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Abstract

Human gait has been shown to be an effective biometric measure for person identification at

a distance. On the other hand, changes in the view angle pose a major challenge for gait

recognition as human gait silhouettes are usually different from different view angles. Tradi-

tionally, such a multi-view gait recognition problem can be tackled by View Transformation

Model (VTM) which transforms gait features from multiple gallery views to the probe view so

as to evaluate the gait similarity. In the real-world environment, however, gait sequences

may be captured from an uncontrolled scene and the view angle is often unknown, dynami-

cally changing, or does not belong to any predefined views (thus VTM becomes inapplica-

ble). To address this free-view gait recognition problem, we propose an innovative view-

adaptive mapping (VAM) approach. The VAM employs a novel walking trajectory fitting

(WTF) to estimate the view angles of a gait sequence, and a joint gait manifold (JGM) to find

the optimal manifold between the probe data and relevant gallery data for gait similarity eval-

uation. Additionally, a RankSVM-based algorithm is developed to supplement the gallery

data for subjects whose gallery features are only available in predefined views. Extensive

experiments on both indoor and outdoor datasets demonstrate that the VAM outperforms

several reference methods remarkably in free-view gait recognition.

Introduction

In recent years, surveillance cameras have been widely deployed in many cities. To automati-

cally analyze the data captured from these cameras (e.g., for searching for a suspicious person

or vehicle), different biometric technologies have been developed and playing more and more

important roles in public security applications and crime investigation. Human gait is one of

the well-recognized biometric features to ascertain the identity of a human at a distance [1, 2].

On the other hand, human gait may be affected by various factors in practical visual surveil-

lance scenes, e.g. change in view angles, variation of walking speed, carrying an object and

even wearing different types of shoes [3]. Among all these factors, change in view angles is

regarded as one of the most common challenges as it often changes the visual features signifi-

cantly (e.g., visible body parts, global shape statistics, and walking trajectories [4, 5]).

Though individual gaits often vary across views, they are still correlated and share certain

view-invariant gait features [6, 7]. The gait recognition problem has been investigated under
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three typical setups [4]: 1) fixed-view gait recognition where both probe and gallery gaits are

captured from the same view; 2) cross-view gait recognition where the probe and gallery gaits

are captured from different views; and 3) multi-view gait recognition where the probe gaits

under a specific view are recognized by gallery gaits from multiple views. All three setups

assume that gaits are well defined and captured within a well-controlled environment with few

background clutters. On the other hand, the probe gaits may be captured from uncontrolled
scenes under arbitrary views in practical situations, and some of them even do not have any

matched views in the gallery dataset. Moreover, the view angles in a probe gait sequence may

be dynamically changing since the pedestrian may walk freely as illustrated in Fig 1. Most

existing gait recognition techniques do not work well under such arbitrary free view scenario

due to the very different setups.

The free-view gait has two unique features as illustrated in Fig 1. First, it is captured under

arbitrary view angles with large human pose variations that directly lead to low gait regularity

(i.e. the regular relationship between gait features of a pair of views with certain transformation

between them). Second, it is often associated with cluttered background and sometimes occlu-

sions that directly lead to silhouette noises and low gait feature quality. We develop an innova-

tive view-adaptive mapping (VAM) that tackles the free-view gait recognition challenge from

three aspects. The first is automatic recognition of the view angle of a gait sequence. For this

we design a novel walking trajectory fitting (WTF) that estimates gait views by first analyzing

the walking trajectory of a pedestrian and then calculating the corresponding view angle. The

second is automatic approximation for undefined probe views. For this we design a joint gait

manifold (JGM) that finds the optimal manifold between the probe data and relevant gallery

data for gait similarity evaluation.

The third is gallery gait data of incomplete views, which is common for most gait datasets

due to the difficulty in collecting gallery data of all subjects from all predefined views. Similar

to other gait recognition methods such as View Transformation Model (VTM) [2, 8, 9] and

Canonical Correlation Analysis (CCA) [10], VAM also favors complete gallery data under all

predefined views. It addresses this problem by a novel RankSVM-based algorithm that supple-

ments the gallery data for subjects whose gallery features are only partially available under cer-

tain predefined views. Specifically, it supplements the gallery gait features of a subject by using

the gait features of neighboring subjects under the same view, as well as the same subject’s gait

features of the closest views. It thus formulates the subject neighborhood measure as a learn-

to-rank problem and exploits RankSVM to learn the optimal ranking function.

The proposed VAM was evaluated over two gait datasets. The first is CASIA gait dataset B

[11] that was created for benchmarking multi-view gait recognition in controlled indoor envi-

ronments. We construct two variants of this dataset for evaluation within controlled free-view

scenes. The second is the PKU HumanID gait dataset [12] that is a free-view dataset captured

in an uncontrolled outdoor environment.

Related work

This section reviews the related work briefly. Existing gait recognition techniques can be

broadly grouped into three categories, to be discussed in the following three subsections.

Gait recognition based on view synthesis

View synthesis based approach aims to generate virtual views for optimal gait recognition. For

example, [13] presents a view normalization method for multi-view face and gait recognition,

where a set of monocular views are utilized to construct image-based visual hull (IBVH) and

render virtual views for gait recognition. [14] exploits hard and soft kinematic constraints for

Free-view gait recognition
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3D tracking and gait pattern extraction from human motion data. [15] sets up a human 3D

model from video sequences captured by multiple cameras for gait tracking and recognition.

[16] uses an active vision sensor to capture 3D data and then synthesizes the complete gait

sequence by interpolation of joint positions and their movements from the fitted body models.

[17] describes a silhouette-based method that uses viewpoint projection to convert 3D data

into 2D view-invariant data. [18] employs articulated cylinders with 3 Degrees of Freedom

(DoF) at each joint to model the human lower legs and then extracts structural and dynamic

3D gait features.

In addition, [19] presents a multi-view gait recognition method that exploits 3D morpho-

logical gait sequence analysis to extract gait descriptors and then classifies their temporal pat-

terns using Support Vector Machine (SVM). [20] proposes the arbitrary view transformation

to address the problem where a probe view is excluded from views for the training subjects,

by reconstructing the 3D models for the training subjects. [21] solves the walking direction

change problem in gait recognition by estimating the walking direction for each subject and

synthesizing a virtual image corresponding to the estimated direction from a 4D gait database.

[22] instead synthesizes an image generated from 3D volumes after estimating the local walk-

ing direction in the first and second parts of a gait cycle.

The view synthesis based gait recognition is often complex and not easy to implement

because it requires a fully controlled and cooperative multi-camera system to either recon-

struct the 3D gait model or synthesize virtual view images directly.

Gait recognition based on view-invariant features

Quite a number of gait recognition systems have been reported to make use of view-invariant

features. For example, [23] presents a perspective projection model that generates a side view

from any arbitrary view using a single camera. [24] and [25]) integrate information from mul-

tiple views to extract view-invariant features. [26] proposes a three-layer scheme using bilinear

models, where image sequences are mapped to observation vectors using Markov modeling.

[27] introduces a gait recognition approach by computing view-normalized trajectories of

body parts from monocular video sequences. [28] introduces a local binary pattern (LBP) flow

Fig 1. Within free-view scenes with weak control and definition, both probe and gallery gait sequences could be captured from arbitrary views. For example, as

shown in this figure, the two groups of samples from the PKU HumanID Gait Dataset [12] has low-quality gait features.

https://doi.org/10.1371/journal.pone.0214389.g001
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as a static representation of gait movement, and shows very promising results in gait recogni-

tion. [6] utilizes angular measurements and trunks spatial displacement as a view-invariant

gait feature for view-independent gait biometrics. [7] introduces a normal distance map as a

robust gait feature descriptor by combining the distance transform with curvatures of local

contours. [29] instead normalizes gaits from arbitrary views by utilizing the invariant low-

rank textures (TILTs) for view-invariant gait feature extraction. Some auxiliary data from

other sensors such as accelerometer [1] and RGBD [30] have also been utilized for robust gait

recognition.

Inspired by the great successes of deep convolutional neural networks (CNNs) in image rec-

ognition tasks, several methods (e.g., [31–34]) have been proposed in recent year which utilize

CNNs to learn more robust gait representations. For example, [31] tackles multi-view gait rec-

ognition by training a 3D CNN by using grayscale images and optical flow as input. [32] trains

CNN and Siamese neural networks [33] by using gait energy images. [34] proposes a similarity

learning approach for gait-based human identification via CNNs. The CNN-based gait recog-

nition achieve reliable performance even under large view differences as long as a large num-

ber of training examples are available, demonstrating great potentials for future study and

applications.

Gait recognition based on view transformation

Different with the techniques using view synthesis or view-invariant features, the view trans-

formation based techniques recognizes gaits by learning the mapping/projection relationship

of gait features across views. For example, [8] introduces View Transformation Model (VTM)

to match gait features of different walking directions. [9] improves the VTM by using gait

energy image (GEI) features and Linear Discriminant Analysis (LDA) for GEI feature optimi-

zation. In addition, [2] improves VTM from a different approach by incorporating a score

normalization framework with quality measures that evaluate how well the gait features of

test subjects are represented by a joint subspace spanned by a set of gait features of training

subjects.

To overcome the constraint of the VTM that often requires a large training dataset, [35] re-

formulates the VTM construction as a regression problem, and applies Support Vector Regres-

sion (SVR) to create the VTM. [36] instead learns the LDA-subspaces to extract discriminative

information from gait features. Similarly, [37] introduces a robust VTM via Principal Compo-

nent Analysis (PCA), where gait features are extracted by adopting the feature selection

method with Partial Least Square (PLS) on the original GEI. [10] models the correlation of

gait sequences from different views using Canonical Correlation Analysis (CCA), where gait

sequences from two views are projected into two different subspaces such that they could be

maximally correlated. The view transformation based techniques have demonstrated superior

gait recognition performance, but they require the gait data across all predefined views to train

the VTM or CCA which makes them impractical in many real-world applications.

The proposed method

We define the free-view gait recognition as a special gait recognition problem, where gait

sequences are captured within an uncontrolled scene and the probe view angles could be

unknown, dynamically changing, or without any match within the predefined gallery views.

This gait recognition problem can be boiled down to three sub-problems, i.e., how to automat-

ically estimate the view angles, how to deal with undefined probe view angles over which gait

similarity can be evaluated properly, and how to supplement gallery gait features when they

are incomplete with respect to predefined views.

Free-view gait recognition
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The overview framework of our approach in Fig 2 shows how we address the three sub-

problems. For the first sub-problem, we perform gait period analysis and gait view estimation

to extract more robust gait features in the real-world scenes. In particular, we propose a novel

walking trajectory fitting (WTF) algorithm to estimate the walking view. The basic idea is to

fit the walking trajectory in one gait circle as a straight line, and use the line’s angle against the

camera’s direction to identify the view angle in that circle, more details to be described in Gait

View Estimation. For the second sub-problem, we treat the observations of human gaits from

adjacent views as multiple manifolds that share the same parameter space, and introduce the

joint gait manifold (JGM) to model the dependencies present in a variety of gait features across

views. The JGM generates an optimal joint manifold for gait features from two gallery views

that are closest to the probe view angle, on which the probe and relevant gallery gait data can

be directly compared, more details to be described in Joint Gait Manifold. For the third sub-

problem, a RankSVM-based algorithm is introduced to supplement the gallery gait features

to cope with the large difference between the probe view and gallery data, more details to be

described in RankSVM-based Gallery Data Supplementing.

Gait view estimation

In the gait view estimation, pedestrians are first located in the captured videos. Gait periods

are then extracted by analyzing the normalized auto correlation (NAC) of gait silhouettes [8].

WTF is finally applied to estimate the pedestrian’s walking angle.

Pedestrian extraction. Given a gait sequence in a video, the foreground pedestrian can

be extracted from every frame by using a Gaussian mixture model (GMM) based foreground

extraction algorithm [38]. This GMM based algorithm is robust to changes of the observed

scene and simple to implement, but often introduces noisy foreground pixels due to abrupt

lighting changes. In our system, morphological operations [39] and foreground connected

component analysis [40] are introduced for noise elimination. The Faster-RCNN-based pedes-

trian detector [41] is applied to detect pedestrians, where a particle filter based object tracker

with an optimized observation model is used to obtain the pedestrian’s walking trajectory [42].

Gait period analysis. Human gait can be generally treated as a periodic motion and

expressed using the gait cycle or stride. A complete gait period consists of two steps, where

each step denotes the motion between successive heel strikes of opposite feet [43]. Given a

sequence of the extracted silhouettes, gait period can thus be detected by maximizing the NAC

Fig 2. The framework of our proposed view-adaptive mapping (VAM) technique for free-view gait recognition.

https://doi.org/10.1371/journal.pone.0214389.g002

Free-view gait recognition

PLOS ONE | https://doi.org/10.1371/journal.pone.0214389 April 16, 2019 5 / 24

https://doi.org/10.1371/journal.pone.0214389.g002
https://doi.org/10.1371/journal.pone.0214389


of the size-normalized silhouette images along the temporal axis. Let sm(x, y, i) be the pixel

value of the mth person’s gait silhouette at position (x, y) of the ith frame, the autocorrelation

factor Cm(t) under t frame shift can be calculated by [8]

CmðtÞ ¼

X

x;y

XNt

i¼0

smðx; y; iÞsmðx; y; iþ tÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X

x;y

XNt

i¼0

smðx; y; iÞ2
v
u
u
t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X

x;y

XNt

i¼0

smðx; y; iþ tÞ2
v
u
u
t

; ð1Þ

where Nt = Ntotal − t − 1, Ntotal is the total number of frames in the sequence. Since a gait period

consists of two steps, it can be naturally estimated as frame shift corresponding to the second

peak of the NAC. Fig 3 shows an example of gait period analysis using NACs, where the period

transition position is defined at the zero-crossing point along the positive-to-negative direc-

tion. The gait period Tgait can thus be determined by the 2nd period transition position.

We estimate gait periods by analyzing the whole gait silhouette due to its better robustness

as compared with aspect ratio [9, 15, 43]. Fig 4 shows an example, where shadow and occlusion

exist in the extracted silhouettes. In this case, it is difficult to estimate the gait period precisely

by using the aspect ratio of the silhouette bounding boxes which has little change across several

consecutive frames. Comparatively, the whole gait silhouettes still demonstrate clear change

due to the continuous motion.

Fig 3. Gait period analysis: (a) The gait silhouettes for the extracted figure-centric images of a walking person; (b) The estimated NACs; and (c) The first-order

derivative curve of NACs.

https://doi.org/10.1371/journal.pone.0214389.g003
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Gait view estimation. Instead of estimating views on the extracted gait features [10],

we first conduct trajectory analysis to estimate the pedestrian’s walking view before feature

extraction. Specifically, the barycenter of a person is tracked as his/her walking trajectory,

and the trajectory within several adjacent gait cycles is approximated as a straight line. The

gait view can thus be estimated by calculating the angle between his/her working lines and

the camera’s observation direction. Note that the observation view direction for a given cam-

era can be obtained from the camera’s calibration information by using some existing cali-

bration method, e.g., [44].

Firstly, the barycenter of the mth person at the tth frame, expressed as a 2-D column vector,

is calculated as the weighted center of the gait silhouette:

bm
ðtÞ ¼

1

XW

x¼0

XH

y¼0

smðx; y; tÞ

XW

x¼0

XH

y¼0

x� smðx; y; tÞ

1

XW

x¼0

XH

y¼0

smðx; y; tÞ

XW

x¼0

XH

y¼0

y� smðx; y; tÞ

0

B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
A

; ð2Þ

where W and H are the width and height of the bounding box of the current silhouette. Here

sm(x, y, t) is 255 for foreground person pixels 0 for background pixels.

The walking trajectory can be generated within a gait period once the barycenter is avail-

able. Specifically, the straight line of the ith gait cycle can be estimated by:

arg min
ki;1 ;ki;2 ;ki;3

XTgait

t¼0

ki;1

ki;2

2

4

3

5

T

bm
ði� Tgait þ tÞ þ ki;3 ð3Þ

where {ki,j|j = 1, . . ., 3} are three parameters, T denotes matrix transpose and Tgait is the frame

number of each estimated gait period. As ki,3 does not affect the observed view angle between

the walking trajectory and the direction of the camera, parameters {ki,j|j = 1, 2} are used to rep-

resent the estimated ith walking trajectory line.

Algorithm 1: The walking trajectory fitting (WTF) algorithm.
Input: the pre-defined threshold Thθ,

the total number of gait periods in the sequence Ttotal,
the frame number of each gait period Tgait;

Fig 4. An example of gait silhouettes extracted from a real free-view scene: (a) A sample frame from the Camera WMHD in the PKU HumanID dataset, where three

pedestrians are labeled using color bounding boxes (green for subject 0, yellow for subject 6 and blue for subject 8); (b), (c) and (d) The extracted gait silhouettes for

the three subjects.

https://doi.org/10.1371/journal.pone.0214389.g004
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Output: the number of the estimated walking trajectory lines L, each
with parameters {ki,j|j = 1, 2}i2[1 . . .L].
i = 0;
while i < Ttotal do
w = 0;

while ki,1 = ki+w+1,1 = 0 or
�
�
�
ki;2
ki;1
�

kiþwþ1;2

kiþwþ1;1

�
�
� < Thy do

w = w + 1;
end
if w > 0 then

argmin
ki;1 ;ki;2

Xðwþ1Þ�Tgait

t¼0

ki;1
ki;2

" #T

bm
ði� Tgait þ tÞ;

i = i + w;
end
i = i + 1;

end
L = i;

After segmenting a walking sequence into end-to-end lines, a smoothing strategy is applied

to merge adjacent lines. As described in Algorithm 1, adjacent gait cycles are regarded to be

under the same view angle if they meet the condition ki,1 = ki+w+1,1 = 0 or

�
�
�
ki;2
ki;1
�

kiþwþ1;2

kiþwþ1;1

�
�
� < Thy,

where Thθ is the pre-defined threshold and w + 1 is the size of the current smoothing window.

Adjacent gait cycles will thus be re-fitted into a single line if the angle difference between their

walking lines is less than Thθ. This procedure repeats until there are no more adjacent walking

lines to be merged. In our implemented system, Thθ is empirically set to 15˚.

Note the position of successive barycenters may have little change. One possible reason is

that the person is walking under the frontal or back view of the camera. Under such circum-

stance, the silhouette size change can tell the walking status, e.g., the silhouette size will become

larger when the person is walking towards the camera under the frontal view. Fig 5 visualizes

the WTF based gait view estimation, where the man wearing a grey T-shirt with a backpack is

the target person, the blue line represents his original walking trajectory and the green line

denotes the fitted walking line in the gait period. Under such configuration, the view angle

between the green line and the camera direction can be used to estimate the walking view.

Compared with view classification based on Gaussian Process (GP) [10] or SVM, our WTF

based method can effectively handle challenging situations when a person walks freely, e.g.

when he/she changes the walking direction. In addition, both GP-based and SVM-based meth-

ods leverage the analysis of Truncated GEIs which are prone to shadows in silhouette images

as shown in Fig 4. Our WTF based method is instead more robust under complex scenes in

real-world surveillance videos.

Joint gait manifold

In the joint gait manifold (JGM), human gaits from several adjacent views are treated as multi-

ple manifolds that share the same parameter space. The JGM models the dependency of gait

features across views and generates optimal joint manifolds for gait features of closest gallery

views to the probe view for proper comparison.

Gait feature extraction. We use the GEI feature as the original gait feature due to its

robustness to silhouette errors and image noises [45]. GEI at position (x, y) is defined as:

g x; yð Þ ¼
1

Tgait

XQ

q¼0

XTframe

t¼0

sðx; y; t þ q� TgaitÞ; ð4Þ
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where s(x, y, t) is a pixel located at (x, y) of the tth (t = 1, 2. . .Tframe) silhouette image in the qth

(q = 1, 2. . .Q) gait cycle. Here all Q gait cycles should be under the same view angle. All silhou-

ettes are re-scaled to a fixed width (denoted by W) and height (denoted by H). The original

GEI feature thus becomes an W ×H-dim vector. Linear Discriminant Analysis (LDA) is then

applied to obtain an Ng-dim vector. Fig 6 shows examples of this gait feature for a person

under different views.

Gait similarity evaluation. The gait similarity between the probe and relevant gallery gait

features under the same view can be evaluated after the gait feature extraction. In VTM [46],

a view transformation matrix is constructed from the training data using Singular Value

Decomposition (SVD). Let N and M denote the numbers of the pre-defined views and the sub-

jects, gm
n denote the Ng-dim gait feature of subject m under the nth view angle θn, and vm denote

the intrinsic gait feature of subject m for any view angle (i.e., view-invariant feature). The view

Fig 5. Illustration of the WTF algorithm by using the man wearing a grey T-shirt: The blue line represents his walking trajectory in several gait

cycles, while the green one denotes the fitted walking line in the gait period. For better visualization, all his silhouette images in a gait period are

manually superposed in one picture.

https://doi.org/10.1371/journal.pone.0214389.g005

Fig 6. Examples of the GEI features under different views in the CASIA dataset B.

https://doi.org/10.1371/journal.pone.0214389.g006
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transformation matrix can be denoted as P = [P1, . . ., PN]T [9], where Pn is the Ng ×M subject-

independent matrix that projects the intrinsic feature vector vm to the gait feature vector gm
n

under the view angle θn as follows:

gm
n ¼ Pnvm: ð5Þ

So gait feature transformation from view angle θj to view angle θi can be derived by:

ĝm
jji ¼ PiP

þ

j g
m
j ; ð6Þ

where Pþj is pseudo inverse of Pj, and ĝm
jji is the transformed feature of gm

j on θi.
To address the problem that the probe view angle θi does not belong to any predefined gal-

lery views, we treat the observations of human gaits of adjacent views as multiple manifolds

that share the same parameter space, and introduce the joint gait manifold (JGM) to model the

dependency present in gait features across views. Let yj1 and yj2 denote the two gallery view

angles closest to θi (let yj1 � yi � yj2 without loss of generality), Mj1
and Mj2

be their corre-

sponding gait manifolds. Suppose the probe gait feature gi is collected from an unknown mani-

fold N i, our objective is to learn an optimal joint manifold M�
�M where M ¼Mj1

�Mj2

denotes the product manifold [47] that satisfies the following two conditions: 1) the local

geometries inside Mj1
and Mj2

will be preserved in M�
, and 2) the distance between N i and

M�
will be less than the distance between N i and any other manifold in M. The first condi-

tion ensures that M�
is locally homeomorphic to Mj1

and Mj2
. The second ensures that M�

is the optimal joint manifold and can be used to approximate the unknown manifold N i

(denoted by M�
� N i).

To obtain a joint manifold that satisfies the first condition, [47] suggests to project each

component manifold into a lower-dimensional subspace through random projection. Under

our setting, it can be expressed by

ĝ j1 j2 ji
¼ F�½gj1gj2�

T
¼ ½Fj1

Fj2
�½gj1

gj2
�
T
¼ Fj1

gj1
þ Fj2

gj2
; ð7Þ

where F� ¼ ½Fj1
Fj2
�, and Fj1

(or Fj2
) is the projection matrix in yj1 (or yj2 ). Fig 7 illustrates

this idea, where the transformed gallery gait vector ĝ j1 j2 ji
on the joint manifold can be directly

compared with gi. Note that this idea can be easily extended to the case of k component

manifolds.

One key problem here is how to chose the projection matrix F�. Instead of using random

projection in [47], we exploits the manifold alignment algorithm in [48] which learns two

linear mapping matrices that can project two manifolds to one space so that instances (from

different manifolds) with similar local geometry will be mapped to similar locations. Tech-

nologically, this algorithm formulates the manifold alignment problem as a generalized

eigenvalue decomposition (GEVD) problem. It can be easily shown that Fj1
¼ PiP

þ

j1
and

Fj2
¼ PiP

þ

j2
are exactly the mapping matrices satisfying this problem, where Pi (or Pj) is the

subject-independent matrix extracted from the view transformation matrix [9] that is con-

structed from the training dataset with several available viewing angles, and Pþj is the pseudo

inverse matrix of Pj.

Once Fj1
and Fj2

are available, the remaining problem is whether the joint manifold

M�
¼ fFj1

gj1
þ Fj2

gj2
: gj1
2Mj1

; gj2
2Mj2

g is the optimal one that can approximate N i.

To evaluate this, a direct idea is to check whether the distance between N i and M�
is less than

that between N i and any other manifold in M. Since the probe gait manifold N i is unknown

in the free-view setting, we use the available probe data that are captured from the same view
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angle θi to simulate N i. Let M�
¼ faj1 j2 jiFj1

gj1
þ ð1 � aj1 j2 jiÞFj2

gj2
: gj1
2Mj1

; gj2
2Mj2

g

denote the general form of the joint mainifold of Mj1
and Mj2

where αj1j2|i is a weighting fac-

tor with 0� αj1j2|i� 1. As in [47], three distance measures can be used including minimum
separation distance, maximum separation distance and Hausdorff distance. Among them,

the minimum separation distance establishes the lower bound that guarantees the maximal

similarity between the component manifolds. We therefore adopt it to measure the distance

between two gait manifolds as follows:

dðM�
;N iÞ ¼ inf

ĝ�
j1 j2 ji
2M� ;gi2N i

d ĝ�j1 j2 ji; gi

� �

¼ inf
gj12Mj1 ;gj22Mj2 ;gi2N i

dðaj1 j2 jiFj1
gj1
þ ð1 � aj1 j2 jiÞFj2

gj2
; giÞ

; ð8Þ

where inf represents the infimum and d(�, �) denotes the distance between two gait features in

the same manifold. Here we use the simple L1-norm distance:

dðgi; gjÞ ¼ kgi � gjk: ð9Þ

A smaller value d(gi, gj) means larger similarity between gi and gj. As a result, the optimal

joint manifold can be obtained by:

a�j1 j2 ji ¼ arg min dðM�
;N iÞ

¼ arg min
0�aj1 j2 ji

�1

inf
gj12Mj1 ;

gj22Mj2 ;

gi2N i

dðaj1 j2 jiFj1
gj1
þ ð1 � aj1 j2 jiÞFj2

gj2
; giÞ : ð10Þ

For simplicity, we initialize αj1 j2|i at 0.5 and perform bi-directional linear search with the

step length of 0.05 to find its optimal value.

Fig 7. Illustration of joint gait manifold.

https://doi.org/10.1371/journal.pone.0214389.g007
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The JGM algorithm can be summarized in Algorithm 2. Given the training dataset with sev-

eral available viewing angles, the view transformation matrix can be constructed offline [9].

Then given one probe gait sequence, the corresponding view angle is first estimated, and two

mapping matrices Fj1
and Fj2

can be calculated. After that, the optimal joint manifold M�
is

derived by learning a�j1j2 ji through Eq 10, on which the gait similarity can be directly evaluated.

Note that in the free-view setting, a probe gait sequence typically consists of several gait fea-

tures extracted from different view angles (one example is shown in Fig 5). Let GP = {gi|θi}1,. . .I

denote the probe gait features where θi is the view angle of gi, and I is the number of the esti-

mated probe view angles. Similarly, let Gm
R ¼ fg

m
j jyjg1;...Jm

denote the gallery gait features of

subject m, where Jm is the number of the registered gallery angles for subject m. The average

distance between GP and Gm
R can thus be estimated as follows:

DðGP;G
m
R Þ ¼

1

I

XI

i¼1

dðgi;G
m
R Þ ð11Þ

where

dðgi;G
m
R Þ ¼

kgi � gm
j k or gi � ĝm

jjþ

�
�
�

�
�
�; if j yi � yj j< �;

gi � a�j1 j2 jiFj1
gm
j1
þ ð1 � a�j1 j2 jiÞFj2

gm
j2

� ��
�
�

�
�
�;

otherwise:

8
>>>><

>>>>:

ð12Þ

where yj1 and yj2 are two registered gallery view angles closest to θi for subject m, with

yj1<θi<yj2 , ĝm
jjþ is calculated from the available gallery gait features of subject m using Eq (6),

and � is a threshold of the angle difference so that the gait features from the two angles can be

directly compared without the risk of the obvious degradation of recognition accuracy (Note

� = Thθ in our experiments).

Algorithm 2: The Joint Gait Manifold (JGM) algorithm.
Input: the probe gait features GP = {gi|θi}1,. . .I from a probe gait

sequence,
the gallery gait features Gm

R ¼ fgm
j jyjg1;...Jm

of subject m,

the pre-constructed view transformation matrix P = [P1, . . ., PN]
T;

Output: the distance DðGP;G
m
R Þ.

for i = 1 to I do
if jθi − θjj< � where yj 2 fykg1;...Jm

then
if 9gmj then

dðgi;G
m
R Þ ¼

�
�gi � gm

j

�
�;

else
Calculate the transformed feature ĝm

jjþ from the available gallery
gait features of subject m using Eq 6;

dðgi;G
m
R Þ ¼ gi � ĝm

jjþ

�
�
�

�
�
�;

end
else
Let yj1 and yj2 denote the two gallery view angles closest to θi;
Calculate the mapping matrices Fj1

¼ PiP
þ

j1
and Fj2

¼ PiP
þ

j2
;

Find the optimal value a�j1 j2 ji using Eq 10;
dðgi;G

m
R Þ ¼ kgi � ða

�
j1 j2 ji

Fj1
gm
j1
þ ð1 � a�j1 j2 jiÞFj2

gm
j2
Þk;

end
end
DðGP;G

m
R Þ ¼

1

I

PI
i¼1

dðgi;G
m
R ÞÞ;
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The computational complexity of this algorithm mainly lies on the offline construction of

the view transformation matrix and the online optimization of the joint manifold weight a�j1 j2 ji.

Basically, the construction of the view transformation matrix is determined by the Truncated

SVD (TSVD), which requires the computational complexity of OðminðM2N;MN2ÞÞ at most

where M and N are the numbers of the training subjects and views. For the calculation of a�j1 j2 ji,

at most 10 times of distance computations are needed, totally with the computational complex-

ity of OðN3
g Þ where Ng is the dimension of each gait feature. Thus the online computational

complexity of this algorithm is approximate to OðIN3
g Þ for each probe gait sequence. Overall

speaking, the JEM algorithm is computationally efficient.

RankSVM-based gallery data supplementing

In real-world surveillance scenes, it is often difficult to collect and annotate the gait data

from all pre-defined views. This is especially true for some specific subject, e.g., criminal sus-

pects. As a result, we may not be able to find the gallery data whose views are close to the

probe view. Obviously, a large difference between probe views and gallery views would lead

to performance drop [5, 11]. To address this problem, we develop a RankSVM-based algo-

rithm that supplements gait data when gallery features are only available in certain pre-

defined views.

In order to approximate the gallery gait feature gm
i of subject m under a specific view

angle θi, we make use of the gallery gait features fgn
i gn2AðmÞ of the neighboring subjects AðmÞ

(referred to as view-intrinsic approximation), as well as other gallery gait features fgm
j g of sub-

ject m that are closest to θi (referred to as subject-intrinsic approximation). According to the

discussion in the previous section, the subject-intrinsic approximation can be obtained by Eq

7. While for view-intrinsic approximation, we need to obtain AðmÞ in the case of gm
i being

missed. In [49], a View Feature Recovering Model (VFRM) was proposed to recover the miss-

ing data with the average of the gait features of K-nearest-neighboring subjects, where the

neighborhood was measured using the Geodesic distance. Instead of using unsupervised mod-

els, this study utilizes supervised learning-to-rank methods to learn the neighborhood among

subjects, which has been successfully applied in person re-identification [50] and gait recogni-

tion [51].

Let Gm ¼ fgm
u g denote the gallery gait features of subject m where gm

i is missed, and simi-

larly Gn ¼ fgn
vg for subject n but gn

i exists. Here we assume that when the gait feature of a

subject is unavailable under θi, there exists at least one of other subjects whose gait data under

θi are available in the gallery dataset. Let fyj1 ; yj2 ; . . . ; yjxg denote the common view angles

between Gm and Gn, the objective of the learning-to-rank model is to learn the neighborhood

rank between m and n, denoted by yn;m ¼ RðjGn � GmjÞ, by utilizing the gait features from

these common views, namely,

yn;m ¼ f ðΔn;m
Þ; ð13Þ

where Δn;m
¼ ½jgn

j1
� gm

j1
j; . . . ; jgn

jx
� gm

jx
j�
T

denotes the entry-wise difference matrix between the

gait features of m and n under fyj1 ; yj2 ; . . . ; yjxg, and f() is the ranking scoring function. With

Δn,m as the input, the learning-to-rank model outputs a ranking score yn,m. If yn1,m�yn2,m, sub-

ject n1 is nearer to subject m than subject n2.

This model can be further decomposed into several sub-problems, each of which corresponds

to a gait feature ranking problem. Let Δn;m
t denote the tth row of Δn,m, i.e., Δn;m

t ¼ jg
n
t � gm

t j, the
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scoring function becomes:

f ðΔn;m
Þ ¼

1

jx

X

t

f ðΔn;m
t Þ ¼

1

jx

X

t

wTΔn;m
t ; ð14Þ

where w indicates the importance of the feature distances in measuring the neighborhood and it

can be shared across different views. Similar to [50, 51], RankSVM is used to learn the optimal

w since it is suitable for a large-scale learning problem even with more missing data. Technologi-

cally, RankSVM aims to solve the following optimization problem [51]:

1

2
kwTk

2
þ C

XjPj

p¼1

xp

s:t: wTðΔþp � Δ�p Þ � 1 � xp; xp > 0;

ð15Þ

where p is the index of the preference pairs fðΔþp ;Δ
�

p Þg, Δ
þ

p (or Δ�p ) is the difference vector

between a gait feature gp and its matching feature gþp (or non-matching feature g�p ), |P| is the

total number of the preference pairs used for training, C is a positive importance weight on the

ranking performance, and ξp is the hinge loss used in SVM. Note that the preference pairs can

be constructed by treating each gait sequence in the training set as gp while all the remaining

gait sequences in the same view as eithor gþp or g�p depending on its relevance indicator with

respect to gp. By going through all pairs, this problem can be efficiently solved with the Newton

method.

After obtaining the neighborhood of subject m, gm
i can be approached by a combination of

subject-intrinsic and view-intrinsic approximations as follows:

~gm
i � Fi1

gm
i1
þ Fi2

gm
i2

� �
þ
l

K

X

n2AðmÞ

gn
i ; ð16Þ

where λ is the weighting factor of the two approximations (λ = 0.1 in our system), and other

symbols are defined above. Extensive evaluations validate the effectiveness of this gallery data

supplementing algorithm, to be discussed in the following section.

Experiments

Experimental setups

Datasets. The proposed technique is evaluated and benchmarked with the state-of-the-art

over two gait datasets: CASIA gait dataset B [11] and PKU HumanID [12].

The CASIA gait dataset B (CASIA-B) contains 124 subjects from 11 view angles (0˚, 18˚,

36˚, 54˚, 72˚, 90˚, 108˚, 126˚, 144˚, 162˚and 180˚). For each subject under each view, there are

10 walking sequences consisting of 6 normal walking sequences denoted by NM, 2 carrying-

bag sequences denoted by BG and 2 wearing-coat sequences denoted by CT. This databset was

originally designed to evaluate multi-view gait recognition under view changes. In order to

evaluate the recognition performance on a controlled free-view scene, two variants were con-

structed by: 1) manually removing the training and gallery data corresponding to the probe

view and its mirroring view (called the view missing variant); and 2) by randomly removing

different proportions of the training and gallery data (called the data missing variant). Since

frontal and back views provide little gait information, the gait sequences from 11 views (i.e.,

from 0˚-180˚) were used for view estimation, but only sequences from 9 views (i.e., from 18˚-

162˚) for gait recognition.

Free-view gait recognition
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The PKU HumanID Dataset (PKU) is an outdoor dataset captured in a completely uncon-

trolled environment. It consists of videos of 18 labeled subjects across 11 cameras on a campus

where all subjects are masked with bounding box manually. As subjects are walking freely and

unpredictably, some subject may not appear in all cameras and it is almost impossible to col-

lect the gait features of each subject across all view angles. Moreover, gait sequences from sev-

eral cameras (e.g., HD04, HD05 and XDMN) were excluded due to the existence of highly-

cluttered background and highly-disordered pedestrian movement. Fig 8 shows several sample

images of the labeled subjects and their walking trajectories in this dataset. Table 1 briefly

describes all these sequences. In our experiments, sequences of 8 subjects from all cameras

were used for training, while the sequences of the remaining 10 subjects were used for testing.

Setups. Two sets of experiments were designed as listed:

1. The first set was designed to evaluate the recognition performance in controlled free-view

scenes. It was performed on the CASIA-B dataset.

2. The second set was designed to evaluate the recognition performance in uncontrolled free-

view scenes. It was performed on the PKU dataset.

All experiments were performed on a PC sever with 2.0GHz CPU and 2G RAM.

Free-view gait recognition in controlled scenes

This set of experiments evaluate the free-view recognition of our VAM in controlled scenes.

These experiments were performed on the two variants of CASIA-B, where 24 subjects were

used for training and the rest 100 subjects were used for testing.

The first experiment is conducted over the data missing variant of CASIA-B, where differ-

ent proportions of the training and gallery data (here 10%, 30% and 50%) are randomly aban-

doned. The objective is to evaluate the VAM robustness by simulating a common setting of

free-view gait recognition. The improved VTM [9] with full data was used for comparison. Fig

9 shows experimental results. We can see that VAM with 10% missing data gives similar per-

formance as the VTM trained with full data. When the proportion of missing data reaches

30% and 50%, the VAM recognition rate is even higher than 0.6 in most cases. This shows that

VAM has better robustness when only partial training and gallery data are available.

The second experiment is conducted over a more challenging case by combining the view

missing and data missing variants of CASIA-B, i.e., only one view is kept while the probe view

Fig 8. Examples from the PKU dataset: The first row shows sample images with labelled pedestrians in cameras HD01, HD02-1, WMHD-1 and YTX-1, and the

second row shows the corresponding pedestrian centroid trajectory.

https://doi.org/10.1371/journal.pone.0214389.g008
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and 50% data of the other views are missing in the training and gallery sets. Since only data in

one view is completely available in the training set, two variants of VFRM [49] (i.e., L-VFRM

and R-VFRM which are similar to L-VTM and R-VTM except that they utilize the GKNN-

based algorithm to recover the incomplete training data and then generate the VTM matrix)

and D-match [11] (direct matching across two views using gait features) are used for compari-

son. Experimental results are shown in Fig 10, where the x-coordinate denotes the current

gallery view angle whose data is kept in the training set. We can see that the gait recognition

degrades heavily compared with the results in Fig 9. This is reasonable as the available training

Table 1. A brief description of different gait sequences in the PKU dataset.

Camera Persons Labeled subject View

HD01 30 3, 6, 7, 12, 13 back

HD02-1 33 1, 2, 3, 4, 6, 7, 8, 9, 12, 13 back

HD02-2 65 1, 2, 3, 4, 6, 7, 8, 9, 12, 13, 14, 15, 16, 17, 18 front

BWBQ 51 5, 7, 9, 11, 12, 13, 14, 15, 16, 17, 18 front

DCM 87 1, 7, 11, 12, 13, 14, 15, 16, 17, 18 front

WMHD-1 139 1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18 front

WMHD-2 66 1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18 back

YTX-1 150 1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18 back

YTX-2 73 1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18 front

https://doi.org/10.1371/journal.pone.0214389.t001

Fig 9. Results of free-view gait recognition in the data missing variant of CASIA-B, where different proportions of the training and gallery data were randomly

abandoned.

https://doi.org/10.1371/journal.pone.0214389.g009
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data are much less and the task actually becomes a cross-view recognition problem. Even in

this case, the proposed VAM still outperforms the other three baseline methods clearly.

Free-view gait recognition in uncontrolled scenes

The last experiment is to evaluate the free-view gait recognition of the VAM on the PKU data-

set. In this real-world free-view dataset, subjects walk freely while each subject may not appear

at all cameras. Thus all components in the VAM should work together to complete the recog-

nition process. To the best of our knowledge, this is the first work for free-view gait recogni-

tion in uncontrolled scenes. We modified several existing gait recognition methods by adding

certain modules (e.g., view angle estimation) and use them as the reference methods. They

include D-match [11], CCA [10], PrRankSVM [51], and VTM [9]. Among them, CCA and

PrRankSVM are two state-of-the-art cross-view gait recognition methods, while VTM is a

modified version of the original VTM [9] by directly selecting the nearest gallery view to the

probe data for view transformation as approximation [20].

Even in the view field of the same camera, a person may walk freely, and his/her walking

directions may change randomly. Thus in each trial, we selected the gait sequences from one

camera as the probe data and the sequences from other cameras as the gallery data. Fig 11

shows experimental results. We can see that VAM achieves the highest recognition rate on

Fig 10. Results of free-view gait recognition where only one view (i.e., marked in the x-coordinate) is kept while the probe view and 50% data of the other views are

missing in the training and gallery sets of CASIA-B.

https://doi.org/10.1371/journal.pone.0214389.g010
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average, and outperforms other compared methods remarkably. This validates the VAM’s

effectiveness for free-view gait recognition.

Due to the lack of sufficient training data, some reference method may perform worse than

the baseline (i.e., D-match). Among them, CCA exhibits relatively good recognition perfor-

mance in most cases, except when BWBQ and HD01 were treated as the probe data camera.

It should be noted that all compared methods including our VAM perform worse on this data-

set as compared with CASIA-B. Additionally, the recognition rates are overall very low and

unsuitable for applications in real-world free-view scenes. There is still a long way towards

usable free-view gait recognition.

Discussion

The performance of the VAM depends heavily on our designed view angle estimation, joint

gait manifold and gallery data supplementing. We evaluate the three designs one by one,

where the view estimation is evaluated over both CASIA-B and PKU datasets and the other

two are evaluated on the CASIA-B only.

View angle estimation. The proposed WTF was compared with GP-based and SVM-

based methods [10]. The gait sequences in NM, BG and CT of CASIA-B were divided into two

Fig 11. Results of free-view gait recognition on the PKU dataset.

https://doi.org/10.1371/journal.pone.0214389.g011
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equally-size subsets, one for training and the other for testing. Table 2 shows experimental

results, where the proposed WTF obtains clear better results than SVM-based and GP-based

classifiers. In particular, it achieves satisfactory results under all co-variate conditions and

across all views, and even works well for the cases of frontal view (0˚and 18˚) and back view

(162˚and 180˚). Note the SVM-based classifier gets poor results for some views (e.g., 54˚,

108˚and 126˚) due to its limited robustness.

Table 3 shows the view angle estimation results on the PKU dataset, where the WTF outper-

forms the SVM-based and GP-based methods as well. Due to the very low quality of the pedes-

trians’ silhouettes, both SVM-based and GP-based methods do not perform well and they also

fail to recognize view angles when heavy occlusions exist (e.g. Cameras DCM and WMHD).

As a comparison, the WTF is much more robust even with heavy occlusions as far as the sub-

jects’ walking trajectories are identified explicitly.

To evaluate how the view angle estimation will affect the gait recognition performance, we

test the VAM by using the ground-truth or estimated view angles of the probe data. Experi-

ments show that the gain in the Rank-1 recognition is less than 1% on the CASIA-B and 2% on

the PKU on average. This validates that better view angle estimation does help for better gait

recognition though the gain is not significant. There are two possible reasons. First, our view

angle estimation is based on the analysis of pedestrian’s walking trajectory that can guarantee

differences between the estimated angles. If wrongly estimated, the corresponding ground-

truth (or its mirroring view angle in CASIA-B) should be quite small. Second, if the wrongly-

estimated view angle is close to the corresponding ground-truth or its mirroring view angle,

the VAM can learn an optimal manifold for gait similarity evaluation.

Joint gait manifold. The joint gait manifold (JGM) evaluate the gait similarity between

the probe and relevant gallery data by using the optimal joint manifold that is constructed

from two closest reference view angles yj1 and yj2 (here yj1 < yi < yj2 ) to the probe view angle

θi. Similar to the discrete view transformation [20], two baseline methods were benchmarked:

the VTM [9, 46] that transforms the gallery gait features to yj1 (denoted as L-VTM), and the

VTM that transforms the gait features to yj2 (denoted as R-VTM). To test whether more than

Table 2. View estimation results (%) for each view on CASIA-B.

Case Method 0˚ 18˚ 36˚ 54˚ 72˚ 90˚ 108˚ 126˚ 144˚ 162˚ 180˚ AVG

NM WTF 99.0 98.6 91.0 96.3 87.0 89.0 91.0 98.9 82.3 100.0 100.0 93.92

GP - - 84.0 91.2 85.3 74.0 86.0 91.2 93.5 - - 86.46

SVM - - 94.9 40.5 85.4 64.3 24.0 43.6 98.0 - - 64.39

BG WTF 100.0 95.0 86.0 95.9 91.0 90.0 90.0 89.0 82.3 96.9 100.0 92.37

GP - - 83.4 88.7 84.9 68.6 83.0 92.7 93.5 - - 84.97

SVM - - 96.1 41.8 79.3 62.6 28.1 50.6 97.9 - - 65.20

CT WTF 100.0 96.0 88.0 90.1 87.1 85.7 87.6 98.0 87.8 99.0 98.0 92.48

GP - - 84.0 91.2 85.3 74.0 86.0 91.2 93.5 - - 86.46

SVM - - 93.7 50.0 81.0 61.2 22.5 41.5 96.6 - - 63.79

https://doi.org/10.1371/journal.pone.0214389.t002

Table 3. View estimation results (%) for each camera on the PKU database.

Method HD01 HD02-1&2 BWBQ DCM WMHD-1&2 YTX-1&2 AVG

WTF 100.0 81.8 81.3 96.8 88.9 81.5 88.38

GP 50.0 45.5 62.5 29.0 37.0 51.8 45.97

SVM 50.0 63.6 56.3 12.9 14.8 66.7 44.05

https://doi.org/10.1371/journal.pone.0214389.t003
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two reference views are better for gait recognition, we also extended the JGM with four or

eight reference views as denoted by JGM_4 and JGM_8, respectively. For JGM_4, the gallery

gait features from view angles θi − 36, θi − 18, θi + 18 and θi + 36 are used. All evaluations are

performed over the view missing variant of CASIA-B.

Experimental results are shown in Fig 12. As Fig 10 shows, all JGM versions outperform the

two VTM variants remarkably. This validates the effectiveness of the proposed JGM, and also

shows that simply choosing the closest view to the probe data for view transformation [20] is

not optimal. Moreover, JGM_2, JGM_4 and JGM_8 produce very similar recognition, mean-

ing that including more reference views won’t improve JGM much. It is thus reasonable to

select two reference views for the JGM. We also observe that the recognition rate of the JGM at

rank 1 is pretty good and even comparable to that at top 10 in most cases.

In terms of efficiency, we have shown that the JGM algorithm only include some operation

over the VTM for online optimizing the joint manifold weight. It incurs the additional computa-

tional complexity of OðIN3
g Þ for each probe gait sequence that consists of I gait features extracted

from different view angles. Considering that the magnitude of Ng is not so big in practical appli-

cations, this additional computation is fair and manageable. Our experiments also show that it

takes additional computational cost of 500ms to 2s for different probe gait sequences.

Gallery data supplementing. The objective of this experiment is to evaluate the effective-

ness of our RankSVM-based gallery data supplementing. Two baseline methods, GKNN and

Fig 12. Gait recognition results using JGM and VTM on the CASIA-B, where L-VTM and R-VTM are two implementation versions of VTM [9, 46] and JGM_n
denotes the JGM with n reference views (n = 2, 4, 8).

https://doi.org/10.1371/journal.pone.0214389.g012
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KNN [49], were used for comparison. The first experiment was conducted over the view miss-

ing variant of CASIA-B, where the discarded data is used as the probe in each trial while the

supplemented data as the gallery. For a set of queries, Mean Average Precision (mAP) is

defined as the mean of the average precision scores [52]. Fig 13 shows the mAP@n results for

n� 50. We can see that the results of RankSVM are much better than those of GKNN and

KNN which means better recognition could be expected when using RankSVM to supplement

the missing data.

The second experiment is performed on the data missing variant of CASIA-B, where differ-

ent proportions of data were discarded randomly (here 10%, 30%, and 50%). In this case, the

recovering error rate is used for evaluation:

r ¼

XV

v¼1

XM

m¼1

k~gm
v � gm

v k

XV

v¼1

XM

m¼1

kgm
v k

ð17Þ

where ~gm
v and gm

v are the supplemented and original gait features for subject m under the view

angle θv. A smaller r means higher similarity between the supplemented and original data. As

shown in Table 4, RankSVM outperforms both GKNN and KNN remarkably, especially for a

large missing proportion. RankSVM thus shows higher robustness in dealing with the gallery

data supplementing problem.

Conclusion

This study identifies free-view gait recognition as a new type of gait recognition challenge in

the real-world scenes, where gait sequences are captured from uncontrolled scenes and the

Fig 13. mAP in the gallery data supplementing experiment where data from a random view angle and its mirroring view are discarded for each subject.

https://doi.org/10.1371/journal.pone.0214389.g013

Table 4. Recovering error rates when different proportions of gallery data are missing.

Method Percent of missing data

10% 30% 50%

RankSVM 0.026 0.029 0.039

GKNN 0.026 0.074 0.098

KNN 0.025 0.077 0.111

https://doi.org/10.1371/journal.pone.0214389.t004
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probe view angles are unknown, dynamically changing, or without pre-defined views in the

gallery dataset. We propose a novel view-adaptive mapping (VAM) approach to address

these challenges. Specifically, VAM designs walking trajectory fitting to estimate the view

angles of a gait sequence, joint gait manifold to approximate the unknown probe manifold,

and RankSVM-based algorithm to supplement the gallery data for subjects whose gallery fea-

tures are partially available. Experiments on indoor and outdoor datasets demonstrate the

superior performance of the proposed VAM under the free-view gait recognition setting.

Moving forwards, we will further improve the VAM and verify its effectiveness in larger

and more challenging datasets. One promising direction is to introduce deep features into the

gait recognition framework to improve the recognition accuracy and robustness, targeting

applications in real-world gait recognition in the near future.
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