-opio melanocortin (POMC) was

down-regulated during the refeeding period. In conclusion, fish mobilized stored energetic

materials and reduced energy consumption to prolong survival during fasting. After refeed-

ing, the down-regulation of DEGs, e.g., POMC may be associated with compensatory

growth. Up-regulation of DEGs related to ribosomal protein, stimulus response, and carbo-

hydrate metabolism may contribute to eliminate negative effect of starvation on brain. This

study provided the first transcriptome data related with impact of short-time starvation and

refeeding in S. hollandi brains.

Introduction

Starvation is a common stress in fish. Extreme aquatic conditions, such as unsuitable tempera-

ture, hypoxia, and high population density, can affect the feeding behavior of aquatic animals.

The starvation condition is strongly associated with the mobilization of the body’s energy
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reserves, which are mainly carbohydrates, fats, and proteins[1]. During starvation, organisms

usually maintain metabolic homeostasis by changing their enzymatic activities and hormone

levels, and activating various physiological and biochemical adaptive mechanisms[2]. In previ-

ous studies, the impacts of starvation on transcriptome profiles have been investigated in sev-

eral fish species, such as the yellow croaker (Larimichthys crocea)[3], rainbow trout

(Oncorhynchus mykiss)[4], and channel catfish (Ictalurus punctatus)[5]; however, these reports

mainly focused on liver and muscle tissues[3,4].

Compensatory growth is defined as the physiological process of accelerated growth when

food intake is restored following a period of food deprivation[6]. The phenomenon is ubiqui-

tous in teleosts such as European minnow (Phoxinus phoxinus) [7], gibel carp (Carassius aura-
tus gibelio)[8], barramundi (Lates calcarifer)[9], channel catfish (Ictalurus punctatus)[10],

tongue sole (Cynoglossus semilaevis)[11], and Atlantic salmon (Salmo salar)[12]. Information

regarding the biological and molecular mechanisms of modulating the exaggerated growth

phenotype remains limited. Recently, studies on fine flounder (Paralichthys adspersus)[13],

grass carp (Ctenopharyngodon idella)[14], and rainbow trout[4], have revealed changes in the

transcriptome profile of muscle during the fasting and refeeding period. He et al. described the

global gene expression patterns of liver following compensatory growth in grass carp and iden-

tified several genes potentially associated with compensatory growth [14].

Spinibarbus hollandi, an endemic Cyprinidae species in southeastern China, is mainly dis-

tributed in the provinces of Anhui, Hubei, Hunan, Fujian, Guangdong, and Guangxi. S. hol-
landi is an easy-to-raise omnivore, and has already attracted increasing attention owing to its

high nutritional and medicinal value. However, the low growth rate has severely limited its

farming[15]. In recent years, researchers attempted to enhance the growth rate of S. hollandi
by improving the rearing condition and via cross-breeding. We have developed molecular

markers associated with growth traits in S. hollandi[15] and recently observed the compensa-

tory growth process in this species. Currently, studies on the effects of fasting on the growth

rate and the compensatory growth of S. hollandi are rare. The underlying molecular mecha-

nisms associated with growth depression caused by feeding restriction and compensatory

growth are not well understood.

The next-generation sequencing technology has revolutionized the field of genomics.

RNA-Seq can be used to analyze the transcriptome of non-model species without requiring

their genomic information [16–20]. Brain plays an important role in maintaining energy bal-

ance during the fasting and refeeding period. The aim of this study was to investigate the

changes of transcriptome profile of S. hollandi brain in response to fasting and refeeding. Our

study provides an important dataset for understanding the molecular mechanism of starvation

response and compensatory growth in fish.

Materials and methods

Fasting treatment and sampling

S. hollandi fish at about one-month-old were obtained from Shaoguan Fisheries Research

Institute, Guangdong Province, China. The fish were sexually immature and had an approxi-

mate weight of 3–5 cm. 210 fish were equally distributed to seven aquariums containing 100 L

of continuous flow, filtered water with aeration. The fish were housed at 26˚C with a 14:10 h

light/dark photoperiod. The fish were fed with a commercial pellet containing 35% crude pro-

tein, 4% crude fat, 14% crude fiber, 14% crude ashes, and 12% humidity (Qicai Pet Products

Co., Ltd., Guangzhou, China), twice daily to apparent satiation at 7:00 am and 5:00 pm, for a

2-week acclimation. Of the seven aquariums, four were served as control groups, one was used

as the fasting group and the remaining two aquariums were used as the refeeding groups.
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Fish in the control groups were fed to apparent satiation everyday as mentioned above. The

fish were sequentially sampled on day 0 (C0), day 7 (C7), day 14 (C14), and day 40 (C40). Fish

in the fasting group were deprived of feed for 7 days, and then sampled (F7). The fish in the

refeeding groups were fed twice per day to satiation after 7 days of fasting. The fish were sam-

pled after 7 (R7) and 33 days refeeding (R33). All seven groups were then anesthetized by an

overdose (100 ppm) of eugenol (Sangon Biotech (Shanghai) Co., Ltd., Shanghai, China). The

body weights of each group were measured prior to sampling (n = 8). Brain tissues were rap-

idly isolated, immediately frozen in liquid nitrogen, and stored at -80˚C.

RNA isolation

Total RNA of brain tissues was extracted using RNAiso reagents (Takara Biomedical Technol-

ogy Co., Ltd., Dalian, China), following the manufacturer’s instructions. The quantity and

quality of RNA samples were determined using Epoch Microplate Spectrophotometer (BioTek

Instruments, Inc., USA), Agilent 2100 instruments and electrophoresis using 1% agarose gel.

RNA samples with 28S/18S ratio >1.0, optical density (OD) 260/280 values>1.8 and<2.0,

and RNA yield> 5 μg were used for subsequent transcriptome analysis.

cDNA library preparation and sequencing

RNA samples of the C7, F7, and R7 groups were used for RNA-seq analysis. To minimize the

variation among individuals, equal quantities of RNA from 5 samples belonging to the same

group were pooled, and 3 replicates of mixed RNA pools were prepared for each group. A total

of 9 RNA pools were used for cDNA library preparation. mRNA was purified from total RNA

using oligo (dT) magnetic beads and fragmented using fragmentation buffer. First-strand

cDNA was synthesized using SuperScript II Reverse Transcriptase (Applied Biosystems Ltd.,

USA) followed by second strand generation using the components dNTPs, buffer, DNA poly-

merase I, and RNase H. After purification, adapters were ligated to the cDNA, and then

enriched using PCR. The nine cDNA libraries were sequenced on an Illumina-Hiseq 2000

platform using the 150 bp paired-end approach.

Data processing and analysis

Clean reads were generated by removing low-quality reads reads containing adapter and ploy-

N from raw data. Clean reads were de novo assembled using Trinity software version 2.5.1

[21]. The assembled transcripts were identified using Blast+ (version: ncbi-blast-2.2.28+)

against NCBI non-redundant (Nr, e-value<1e-5), Clusters of Orthologous Groups of proteins

(COG, e-value <1e-3), Kyoto Encyclopedia of Genes and Genomes (KEGG, e-value <1e-5),

and Swiss-Prot databases (e-value <1e-5). Gene ontology (GO) annotation was performed

using Blast2GO with an e-value threshold of 1e-6.

Total number of mapped reads for each transcript was determined and normalized, to cal-

culate the expected number of Fragment Per Kilobase of transcript sequence per million base

pairs sequenced (FPKM) by using RSEM V1.2.15 [22]. Differential expression analyses of

three groups (C7, F7, and R7) were performed using DESeq R [23]. The adjusted p-value (p-
adj) with a cut-off of 0.05 was used to identify significant differentially expressed genes

(DEGs). Pathway enrichments of DEGs were analyzed using the KEGG database.

RNA-seq validation by quantitative real-time PCR analysis

Six DEGs (CDC6, CDC20, MCM2, DHCR7, FABP7, HSP70) belonging to different functional

classification were selected and analyzed using the software FasParser [24] to identify gene

Effect of fasting and subsequent refeeding on the transcriptional profiles of brain in S. hollandi

PLOS ONE | https://doi.org/10.1371/journal.pone.0214589 March 28, 2019 3 / 17

https://doi.org/10.1371/journal.pone.0214589


expression changes in seven groups (C0, C7, C14, C40, F7, R7, and R33) through quantitative

real-time PCR (qRT-PCR). A total of 10 DEGs including the above six genes, and TFRC1,

TUBB5, MCH1, and ACSBG2, were used to verify RNA-seq results. It was performed by

detecting expression changes of these DEGs during fasting (C7 vs. F7) and refeeding (C7 vs.

R7) using qRT-PCR. Three biological replicates were used for each RNA sample and the beta-

actin gene was used as an internal control. Primers used for qRT-PCR analysis are shown in S1

Table. The qRT-PCR analysis was performed using ABI 7000 platform with 20 μL reactions

containing the following components: 100 ng of cDNA, 10 μL Power SYBR Green PCR Master

Mix (Vazyme Biotech, Nanjing, China), 0.3 μL of each primer (10 μmol/L), and 7.4 μL double-

distilled water. The reaction procedure followed by 95˚C for 30 s, 40 cycles at 95˚C for 10s and

60˚C for 30s. After amplification, a melting curve was obtained by default processes in

ABI7000. All samples were analyzed in triplicate, and fold changes were calculated using the

comparative Ct method (2−ΔΔCt method) [25]. All data are provided in terms of relative

mRNA expression as mean ± S.E. (n = 3).

Results

Changes of body weights during fasting and refeeding periods

The body weights of fish in the control groups (C7, C14, and C40) and the test groups (F7, R7,

and R33) were measured. The growth curves for these groups were shown in Fig 1. At the end

of 7-day fasting period, the body weight of C7 and F7 were 1.57 g and 1.16 g, respectively.

There was a significantly difference in body weights between groups (p< 0.05). After 7-day

refeeding, the body weight of C14 and R7 were 1.94 g and 1.63 g. After 40 days, the body

weights for C40 and R33 was 3.34g and 3.28 g, respectively. However, no significant difference

between groups was detected at the same time points.

RNA-seq data analysis

Through high-throughput paired-end sequencing, 4.93 × 108 raw reads (150 bp) were yielded

from nine brain samples. After removing low-quality sequences, 4.73 × 108 clean reads with

71.01 Gb were generated. The Q20 and Q30 of all samples were above 96.27% and 90.97%,

respectively. The sequence data were deposited in the NCBI SRA database, under the accession

number, SRP156354.

After de novo assembly, 864,488 transcripts (ranging from 201 to 23,693 bp) were gener-

ated. The longest transcript of a gene was defined as a unigene for further analysis. A total of

387,085 unigenes with 2.1×109 nucleotides were obtained, with an average length of 568 bp.

The N50 and N90 were 752 and 254 bp, respectively.

A total of 349,336 (90.24%) unigenes could be annotated in at least one of the following

database: Nr, Nt, Pfam, KOG, Swiss-Prot, KEGG, and GO. A total of 10,438 (6.65%) unigenes

were annotated in all these databases. Among of all unigenes, 76,988 (19.88%) unigenes were

matched in the Nr database. Of which, nearly 58.6% could be annotated with sequences from

Danio rerio, followed by those from Astyanax mexicanus (5.5%), Clupea harengus (2.8%), Mus
musculus (2.4%), and Oncorhynchus mykiss (2.3%).

Functional prediction and classification of all unigenes were performed using the GO data-

base. A total of 71,164 unigenes were classified into 56 GO terms, including 10 molecular func-

tion terms, 20 cellular component terms, and 26 biological process terms. Cellular process

(39,913), binding (37,484), single-organism process (32,048), metabolic process (31,836), and

cell (24,674), were the five most abundant functional terms at the second GO level (S1 Fig).

Furthermore, all unigenes were aligned to COG database for phylogenetic classification. In

total, 22,886 unigenes were divided into 26 functional categories (S2 Fig). The largest category
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was signal transduction mechanisms with 4,653 unigenes followed by general function predic-

tion (3,511), posttranslational modification, protein turnover, chaperones (2,283), intracellular

trafficking, secretion, and vesicular transport (1,725).

To interpret the biological pathways, we annotated all assembled unigenes in the KEGG

database, and 39,265 unigenes were matched in level 2 of the KEGG pathway. Signal transduc-

tion (6744), endocrine system (3302), cellular community (2976), immune system (2643), and

nervous system (2432) were the five most significant matched catalogs in the KEGG pathway

(S2 Table).

Fig 1. Growth curves of Spinibarbus hollandi under continuous feeding and fasting-refeeding. Asterisk indicated significant difference between two groups

(p< 0.05); blue line represented the growth curve for the continuous feeding groups; red line indicated the growth curve for the fasting-refeeding groups.

https://doi.org/10.1371/journal.pone.0214589.g001
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Identification of DEGs between control and fasting group

A total of 936 annotated unigenes showed significantly differential expression among the C7,

F7, and R7 groups. Of the DEGs, 464 were significantly expressed between C7 and F7 (fasting

period), 491 were significantly expressed between F7 and R7 (refeeding period), and 230 were

significantly expressed between C7 and R7.

After fasting, of the 464 DEGs, 169 and 295 genes were up-regulated and down-regulated,

respectively. Most of the genes associated with cell division were significantly down-regulated

(Table 1). These genes were related to various key proteins involved in the cell cycle (CCNA2,

CDC20, CDC25A, CDC6, CDK1, CDK2, CHEK2, E2F3, PLK1, and PTTG1), DNA replication

(MCM2,MCM3,MCM4,MCM5-B,MCM7-A, PCNA) and mitosis (ESPL1,MAD2L1,

NCAPD2, NCAPG,MAD2L1, SMC2, and SMC4).

Except the above catalogs, KEGG pathway analysis identified that the down-regulated

genes were also enriched in other pathways, such as steroid biosynthesis, pathogenic Escheri-
chia coli infection, phagosome, gap junction, and sesquiterpenoid and triterpenoid backbone

biosynthesis (Fig 2).

The up-regulated DEGs were annotated and analyzed (S3 Table). We observed several up-

regulated DEGs involved in regulating glucose and lipid metabolism (PDK4, ADIPOR1,

ARRDC3, PMM1, ZBTB16, and BBOX 1), material transportation (SLC43A2, SLC16A3,

SLC19A3), atrophy (FBXO32), protein synthesis (EEF2K, PRKCA), and autophagy (GABAR-
APL1, TP53INP2) (Table 2).

Identification of DEGs between fasting and refeeding group

After 7-day refeeding, of the 491 DEGs, 374 and 117 genes were up-regulated and down-regu-

lated, respectively. The up-regulated DEGs were remarkably enriched in antigen processing and

presentation, cell cycle, steroid biosynthesis, protein processing in endoplasmic reticulum, DNA

replication, mitosis, pathogenic E. coli infection, and terpenoid backbone biosynthesis (Fig 3).

The down-regulated DEGs were identified and annotated (S4 Table). These genes included

some of the genes up-regulated during the fasting period, such as FBXO32, EEF2K, PDK4,

ZNF778, ZBTB16, SLC43A2, SLC19A3, SLC16A3, PMM1, and GABARAPL1. The ATP-bind-

ing cassette transporters (ABCA1, ABCC5), IGFBP1, IRS2, JARID2, ACACB, CHKA, PDK2,

PPARA were also down-regulated.

Identification of DEGs between control and refeeding group

DEGs between the control and refeeding group were identified and annotated (S5 Table).

DEGs encoding ribosomal protein (RPS11, RPS12, RPS13, RPS15, RPLP0, RPLP2, RPL10A,

RPL12, RPL13, and RPL13A), the heat shock protein (HSP) family (HSP70,HSC71,HSC71,

HSPA8,HSP90A1, andHSP90AA1) and enzymes associated with glycolysis and gluconeogene-

sis (LDHB, TPI1, GAPDH, PGAM1, LDHA, PGK1, ALDOA, GPI) were all up-regulated

(Table 3). The expression ofMT-ND5,MT-CO1, ITM2A, ACTG1, and IL32 were also signifi-

cantly increased. Several DEGs associated with the electron transport chain (MT-CO3,

MT-ND3,MT-ND6) were down-regulated, and the expression of GTF2IRD2, JARID2, JAR-
ID2B, POMCA, STMN2, and UCHL1 were also significantly decreased.

qRT-PCR analysis of key genes

To investigate the expression profiles of key DEGs under the continuous feeding condition and

fasting-refeeding condition, genes associated with cell cycle (CDC6 and CDC20), DNA replica-

tion (MCM2), steroid biosynthesis (DHCR7), fat metabolism (FABP7), and stimulus response
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(HSP70) were analyzed using qRT-PCR. All of these genes (CDC6, CDC20,MCM2, DHCR7,

FABP7, andHSP70) were significantly down-regulated after 7-day fasting. CDC20 andHSP70
were sharply increased and higher than the control group after 7-day refeeding. On day 33 of

refeeding,HSP70 remained significantly higher in the refeeding group than the control group.

CDC20, however, was restored to normal level, and other genes were also restored and stable

after refeeding. All genes had stable expressions under the continuous feeding condition (Fig 4).

Confirmation of DEGs by qRT-PCR

To confirm the RNA-Seq results, 10 DEGs in different pathways were selected for qRT-PCR ver-

ification. Expression changes of these genes at fasting and refeeding were analyzed. The changes

in gene expression obtained from qRT-PCR were consistent with the RNA-Seq under fasting

and refeeding conditions, with R2 values of 0.7315 and 0.8251 (Fig 5), respectively. The results of

the qRT-PCR analyses confirmed the reliability and accuracy of the data obtained by RNA-seq.

Discussion

1. Changes in transcriptome profile of fish brain after 7-day fasting

The present study used RNA-Seq to investigate the impact of fasting and refeeding on tran-

scriptome profiles of brain in S. hollandi. The global gene expression pattern of fish brain

Table 1. Down-regulated DEGs involved in cell division after 7-day fasting.

Gene name Gene ID Gene description log2FC padj
CCNA2 TRINITY_DN98393_c2_g1 Cyclin-A2 1.235 1.7884E-02

CDC20 TRINITY_DN101219_c0_g1 Cell division cycle protein 20 homolog 1.2824 2.6243E-06

CDC25A TRINITY_DN97504_c0_g1 M-phase inducer phosphatase 1 1.3734 1.1450E-05

CDC6 TRINITY_DN100724_c0_g3 Cell division control protein 6 homolog 1.3301 1.4772E-02

CDK1 TRINITY_DN90363_c1_g2 Cyclin-dependent kinase 1 1.2218 7.9794E-05

CDK2 TRINITY_DN73824_c1_g1 Cyclin-dependent kinase 2 1.1128 1.4598E-02

CHEK2 TRINITY_DN99705_c1_g2 Serine/threonine-protein kinase Chk2 1.4801 2.7848E-02

E2F3 TRINITY_DN109456_c1_g1 Transcription factor E2F3 1.3032 3.6578E-03

ESPL1 TRINITY_DN110892_c9_g2 Separin 1.5113 1.0703E-02

MAD2L1 TRINITY_DN84178_c0_g1 Mitotic spindle assembly checkpoint protein MAD2A 1.0504 4.9257E-02

MCM2 TRINITY_DN107178_c1_g1 DNA replication licensing factor mcm2 1.6036 5.2371E-15

MCM2 TRINITY_DN107178_c1_g4 DNA replication licensing factor mcm2 1.7659 7.7048E-03

MCM3 TRINITY_DN86555_c1_g1 DNA replication licensing factor MCM3 1.3235 6.8196E-08

MCM4 TRINITY_DN108416_c1_g1 DNA replication licensing factor mcm4 1.4637 5.6243E-09

MCM4 TRINITY_DN108416_c1_g2 DNA replication licensing factor mcm4 1.5125 3.2801E-06

MCM5-B TRINITY_DN108607_c2_g1 DNA replication licensing factor mcm5-B 1.6463 6.7690E-08

MCM7-A TRINITY_DN94788_c0_g1 DNA replication licensing factor mcm7-A 0.86554 2.6866E-05

NCAPD2 TRINITY_DN109869_c3_g2 Condensin complex subunit 1 0.9826 1.5797E-03

NCAPG TRINITY_DN107734_c1_g2 Condensin complex subunit 3 1.6892 5.3557E-09

NCAPG TRINITY_DN107734_c1_g3 Condensin complex subunit 3 1.368 9.6760E-03

PCNA TRINITY_DN97153_c1_g2 Proliferating cell nuclear antigen 0.85759 4.0344E-05

PLK1 TRINITY_DN101420_c0_g1 Serine/threonine-protein kinase PLK1 1.5956 1.9129E-03

PLK1 TRINITY_DN101420_c0_g3 Serine/threonine-protein kinase PLK1 1.3167 5.6127E-05

PTTG1 TRINITY_DN85037_c0_g1 Securin 1.1932 1.7091E-02

SMC2 TRINITY_DN107599_c0_g1 Structural maintenance of chromosomes protein 2 1.4581 5.9764E-11

SMC4 TRINITY_DN108206_c1_g1 Structural maintenance of chromosomes protein 4 0.90865 8.2643E-05

https://doi.org/10.1371/journal.pone.0214589.t001
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under continuous feeding condition, fasting condition, and refeeding condition were dis-

played. After 7-day fasting, 295 down-regulated and 169 up-regulated genes were identified in

the brain.

Fig 2. Classification of down-regulated DEGs during fasting according to KEGG database.

https://doi.org/10.1371/journal.pone.0214589.g002

Table 2. Up-regulated DEGs after 7-day fasting in brain.

Gene name Gene ID Gene description log2FC

PDK4 TRINITY_DN95752_c2_g2 pyruvate dehydrogenase kinase isoenzyme 4 1.8265

ADIPOR1 TRINITY_DN92796_c0_g1 Adiponectin receptor protein 1 0.7845

ARRDC3 TRINITY_DN107064_c1_g2 Arrestin domain-containing protein 3 0.84685

PMM1 TRINITY_DN101868_c1_g2 Phosphomannomutase 1 1.0098

ZBTB16 TRINITY_DN106696_c2_g1 Zinc finger and BTB domain-containing protein 16 0.76865

SLC16A3 TRINITY_DN107827_c3_g1 Monocarboxylate transporter 4 0.79206

SLC19A3 TRINITY_DN89387_c3_g3 Thiamine transporter 2 0.94927

PDE5A TRINITY_DN95368_c1_g1 cGMP-specific 3’,5’-cyclic phosphodiesterase 0.90502

FBXO32 TRINITY_DN93305_c1_g1 F-box only protein 32 1.2457

EEF2K TRINITY_DN106107_c1_g1 Eukaryotic elongation factor 2 kinase 1.1637

PRKCA TRINITY_DN107660_c5_g2 Protein kinase C alpha type 0.57357

GABARAPL1 TRINITY_DN75369_c2_g1 Gamma-aminobutyric acid receptor-associated protein-like 1 0.86148

https://doi.org/10.1371/journal.pone.0214589.t002
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The down-regulated DEGs were mainly enriched in the pathway of cell cycle, DNA replica-

tion, mitosis, steroid biosynthesis, immunity, gap junction, and sesquiterpenoid and triterpe-

noid backbone biosynthesis. Cyclins are important factors in the control of cell cycle, and can

be activated by cyclin-dependent kinase enzymes [26]. Cyclin A2 (CCNA2), Cyclin-dependent

kinase 1 (CDK1), and Cyclin-dependent kinase 2 (CDK2) were down-regulated during fasting.

CHEK2, E2F3, and ESPL1 play crucial roles in the control of cell cycle[27–29]. CDC20 is essen-

tial for the regulation of cell division; however, its most important function is to promote chro-

matid separation [30]. CDC6 is crucial to the maintenance of checkpoint mechanisms in the

cell cycle and the loading of minichromosome maintenance (MCM) proteins onto DNA [31].

MCM, a DNA helicase composed of six subunits, is essential for genomic DNA replication.

During fasting,MCM2,MCM3,MCM4,MCM5-B, andMCM7-A were all down-regulated.

Mitosis is a part of the cell cycle wherein replicated sister chromatids are separated into two

chromosomes. Several genes related to mitosis (NCAPD2, NCAPG, PTTG1, SMC2, and SMC4)

were down-regulated. NCAPD2, NCAPG, SMC2, and SMC4 were involved in chromosome

condensation [32,33]. Securin, encoded by PTTG1, is a protein involved in the control of the

metaphase-anaphase transition[34]. It has been widely reported that cell proliferation can be

Fig 3. Classification of up-regulated DEGs after 7-day refeeding according to KEGG database.

https://doi.org/10.1371/journal.pone.0214589.g003
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Table 3. Up-regulated genes in the refeeding group comparing with the control group.

Gene name Gene ID Gene description log2FC

Ribosomal protein

RPSA TRINITY_DN88004_c0_g3 40S ribosomal protein SA 4.535942951

RPS9 TRINITY_DN94296_c1_g2 40S ribosomal protein S9 4.18762245

RPS8 TRINITY_DN69062_c0_g1 40S ribosomal protein S8 2.33022993

RPS7 TRINITY_DN87535_c1_g2 40S ribosomal protein S7 5.265127258

RPS5 TRINITY_DN80306_c3_g4 40S ribosomal protein S5 3.929266576

RPS3A TRINITY_DN77584_c1_g3 40S ribosomal protein S3a 4.032269037

RPS3 TRINITY_DN94897_c1_g6 40S ribosomal protein S3 4.308172588

RPS3 TRINITY_DN94897_c1_g5 40S ribosomal protein S3 3.255821893

RPS25 TRINITY_DN98335_c1_g1 40S ribosomal protein S25 4.757039305

RPS24 TRINITY_DN75798_c3_g1 40S ribosomal protein S24 2.163325301

RPS21 TRINITY_DN69959_c0_g2 40S ribosomal protein S21 3.569696459

RPS20 TRINITY_DN96702_c4_g9 40S ribosomal protein S20 3.858889849

RPS2 TRINITY_DN82419_c5_g1 40S ribosomal protein S2 6.7053945

RPS2 TRINITY_DN82419_c5_g2 40S ribosomal protein S2 3.589301509

RPS18 TRINITY_DN90356_c0_g5 40S ribosomal protein S18 5.417252941

RPS16 TRINITY_DN49145_c0_g2 40S ribosomal protein S16 4.748258981

RPS15A TRINITY_DN102334_c0_g1 40S ribosomal protein S15a 3.784354695

RPS15 TRINITY_DN80664_c0_g4 40S ribosomal protein S15 4.829265745

RPS13 TRINITY_DN72902_c0_g2 40S ribosomal protein S13 3.677167149

RPS12 TRINITY_DN79746_c3_g1 40S ribosomal protein S12 4.387961359

RPS11 TRINITY_DN99507_c12_g4 40S ribosomal protein S11 4.506353942

RPLP2 TRINITY_DN102307_c1_g5 60S acidic ribosomal protein P2 3.712851556

RPLP0 TRINITY_DN81984_c0_g1 60S acidic ribosomal protein P0 1.534808896

RPL9 TRINITY_DN71792_c0_g2 60S ribosomal protein L9 3.867069267

RPL8 TRINITY_DN82367_c6_g1 60S ribosomal protein L8 6.943147623

RPL7 TRINITY_DN85697_c1_g1 60S ribosomal protein L7 4.733797505

RPL6 TRINITY_DN50400_c0_g1 60S ribosomal protein L6 4.861227838

RPL4 TRINITY_DN68389_c0_g1 60S ribosomal protein L4 5.294078581

RPL39 TRINITY_DN59795_c0_g1 60S ribosomal protein L39 4.060313367

RPL38 TRINITY_DN87593_c1_g5 60S ribosomal protein L38 3.262147471

RPL36 TRINITY_DN54848_c0_g2 60S ribosomal protein L36 3.633289825

RPL35 TRINITY_DN85158_c0_g1 60S ribosomal protein L35 4.190676949

RPL32-PS TRINITY_DN89995_c3_g4 60S ribosomal protein L32 3.419806477

RPL31 TRINITY_DN65558_c0_g1 60S ribosomal protein L31 3.867236433

RPL3 TRINITY_DN93473_c1_g3 60S ribosomal protein L3 5.685872966

RPL28 TRINITY_DN8069_c0_g1 60S ribosomal protein L28 4.38506942

RPL27A TRINITY_DN68249_c0_g1 60S ribosomal protein L27a 4.642412735

RPL26 TRINITY_DN92477_c0_g2 60S ribosomal protein L26 4.480991296

RPL18A TRINITY_DN75517_c3_g5 60S ribosomal protein L18a 6.229154361

RPL18 TRINITY_DN65120_c0_g1 60S ribosomal protein L18 4.311837585

RPL17 TRINITY_DN64100_c0_g1 60S ribosomal protein L17 3.933855363

RPL15 TRINITY_DN76924_c1_g5 60S ribosomal protein L15 2.389800649

RPL13A TRINITY_DN72454_c1_g2 60S ribosomal protein L13a 5.651412321

RPL13 TRINITY_DN97764_c3_g1 60S ribosomal protein L13 3.503720206

RPL12 TRINITY_DN83096_c3_g3 60S ribosomal protein L12 5.010585117

RPL10A TRINITY_DN85223_c3_g1 60S ribosomal protein L10a 3.896006318

(Continued)
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Table 3. (Continued)

Gene name Gene ID Gene description log2FC

Heat shock protein family

HSPA8 TRINITY_DN100126_c1_g2 Heat shock cognate 71 kDa protein 0.974477412

HSP90AA1 TRINITY_DN89892_c3_g3 Heat shock protein HSP 90-alpha 0.971776669

HSP90A1 TRINITY_DN109438_c3_g6 Heat shock protein HSP 90-alpha 1 0.842457828

HSP90A1 TRINITY_DN89892_c3_g1 Heat shock protein HSP 90-alpha 1 0.799479292

HSP70 TRINITY_DN111407_c8_g7 Heat shock 70 kDa protein 1.041022237

HSP70 TRINITY_DN111407_c8_g5 Heat shock 70 kDa protein 1 1.012967973

HSC71 TRINITY_DN84773_c1_g3 Heat shock cognate 70 kDa protein 0.816312679

HSC71 TRINITY_DN90379_c0_g3 Heat shock cognate 70 kDa protein 0.742926524

DNAJA4 TRINITY_DN98506_c3_g1 DnaJ homolog subfamily A member 4 1.352175205

glycolysis and gluconeogenesis

ALDOA TRINITY_DN93020_c1_g10 Fructose-bisphosphate aldolase A 3.825625389

GAPDH TRINITY_DN73283_c0_g1 Glyceraldehyde-3-phosphate dehydrogenase 2.767387832

GPI TRINITY_DN96702_c4_g7 Glucose-6-phosphate isomerase 4.875604882

LDHA TRINITY_DN84691_c6_g1 L-lactate dehydrogenase A chain 7.697424007

LDHB TRINITY_DN21161_c0_g1 L-lactate dehydrogenase B chain 3.711726558

PGAM1 TRINITY_DN79644_c1_g1 Phosphoglycerate mutase 1 6.856235293

PGK1 TRINITY_DN85707_c4_g2 Phosphoglycerate kinase 1 4.479693518

ENO1 TRINITY_DN76924_c1_g6 Alpha-enolase 7.645409467

TPI1 TRINITY_DN70056_c0_g3 Triosephosphate isomerase 3.876363706

https://doi.org/10.1371/journal.pone.0214589.t003

Fig 4. Analysis of the expression profiles of key genes using qRT-PCR. Asterisk indicates significant difference (p< 0.05), a~f represent the expression

profiles of CDC6, CDC20C,MCM2, DHCR7, FABP7, andHSP70, respectively.

https://doi.org/10.1371/journal.pone.0214589.g004
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inhibited by starvation in mammal and fish [2,4]. The down-regulation of DEGs associated

with steroid biosynthesis, immunity, and other functions may reduce energy expenditure and

prolong the survival of S. hollandi.
Several genes associated with regulating glucose and lipid metabolism (PDK4, ADIPOR1,

ARRDC3, PMM1, and BBOX1) were markedly up-regulated. PDK4 decreases glucose utili-

zation and increases fat metabolism through inhibiting pyruvate dehydrogenase. This plays

an important role in regulating the shift in fuel economy to prolonged fasting and starvation

[35]. ADIPOR1 is essential in the regulation of normal glucose and fat homeostasis, and for

maintaining normal body weight during the fasting period[36]. ARRDC3 can decrease

energy expenditure through decrease in the thermogenesis of adipose tissues [37] and

PMM1 has a phosphoglucomutase activity, which converts glucose-1-P into glucose-6-P

[38]. BBOX1 is an enzyme involved in the biosynthesis of L-carnitine, a key molecule in

fatty acid metabolism [39]. ZBTB16, a transcriptional repressor, plays a key role in various

biological processes such as adipogenesis, regulation of lipid levels, and insulin sensitivity

[40]. Maintaining metabolic homeostasis is essential for the survival of fish during fasting,

and similar results have been reported in the rainbow trout, yellow croaker, and grass crap

[3,14,41].

Three nutrition transport genes (SLC43A2, SLC16A3, and SLC19A3) were up-regulated.

These trans-membrane proteins are substrate-specific and their increased expression may

aid in the mobilization of nutrients. Several genes associated with ketone body metabolism

(SLC16A3 and PDK4) were up-regulated, and brain energy metabolism usually changes

toward oxidation of ketone bodies during starvation [42]. Atrophy and autophagy can be

induced by starvation, and protein synthesis can be inhibited. EEF2K can inhibit the

eukaryotic elongation factor 2 (EEF2), an essential factor for protein synthesis. FBXO32 is

associated with muscle atrophy during the fasting period [43] and plays a similar function

in brain. GABARAPL1 and TP53INP2 are essential genes for autophagosome maturation

[44,45]. These DGEs can assist in alleviating starvation stress in fish. The change of tran-

scriptome profiles associated metabolism and mobilization of stored energy were similar to

the liver tissues [3].

Fig 5. Correlation between results of RNA-seq and qRT-PCR. a and b represent correlations between control and fasting groups, and between control and

refeeding groups, respectively. X-axis numbers represent the log2 (fold change) values from RNA-seq results. Y-axis numbers represent the log2 (fold change)

values from qRT-PCR results.

https://doi.org/10.1371/journal.pone.0214589.g005
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2. Changes in transcriptome profiles of fish brain after refeeding

After refeeding, most DEGs down-regulated after fasting were restored to normal levels. Many

of the genes associated with immunity and protein synthesis were up-regulated, and are

known to play important roles in antigen processing and presentation, protein processing in

endoplasmic reticulum and pathogenic E. coli infection. An improvement in disease resistance

capability and immune status was observed in the refeeding fish. These fish were also seen to

outperform the fish that were continuously fed.

Genes such as ABCA1, ABCC5, IGFBP1, IRS2, JARID2, ACACB, CHKA, PDK2, and

PPARA, were down-regulated, implying these genes may not be key in fish recovery.

DEGs between control group and refeeding group were also analyzed. Many ribosomal pro-

teins were over-expressed in the refeeding group. These proteins consisted of the ribonucleo-

protein complexes and involved in the cellular process of translation. Stress-specific alterations

in ribosomal proteins were reported in many species, the over-expressions of ribosomal pro-

teins contributed to the starvation response. Similar result has been observed in the muscle of

rainbow trout [46].

Several members of the heat shock proteins were over-expressed after refeeding. HSP is an

important protein in response to the exposure to stressful conditions. Many members of HSP

act as chaperones to assist new proteins, ensuring them correct folding and preventing protein

damage by cell stress [47]. The over-expression of HSP can enhance translational efficiency

and increase the ability of stimulus response.

Glycolysis and oxidative phosphorylation are the main metabolic pathways for releasing

energy in organisms and provide energy for various physiological activities. The up-regulation

of LDHB, TPI1, GAPDH, PGAM1, LDHA, PGK1, ALDOA, GPI,MT-ND5, andMT-CO1 was

beneficial for the production and restoration of energy.

In down-regulated DEGs, proopiomelanocortin (POMC) is an important precursor poly-

peptide, which can be enzymatically cleaved into many peptides, including melanotropins (α-

MSH, β-MSH, and γ-MSH), adrenocorticotropin (ACTH), lipotropins, and endorphins [48].

These ligands closely associated with energy balance, glucose homeostasis and feeding behav-

ior by negative regulation of energy metabolism [15,49]. The down-regulation of POMC is

beneficial to diet intake.

3. Analyses of expression profiles of key DEGs using qRT-PCR

Expression profiles of six key DEGs were investigated using qRT-PCR. CDC6, CDC20,MCM2,

DHCR7, and FABP7 were down-regulated during fasting and restored after refeeding. DHCR7

plays a vital role in the cholesterol biosynthesis pathway, which is part of the steroid biosynthe-

sis pathway [50]. Starvation inhibited steroid biosynthesis; thus, DHCR7 was down-regulated

during fasting and restored after refeeding. FABP7 was down-regulated during fasting, and is

most likely because the ketone body was the main energetic materials of brain during starva-

tion. FABP3 was also down-regulated during fasting. CDC20, CDC6, andMCM2 were all

down-regulated because of the blockage of cell division by starvation. After refeeding, the

expression of CDC20 was higher than in the control group, despite there was no significant dif-

ference. HSP70 is important for protein folding, and protects cells from stress. Thus, the over-

expression ofHSP70, after refeeding, can protect organisms from undergoing stress.

Conclusion

A transcriptome analysis was carried out to reveal the effects of fasting and refeeding on brains

of juvenile S. hollandi. During fasting, the fish significantly reduced gene expression in the cell

cycle, DNA replication, mitosis, steroid synthesis, and other physiological activities. After
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7-day refeeding, the up-regulated DEGs were remarkably enriched in antigen processing and

presentation, cell cycle, steroid biosynthesis, protein processing in endoplasmic reticulum,

DNA replication, mitosis, pathogenic infection, and terpenoid backbone biosynthesis.

The study indicated that growth was inhibited during starvation since the fish mobilized

the stored energy to prolong survival. After refeeding, the energy was stored again, and com-

pensatory growth occurred, the body weight was recovered. In response to the starvation and

feeding, a great deal of related genes and pathways were changed. This study provided the first

transcriptome data on impacts of short-time starvation and refeeding to fish brains.
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