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Abstract

Recurrent neural networks are complex non-linear systems, capable of ongoing activity

in the absence of driving inputs. The dynamical properties of these systems, in particular

their long-time attractor states, are determined on the microscopic level by the connection

strengths wij between the individual neurons. However, little is known to which extent net-

work dynamics is tunable on a more coarse-grained level by the statistical features of the

weight matrix. In this work, we investigate the dynamics of recurrent networks of Boltz-

mann neurons. In particular we study the impact of three statistical parameters: density

(the fraction of non-zero connections), balance (the ratio of excitatory to inhibitory connec-

tions), and symmetry (the fraction of neuron pairs with wij = wji). By computing a ‘phase

diagram’ of network dynamics, we find that balance is the essential control parameter:

Its gradual increase from negative to positive values drives the system from oscillatory

behavior into a chaotic regime, and eventually into stationary fixed points. Only directly at

the border of the chaotic regime do the neural networks display rich but regular dynamics,

thus enabling actual information processing. These results suggest that the brain, too, is

fine-tuned to the ‘edge of chaos’ by assuring a proper balance between excitatory and

inhibitory neural connections.

Introduction

In contrast to the artificial neural networks used in deep learning, which typically have a strict

feed-forward structure, the networks of the brain contain many loops and are therefore recur-

rent in nature. This feature allows the cortex to maintain dynamical activity even without

incoming external stimuli [1] and may therefore underlie such diverse operations as short-

term memory [2–4], the modulation of neuronal excitability with attention [2, 5, 6], or the

generation of spontaneous activity during sleep [7–9].

The relation between structure and function in recurrent neural networks is a topic of

considerable interest in the neurosciences and has already been addressed in several
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important publications. In 1988, a transition from a stationary phase to a chaotic phase was

predicted [10], occurring at a critical value of a ‘gain’ parameter that controls the width of

the neuron’s sigmoidal function. In 2007, it was shown that Network structure of the cere-

bral cortex shapes functional connectivity on multiple time scales [11]. A paper from 2011

studied the effect of broad degree distributions on network dynamics by interpolating

between a binomial and a truncated power-law distribution for the in-degree and out-degree

of the neurons independently [12]. In 2014, it was demonstrated that (1) for homogeneous

external input, the structure of pairwise correlations between neuron states is mainly deter-

mined by the local recurrent connectivity, that (2) homogeneous external inputs provide an

additive, unspecific contribution to the correlations, that (3) inhibitory feedback effectively

decorrelates neuronal activity, even if neurons receive identical external inputs, and, finally,

that (4) identical synaptic input statistics to excitatory and to inhibitory cells increases

intrinsically generated fluctuations and pairwise correlations [13]. In 2016, a paper analyzed

the anatomical origins of oscillations in the cortical microcircuit. Based on a theoretical

reduction of network dynamics, a sensitivity measure was derived, resulting in a frequency-

dependent connectivity map that revealed connections crucial for the peak amplitude and

frequency of the observed oscillations and identifies the minimal circuit generating a given

frequency [14].

Recently, more sophisticated statistical properties of weight matrices were explored. For

instance, a model introduced a structured component of connectivity, in addition to random

connections, which effectively embeds a feed-forward structure via unidirectional coupling

between a pair of orthogonal modes [15]. Another approach studied a class of recurrent net-

work models in which the connectivity is a sum of a random part and a minimal, low-dimen-

sional structure. It was shown that, in such networks, the dynamics is low dimensional and

can be directly inferred from connectivity using a geometrical approach [16]. Still another

approach focused on the eigenvalue structure of the weight matrix and identified structural

properties of networks that are associated with non-normality [17]. A more coarse-grained

approach showed that coupling among cortical modules is central. The highest dynamical

richness of the network emerges at a critical connectivity at the verge of physical disconnec-

tion. Stronger coupling leads to a persistently coherent activity among the modules, while

weaker coupling precipitates the activity to be localized solely within the modules [18]. Finally,

the effect of external inputs on network dynamics was explored. A paper identified a general

criterion that distinguishes two classes of networks depending on properties of the connectiv-

ity matrix: networks in which all inputs lead to weak, decaying transients, and networks in

which specific inputs elicit strongly amplified transient responses and are mapped onto

orthogonal output states during the dynamics [19].

Recent micro-anatomical studies of the brain revealed that neural connectivity in the mam-

malian cortex has unique statistical properties. In particular, it was found that connections are

sparse (low density), so that only a small fraction of possible connections are realized. The dis-

tribution of connection strengths is close to log-normal, and thus highly skewed, with a fat tail

towards large magnitudes [20, 21]. Although the total number of non-zero connections can

vary strongly between neurons, the ratio of excitatory to inhibitory connections is relatively

constant [22]. Moreover, cortical networks contain a ‘skeleton’ of strongly connected neurons,

linked pairwise in a bidirectional, symmetric way. This skeleton is embedded in a ‘sea’ of more

weakly, non-symmetrically connected neurons [20].

Whereas the role of this peculiar connection structure is still poorly understood, certain fea-

tures seem to affect whether the brain can properly act as an information processor. For exam-

ple, it has been shown that recurrent neural networks can show chaotic behavior for certain

ratios between excitatory and inhibitory connections [1, 23]. It has even been speculated that
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certain social dysfunctions, such as autism and schizophrenia, are related to an elevated corti-

cal excitation/inhibition balance [24]. Moreover, the discovered skeleton of neurons with

strong bi-directional links may help to optimize information storage [25].

In a recent paper [26], we have investigated the relation between connectivity and system

dynamics in small motifs of probabilistic neurons with binary outputs, assuming discrete, ter-

nary connection strengths. We found that the balance between excitatory and inhibitory con-

nections has a strong effect on the transition probabilities between successive motif states,

whereas the total density of non-zero connections is less important.

Here, we extent our study to larger recurrent networks that consist of deterministic neurons

with continuous outputs. Connection strength follow a random, log-normal weight distribu-

tion, but have prescribed values of the three control parameters density, balance, and symme-

try. We analyze how these parameters affect the dynamical properties of the networks, in

particular the Lyapunov exponent of the system trajectory in state space, the period length of

cyclic attractors, and the cross correlation between individual neuron states.

As has been previously shown by Hopfield [27], networks with a very large fraction of

symmetric bidirectional connections (symmetry parameter close to one) tend to end up in

stationary fixed points. We therefore focus on moderate and small symmetry parameters,

and explore the two-dimensional phase diagram of system dynamics as a function of balance

and density.

We find that this two-dimensional phase plane consists of three basic regions, correspond-

ing to the possible attractors in deterministic and autonomous dynamical systems: periodic

state cycles, chaos, and stationary fixed point behavior. Strikingly, it is almost exclusively the

balance parameter that controls in which of these three regimes a neural network is located,

while the overall density of connections has a much weaker influence. In particular, the net-

works behave in a way that is suitable for information processing purposes only in a narrow

range of balance parameters, located at the edge of the chaotic phase. This theoretical result

is in line with the experimental finding that neural networks in the mammalian cortex have

moderate degrees of symmetry and are tuned to rather specific values of balance, whereas con-

nection density can vary widely between neurons and over time.

Methods

Neural network model

Our neural networks are based on simple deterministic neurons with zero bias (zero thresh-

old). The total input zi(t) of neuron i at time t is calculated as:

ziðtÞ ¼
Xn

j¼1

wij yjðt � 1Þ ð1Þ

where yj(t − 1) is the state of neuron j at time t − 1 and wij is the connection weight from neu-

ron j to neuron i. The new state yi(t) of neuron i is computed as

yiðtÞ ¼
1

1þe� ziðtÞ
: ð2Þ

When simulating the dynamics of the networks, all neurons are updated simultaneously. The

total state of a neural network at time step t can be summarized by the n-dimensional vector

~yðtÞ ¼ ðy1ðtÞ; . . . ; ynðtÞÞ, where yi(t) is the output state of neuron i at this time. In each particu-

lar case, we simulated Tmax = 106 time steps.
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Random weight matrix

The structure of a given neural network is defined by its weight matrix W = {wij}. Here, we

consider networks in which self-connections are forbidden, so that wii = 0. For all non-zero

matrix elements, the magnitudes of the weights are distributed according to a log-normal dis-

tribution,

pðwijÞ / lognormalðm;sÞ ð3Þ

with location μ and scale σ.

Statistical control parameters d̂; b̂; ŝ
For a network with n neurons, the weight matrix has dimensions n × n. Due to the excluded

self-connections, the diagonal elements of this matrix are zero, leaving a maximum possible

number n(n − 1) of non-zero matrix elements. We denote the actual number of non-zero

weights by m = m+ + m−, where m+ and m− are the numbers of positive and negative weights,

respectively. Furthermore, we denote the number of non-zero matrix elements wij for which

a symmetric reverse connection wji = wij exists by ms. Based on these numbers, we define the

density parameter d̂, which varies between 0 for an unconnected and 1 for a fully connected

network, by

d̂ ¼
m

nðn � 1Þ
: ð4Þ

The balance parameter b̂, which varies between −1 for a purely inhibitory and +1 for a purely

excitatory connection matrix, is defined by

b̂ ¼
mþ � m�

m
: ð5Þ

The symmetry parameter ŝ, which varies between 0 for a completely non-symmetric and +1 for

a completely symmetric (Hopfield-like [27]) network, is defined by

ŝ ¼
ms

m
: ð6Þ

The meaning of these three control parameters is visualized in Fig 1.

Generation of weight matrices

Random weight matrices with prescribed values of the parameters d̂, b̂, and ŝ were generated

in a series of steps. First, a fraction d̂ of the weights were drawn independently from a log-

normal distribution with location μ = 0 and scale σ = 1, whereas all remaining weights were

set to zero. Second, in order to introduce inhibitory connections to the network, a fraction

ð1 � b̂Þ=2 of the non-zero-weights were randomly selected and multiplied by −1. For all cases

with symmetry ŝ ¼ 0, this produced already the final weight matrix.

For the case ŝ > 0, further steps were required: the weights above the diagonal of the weight

matrix were copied to below the diagonal, thereby creating a perfectly symmetric matrix.

Finally, pairs of matrix elements below the diagonal were randomly selected and swapped iter-

atively, until the desired degree of symmetry ŝ was achieved.
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Fraction of positive Lyapunov exponents fλ>0

Computing the new network state~yðtÞ from the previous state~yðt � 1Þ can be formally

described by a vectorial update function

~yðtÞ ¼ ~Fð~yðt � 1ÞÞ: ð7Þ

Starting from an infinitesimally close initial state~y�ðt � 1Þ ¼~yðt � 1Þ þ~� will lead to a different

final state~y�ðtÞ ¼ ~Fð~y�ðt � 1ÞÞ. The sensitivity of the update function to this infinitesimal per-

turbation can be measured by the differential quotient

~F 0ð~yðtÞÞ �
~y�ðtÞ � ~yðtÞ
j~�j

: ð8Þ

The maximum Lyapunov coefficient λ of the update function is defined as

l ¼
D
ln
�
�
�~F 0ð~yðtÞÞ

�
�
�

E

t
; ð9Þ

where hit denotes the time average over all successive states of the system. It can be computed

using well-established algorithms [28, 29]. A positive Lyapunov coefficient λ> 0 indicates

that two nearby points in state space diverge exponentially, thus leading to irregular (chaotic)

behavior. A zero or negative λ� 0 indicates regular behavior. In general, within an ensemble of

networks that are all characterized by the same set of control parameters ðd̂; b̂; ŝÞ, one finds λ-

values of both signs. We therefore counted the fraction of networks (within the statistical ensem-

ble of the considered parameter combination) that had a positive Lyapunov exponent. This frac-

tion fλ>0 is represented as a color code and shown for all paramater combinations in the ‘phase

diagrams’ below. Note that, the so-defined quantity fλ>0 reveals a transition at around 50%.

Average period length Tav

Our recurrent networks are deterministic and autonomous dynamical systems. Thus, their

trajectory~yðtÞ through n-dimensional state space is eventually governed by one of three

possible attractors: a stationary fixed point, a cycle of period T, or chaotic behavior. For each

investigated network, we characterize the type of attractor by the measured period length

T, that is, the number of time steps before the system state repeats itself for the first time

Fig 1. Visualization of the control parameters density d̂ , balance b̂, and symmetry ŝ for eight example networks

(A-H). Neurons are represented by gray circles, non-zero connections between neurons by arrows. One-headed

arrows stand for uni-directional, two-headed arrows for bi-directional connections. Blue/magenta connections are

excitatory (wij> 0), red/orange connections inhibitory (wij< 0).

https://doi.org/10.1371/journal.pone.0214541.g001
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(~yðtÞ ¼~yðt þ TÞ). This includes the special cases T = 1, corresponding to a stationary fixed

point, and T =1, corresponding to a chaotic attractor. To identify repeating system states, we

make use of a hash table. Since period lengths fluctuate for different networks from the same

ensemble ðd̂; b̂; ŝÞ, we compute the ensemble average Tav and use this average for color coding

the phase diagrams.

Root mean square of cross correlations ρrms

The Lyapunov coefficient λ and the period length T characterize the long-time behavior of

the neural networks. Another property that is relevant for a network’s information processing

ability is the degree of correlation between individual neuron states yi(t) at the same time step

t. For each pair i, j of neurons, it can be quantified by the Pearson cross correlation coefficient,

defined as

ri;j ¼
hðyiðtÞ � �yiÞðyjðtÞ � �yjÞit

sisj
; ð10Þ

where �yk is the temporal mean of the time series yk(t) and σk its standard deviation. In cases

where σi or σj were zero, ρi,j was set to 1. To characterize the global degree of correlation in a

given neural network (without caring about the sign of the individual ρij), we computed the

root mean square (RMS) over all neuron pairs

rrms ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n2

X

i;j

ðri;jÞ
2

s

: ð11Þ

This quantity was additionally averaged over all members of a given ðd̂; b̂; ŝÞ ensemble and

then used for color coding the phase diagrams.

Results

We first consider non-symmetric networks (̂s ¼ 0), that is, networks without any bidirectional

links of exactly the same strength. For each combination of balance b̂ and density d̂ on a

11 × 10 regular grid, we generate an ensemble of 100 random networks. We then simulate the

temporal dynamics of these networks, starting from random initial states. For each ensemble,

we compute the fraction of positive Lyapunov coefficients fλ>0, the average period length Tav,

and the RMS of cross correlations ρrms. The dependence of these dynamical quantities on the

statistical control parameters is presented in the form of heat maps, which can be interpreted

as dynamical ‘phase diagrams’ of these recurrent neural networks.

We initially focus on small networks of 100 neurons. When keeping the density close to

one and gradually increasing the balance from negative to positive values, we find that the frac-

tion of positive Lyapunov coefficients fλ>0, indicating chaotic behavior, is close to zero, except

for a narrow interval of balance values around b̂ � 0:1. This chaotic interval broadens as the

density parameter is reduced (Fig 2A). In the 2D phase diagram, the chaotic regime therefore

has an approximately triangular shape.

Inspecting the temporal output signals of selected neurons in the investigated networks (Fig

2B–2G), it turns out that the two regimes with fλ>0� 0 at the ‘left’ and ‘right’ side of the cha-

otic regime correspond to periodic attractors (Fig 2B) and fixed point attractors (Fig 2D),

respectively. The most interesting dynamics is found at the edge of the chaotic regime

(Fig 2C and 2E), where one finds cases of periodic behavior with large period length T> 2,

Structure and dynamics in neural networks
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Fig 2. Dynamical phases in recurrent neural networks and characteristic output signals of individual neurons. (A) Two-dimensional phase diagram, showing the

fraction of positive Lyapunov exponents fl>0 ð b̂; d̂ j ŝ¼0 Þ as a function of the control parameters balance and density, for a constant symmetry parameter ŝ¼0 (Note

that in part G, we show the average Lyapunov exponent along a a one-dimensional cut through the 2D phase space of balance and density, for constant density 0.2). In

the heat map, dark blue colors indicate fλ>0� 0, dark red colors fλ>0� 1. The red region in the center of the phase diagram is the chaotic regime, consistent with the

irregular outputs of selected neurons (F). The ‘left’ blue region at negative balance values is the regime of cyclic attractors, often with small period lengths T� 2, as

demonstrated with the neuron output (B). The ‘right’ blue region at positive balance values is the regime of fixed points, as exemplified with the constant neuron

output (D). Note that, in both cases (B, D) the fraction of positive Lyapunov exponents is zero since the dynamics is non-chaotic, and hence the color coding is

identical in both cases. The most interesting dynamics is found at the edges of the chaotic regime (C, E), where one finds cases of periodic behavior with large period

length T> 2, periodic behavior with intermittent bursts, decaying oscillatory behavior, and ‘beating’ oscillatory behavior. Note that, the sampled time traces depicted

in the figure are from selected neurons, not necessarily from within the same network.

https://doi.org/10.1371/journal.pone.0214541.g002
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periodic behavior with intermittent bursts, decaying oscillatory behavior, and ‘beating’ oscil-

latory behavior.

In a next step, we compare the phase distribution of fλ>0 with that of the other two dynam-

ical quantities (middle and right column in Fig 3). At the same time, we investigate the effect

of system size (rows in Fig 3, with different numbers of neurons N).

Fig 3. Comparing different dynamical measures, and the effect of system size. The columns correspond to the

quantities fλ>0 (left), Tav (middle) and ρrms (right), as defined in the methods section. The rows from top to bottom

correspond to increasing system sizes, characterized by the number of neurons N in the neural networks. For each of

the 12 cases, a two-dimensional phase diagram is shown as a function of balance and density, keeping a constant

symmetry parameter of ŝ ¼ 0. The three dynamic phases become apparent only for systems with a minimum size of

N� 100. The three different dynamical measures are mutually consistent. In particular, the chaotic regime is

characterized by a fλ>0 close to one, by a diverging Tav, and by a vanishing ρrms. For large systems with N� 10000, the

density parameter has no more effect on the system dynamics, which is then controlled by the balance only.

https://doi.org/10.1371/journal.pone.0214541.g003
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We find that the three different dynamical quantities are mutually consistent. In particular,

the chaotic regime is characterized by fλ>0� 1, by a diverging Tav, and by a vanishing ρRMS.

The periodic regime is characterized by Tav� 2 and by a relatively large ρrms. The fixed point

regime is characterized by Tav = 1 and, again, by a relatively large ρrms. Approaching the cha-

otic regime from either side by changing the balance parameter, Tav is rapidly increasing in the

border region.

With increasing system size, the influence of the density parameter on the dynamical

phase of the networks is diminishing. For large networks with N� 1000 neurons, the network

dynamics is exclusively controlled by the balance parameter.

Finally, we investigate the effect of the symmetry parameter on the network dynamics (Fig

4). By computing a complete 3D phase diagram of fλ>0 as a function of all three statistical con-

trol parameters, we find that balance and density have only an effect on the system dynamics

when the symmetry is smaller than one, that is, when there are sufficiently many non-symmet-

ric connections between the neurons. For a too large symmetry ŝ � 1, the system ends up in

fixed point attractors, irrespective of balance and density.

Fig 4. Effect of symmetry ŝ on system dynamics. (A): Standard plot of fλ>0 as a function of balance and density, for

constant symmetry ŝ ¼ 0. (B): Plot of fλ>0 as a function of balance and symmetry, for constant density d̂ ¼ 0:5 (see

orange box in (A)). (C): Plot of fλ>0 as a function of symmetry and density, for constant balance b̂ ¼ 0 (see green

box in (A)). For too large symmetry ŝ � 1, the system ends up in fixed point attractors, irrespective of balance and

density. Note that the phase diagram shown in (A) is the same as shown in Fig 3D.

https://doi.org/10.1371/journal.pone.0214541.g004

Structure and dynamics in neural networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0214541 April 9, 2019 9 / 13

https://doi.org/10.1371/journal.pone.0214541.g004
https://doi.org/10.1371/journal.pone.0214541


Conclusion

One of the earliest studies [10] dealing with dynamical regimes in recurrent neural networks

found that a transition from regular to chaotic behavior can be induced by increasing the

nonlinearity of the neuron’s sigmoidal function. In this work, we have demonstrated that the

dynamical behaviour of recurrent neural networks can be effectively tuned by certain statistical

properties of the network’s connection weight matrix.

In particular, a large fraction of symmetric, bi-directional neural connections (̂s � 1) favors

fixed point attractors, and may therefore be useful for pattern completion tasks, as in the Hop-

field model [27]. However, rich dynamical behavior is only possible for moderate or small

degrees of symmetry. We point out, that besides our definition of the symmetry parameter,

there are alternative definitions which are more fine grained. For instance, the symmetry defi-

nition by Esposito et al. [30] takes into account the magnitudes of the forward and backward

connections, and vanishes in the case when only uni-directional connections exist. In addition,

future extensions of our work could improve our present method to generate weight matrices

with pre-defined symmetry, as the present method may create spurious correlations of weight

magnitudes between the upper and lower triangle.

For non-symmetric networks, the statistical parameter with the largest impact on system

dynamics is the balance b̂ [26]. This ratio between excitatory and inhibitory connections con-

trols, with high fidelity, whether a free-running neural network will behave stationary, oscil-

latory, or irregularly. Moreover, fine tuning of the balance parameter can bring the system

to the edge of the chaotic regime, where the outputs of the neurons produce complex wave

forms, and where the system may depend sensibly, but still regularly, on external inputs. We

speculate that this regime is most suitable for purposes of neural information processing [31–

35], and that biological brains may therefore control the parameter b̂ in a homeostatic way

[1, 36, 37].

By contrast, the impact of the overall connection density d̂ on network dynamics, at least

in realistically large systems with many neurons, is much smaller than that of the balance b̂.

In principle, a recurrent neural network can gain or loose a large random fraction of neural

connections without changing its dynamical attractor state, as long as the balance b̂ remains

unchanged. This surprising robustness, for which the term graceful degradation has been

coined [38], may help to keep the cortex functional during periods of growth and decay.

In this work we abstracted from biological detail in that each given neuron could have

both, positive and negative output weights. By contrast, in the human brain the vast majority

of neurons is either purely excitatory or purely inhibitory (Dale’s principle), although there are

prominent exceptions to this rule, such as the dopaminergic transmission within the basal gan-

glia [39]. Nevertheless, it might be worthwhile to explore the impact of Dale’s principle on net-

works dynamics.

Future work will also need to clarify how recurrent neural networks, statistically tuned into

specific attractor states, react to external inputs. A particularly interesting question will be

whether the edge of chaos is also marked by a large mutual information between input signals

and the internal sequence of states within the recurrent neural network. Furthermore, Wer-

necke et al. [40] proposed a method to test for partially predictable chaos, which might be

applied to derive a more fine-grained description of the chaotic regime, including the edges of

chaos.
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