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Abstract

Background

The mechanisms underlying autism spectrum disorder (ASD) remain unclear, and clinical

biomarkers are not yet available for ASD. Differences in dysregulated proteins in ASD have

shown little reproducibility, which is partly due to ASD heterogeneity. Recent studies have

demonstrated that subgrouping ASD cases based on clinical phenotypes is useful for identi-

fying candidate genes that are dysregulated in ASD subgroups. However, this strategy has

not been employed in proteome profiling analyses to identify ASD biomarker proteins for

specific subgroups.

Methods

We therefore conducted a cluster analysis of the Autism Diagnostic Interview-Revised (ADI-

R) scores from 85 individuals with ASD to predict subgroups and subsequently identified

dysregulated genes by reanalyzing the transcriptome profiles of individuals with ASD and

unaffected individuals. Proteome profiling of lymphoblastoid cell lines from these individuals

was performed via 2D-gel electrophoresis, and then mass spectrometry. Disrupted proteins

were identified and compared to the dysregulated transcripts and reported dysregulated

proteins from previous proteome studies. Biological functions were predicted using the
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Ingenuity Pathway Analysis (IPA) program. Selected proteins were also analyzed by West-

ern blotting.

Results

The cluster analysis of ADI-R data revealed four ASD subgroups, including ASD with severe

language impairment, and transcriptome profiling identified dysregulated genes in each sub-

group. Screening via proteome analysis revealed 82 altered proteins in the ASD subgroup

with severe language impairment. Eighteen of these proteins were further identified by

nano-LC-MS/MS. Among these proteins, fourteen were predicted by IPA to be associated

with neurological functions and inflammation. Among these proteins, diazepam-binding

inhibitor (DBI) protein was confirmed by Western blot analysis to be expressed at signifi-

cantly decreased levels in the ASD subgroup with severe language impairment, and the DBI

expression levels were correlated with the scores of several ADI-R items.

Conclusions

By subgrouping individuals with ASD based on clinical phenotypes, and then performing an

integrated transcriptome-proteome analysis, we identified DBI as a novel candidate protein

for ASD with severe language impairment. The mechanisms of this protein and its potential

use as an ASD biomarker warrant further study.

Introduction

Autism spectrum disorder (ASD) is a group of neurodevelopmental disorders thought to

result from both genetic and environmental factors [1–4]. The Centers for Disease Control

and Prevention (CDC) has reported that the prevalence of ASD is approximately 1 in 59

children in the United States [5]. According to the Diagnostic and Statistical Manual of

Mental Disorders—Fifth Edition (DSM-5), ASD is characterized by (i) impairments in

social interaction and communication and (ii) repetitive behaviors and restricted interests,

without further subclassification into specific ASD subtypes [6]. However, there is a high

degree of variation in ASD symptoms and severity. Some individuals with ASD exhibit

severe language deficits, including a lack of verbal communication, whereas many others

show little impairment in language and are capable of communication with others [7]. Such

heterogeneity in the autism spectrum is thought to result from the combination of multiple

molecular mechanisms and environmental factors, leading to the pathobiology specific to

the clinical phenotypes of each ASD subpopulation. There is evidence that dividing individ-

uals with ASD into subgroups is meaningful for identifying gene/protein candidates and

molecular mechanisms that are uniquely associated with each ASD subpopulation and

shared among subpopulations, which may be useful for ASD diagnosis and/or treatment in

the future [8–17]. However, clinical biomarkers are not available for ASD diagnosis or the

specific differentiation of severity. Accurate predictive clinical biomarkers for the diagnosis

and confirmation of the disorder, as well as for ASD subtyping, are still needed.

Several studies involving transcriptome profiling analysis of lymphoblastoid cell lines

(LCLs) derived from patients with ASD and unaffected controls have revealed a number of

transcripts that are differentially expressed in this condition [15–18]. Interestingly, these tran-

scripts include genes that are known to be associated with neurological functions that are
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negatively impacted in ASD. The protein products encoded by some of the differentially

expressed genes found in LCLs, including RORA and BCL2, also show reduced expression in

the brains of individuals with ASD [14]. In addition to coding transcriptome profiling, several

studies have investigated non-coding RNA transcripts in LCLs [19,20]. Among the dysregu-

lated miRNAs in LCLs, miR-23a and miR-106b were reported to exhibit altered expression by

Abu-Elneel et al. (2008) [21], who studied postmortem cerebellar tissue from patients with

autism, suggesting that altered levels of certain transcripts in LCLs may reflect the molecular

pathological condition of ASD in the brain. These data support the use of LCLs as a surrogate

cell population for studying ASD. The levels of certain transcripts, such as RORA, were found

to correlate with the levels of their protein products and could provide insights into important

molecular mechanisms associated with ASD [13,22–24]. However, most of the differentially

expressed transcripts related to ASD show little correlation with the levels of their encoded

proteins, which is likely due to post-transcriptional regulatory processes. Moreover, differ-

ences in the genes and transcripts associated with ASD have shown little or no reproducibility

in different cohorts, which is partly due to the high degree of heterogeneity in the autism

spectrum.

Several studies have therefore conducted proteome analyses of ASD samples using various

tissue types, including postmortem brain tissues [25], serum [26–28], plasma [29–31], lympho-

cytes [32], neonatal blood [33,34], urine [35], and saliva [36–38]. Broek et al. (2014) conducted

targeted selected reaction monitoring mass spectrometry (SRM-MS) analysis of postmortem

brain tissues from the prefrontal cortex and cerebellum of individuals with ASD and matched

controls [25]. Several proteins associated with myelination, synaptic vesicle regulation, and

energy metabolism have been reported to be dysregulated in ASD brain tissues. In addition, in

search of potential biomarkers, several studies have interrogated proteome profiles in the

peripheral blood of patients with ASD. Corbett et al. (2007) performed liquid chromatogra-

phy-electrospray ionization-mass spectrometry (LC-ESI-MS) with time-of-flight (TOF) to

identify differentially expressed peptides in the serum of children with ASD compared to typi-

cally developing children [26]. These authors reported that apolipoprotein (apo) B-100, com-

plement factor H-related protein (FHR1), complement C1q, and fibronectin 1 (FN1) were

dysregulated in serum from individuals with ASD. Moreover, Ngounou et al. (2014) per-

formed a proteomic analysis of serum from individuals with ASD and unaffected controls

using Tricine-PAGE followed by LC-MS/MS analysis [28]. ApoA1 and ApoA4, which are

involved in cholesterol metabolism, and PON1, which is involved in detoxification, were

found to be significantly differentially expressed between the groups. A multiplex immunoas-

say profiling analysis of serum samples from 37 individuals with a diagnosis of ASD and their

matched, nonaffected siblings revealed age-dependent differences in the levels of 12 proteins

involved in inflammation, growth, and hormonal signaling, emphasizing the importance of

subgrouping and the analysis of samples by age in ASD proteomic studies [27]. Cortelazzo

et al. (2016) analyzed plasma proteins in 30 subjects with ASD and 30 individuals with typical

development [30]. A total of 12 proteins were found to be dysregulated, with 10 being associ-

ated with the acute inflammatory response. Moreover, cytokine profiling analysis of neonatal

blood spots from children with ASD revealed that interleukin (IL)-1β and IL-4 were associated

with ASD [34]. Interestingly, these relationships were reported to vary by ASD symptom sever-

ity. Elevated IL-4 was associated with increased odds of severe ASD, whereas IL-1β was associ-

ated with increased odds of mild/moderate ASD, suggesting that subgrouping ASD based on

symptom severity might be useful for identifying blood-based specific markers for ASD sub-

populations. Although several proteomic studies can be found in the literature, one of the

challenges of ASD proteomic research is that the levels of candidate proteins seem to show

little or no reproducibility in independent cohorts. This critical issue, which impedes the
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understanding of ASD proteome biology and the identification of protein markers, is the result

of (i) technical issues, including different levels of proteome coverage and varying information

provided by proteomic platforms, and (ii) biological complexities, such as the heterogeneity of

the autism spectrum and different tissue types.

In the present study, we therefore sought to investigate the proteome profiles of patients

with ASD by reducing the heterogeneity of the ASD population using a phenotypic subgroup-

ing strategy that we employed in recent studies [10,16,17,39–41], followed by transcriptome

and proteome profiling analyses. First, a cluster analysis of clinical phenotypes obtained from

the Autism Diagnostic Interview-Revised (ADI-R) scores from individuals with ASD was per-

formed to identify subgroups/clusters of ASD based on clinical phenotypes. Transcriptome

profile data of LCLs from these individuals and age-/sex-matched unaffected individuals were

obtained from the NCBI GEO DataSets database and reanalyzed to identify differentially

expressed genes in both the ASD population as well as in each ASD subgroup. Moreover, pro-

teome profiling analysis of LCLs from a subgroup of patients with ASD with severe language

impairment and age-/sex-matched unaffected individuals was conducted. These data were

compared to lists of differentially expressed transcripts as well as significant results from previ-

ous proteomic studies. Biological functions and pathways related to these proteins were pre-

dicted, and selected proteins were further validated via a Western blot analysis and correlated

with the scores of ADI-R items.

Materials and methods

Collection of ADI-R data and identification of phenotypic subgroups

Scores from a total of 123 items in ADI-R structured interviews of 85 male individuals with

ASD were obtained from a previously published study by Hu and Steinberg (2009) [41]. These

ADI-R score sheets were downloaded from the Autism Genetic Research Exchange (AGRE)

phenotype database [42], and the individuals were selected based on previously described cri-

teria [16]. Briefly, all individuals with ASD were males diagnosed through an ADI-R diagnostic

interview. Individuals with cognitive impairment (Raven’s scores <70), those with known

genetic or chromosomal abnormalities (e.g., Fragile X, Rett syndrome, tuberous sclerosis,

chromosome 15q11–q13 duplication), those born prematurely (<35 weeks gestation), and

those with diagnosed comorbid psychiatric disorders (e.g., bipolar disorder, obsessive compul-

sive disorder, severe anxiety) were excluded. Impairment of spoken language was additionally

confirmed based on low standard scores (<80) in the Peabody Picture Vocabulary Test.

LCLs from these individuals with ASD (n = 85) and sex-/age-matched unaffected individu-

als (n = 29) have been subjected to transcriptome profiling analysis [16], and the transcriptome

profile data of the LCLs from these individuals have been deposited in the NCBI GEO DataSets

repository [43] (GSE15402). The majority of the controls (24 out of 29) were unrelated to the

cases, whereas 5 were unaffected siblings. The demographic information for all individuals

examined in this study is shown in S1 Table.

Unsupervised hierarchical clustering (HCL) analysis and principal component analysis

(PCA) of the ADI-R data were performed using Multiple Experiment Viewer (MeV) (http://

mev.tm4.org; [44]) as previously described [41] to identify phenotypic subgroups based on

clustering patterns. The use of lymphoblastoid cell lines in this study was reviewed by the

GWU Office of Human Research and determined to be “Exempt” from full IRB review for

human subject research because all of the cell lines and phenotypic data used in this study

were deidentified with respect to the donor. Moreover, there were never any direct interac-

tions with any of the individuals whose cells were employed in this study.
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Reanalysis of transcriptome profile data

To identify differentially expressed genes in each ASD phenotypic subgroup, the transcriptome

profiles of LCLs derived from individuals with ASD and sex-/age-matched unaffected individ-

uals were downloaded from the gene expression profiling results of Hu et al. (2009) (GSE

number: GSE15402) in the NCBI GEO DataSets database [16]. In addition to the GSE15402

study, we obtained transcriptome data from four other gene expression profiling studies

involving peripheral blood cells or cell lines derived from peripheral blood cells from the

NCBI GEO DataSets database (GSE25507, GSE6575, GSE18123, and GSE42133) [45–48]. Dif-

ferentially expressed transcripts from each study were then identified, as described in previous

reports [8,9]. The normalized transcriptome data were uploaded to the Multiple Experiment

Viewer (MeV) program [44], and a 70% data cutoff filter was applied to remove genes for

which log2 intensity values were missing in>30% of the samples in each study. Significantly

differentially expressed genes were identified using t-tests with standard Bonferroni correction

(P-value < 0.05).

Collection of published proteome profile data

We searched the NCBI PubMed database to obtain a list of significantly differentially

expressed proteins in ASD that have been published in the literature. A total of 14 proteomic

studies in the NCBI PubMed database were used [25–38]. All of the ASD proteome studies

were published from 2007–2017 and employed human tissue samples, including postmortem

brain tissues, serum, plasma, neonatal blood, urine, and saliva. The significant protein hits

identified and reported by all proteome studies were obtained and combined.

Cell culture

Lymphoblastoid cell lines derived from the peripheral lymphocytes of individuals with ASD

(n = 36) and sex-/age-matched unaffected individuals (n = 20) who were also included in the

transcriptome study GSE15402 were obtained from the Autism Genetics Resource Exchange

Repository (AGRE, Los Angeles, CA, USA). The demographic information and phenotypic

cluster for all individuals whose LCLs were employed for cell culture are shown in S1 Table.

All of the LCLs were cultured in Hyclone RPMI-1640 (GE Healthcare, Chicago, IL, USA) sup-

plemented with 15% fetal bovine serum (Sigma-Aldrich, St. Louis, MO, USA) and 1% penicil-

lin-streptomycin-amphotericin B solution (Mediatech, Manassas, VA, USA) according to the

protocol of the Rutgers University Cell and DNA Repository, as previously described [15].

Briefly, cell culture was performed in a humidified atmosphere of 5% CO2 at 37˚C. The cells

were split 1:2 every 3−4 days and were harvested for protein isolation 3 days after splitting,

when the cells were in the logarithmic growth phase. The cells were then pelleted and used for

subsequent protein isolation. In addition to proteins employed for this study, we also obtained

DNA and RNA from the same samples for future investigation. To allow serial isolation of

DNA, RNA, and proteins from the same samples, the cells were therefore resuspended in

RNAlater solution (Thermo Fisher Scientific, Waltham, MA, USA) and stored at -80˚C until

DNA/RNA/protein isolation. According to the manufacturer’s protocol, RNAlater solution

can be used for stabilizing DNA, RNA, and proteins in cell samples.

Protein isolation and purification

Proteins were extracted from LCLs using the GENEzol reagent (Geneaid Biotech Ltd., New

Taipei City, Taiwan) according to the manufacturer’s protocol, which also allowed for the iso-

lation of DNA and RNA for future study. Briefly, LCLs stored in RNAlater were centrifuged to
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pellet the cells. RNAlater was then removed, and the GENEzol reagent was added to the cell

pellet to lyse the cells. A total of 200μL of chloroform was added to the GENEzol extract, fol-

lowed by centrifugation. The aqueous phase was then removed, and 100% ethanol was added

to the interphase and the organic phase. After centrifugation to pellet the DNA, the superna-

tant was transferred to a new tube for protein isolation. To precipitate proteins, isopropanol

was added to the phenol-ethanol supernatant, followed by centrifugation for 10 minutes at

12,000 g at 4˚C. The protein pellet was washed 3 times in a wash solution consisting of 0.3 M

guanidine hydrochloride in 95% ethanol and then washed once in 100% ethanol. The protein

pellet was subsequently air dried and resuspended in 200 μl of a lysis buffer consisting of 7 M

urea, 2 M thiourea, 4% w/v CHAPS, and 100 mM dithiothreitol (DTT). The concentrations of

the protein samples were measured using Bradford protein assays, with bovine serum albumin

(BSA) as a standard. A 5μg sample of each protein extract was separated via 12% SDS-PAGE

and stained with a colloidal Coomassie Brilliant Blue G-250 solution consisting of ammonium

sulfate, 85% phosphoric acid, Coomassie Brilliant Blue G-250, and methanol to assess the

integrity of the proteins prior to two-dimensional gel electrophoresis.

Two-dimensional gel electrophoresis

To screen for proteins differentially expressed in ASD with severe language impairment, two-

dimensional gel electrophoresis was conducted using protein samples from LCLs derived from

individuals with ASD with severe language impairment (n = 6) or sex-/age-matched unaffected

individuals (n = 6). A total of 200 μg of purified protein was loaded onto Immobiline DryStrips

(pH 3–10 L, 13 cm) with rehydration buffer consisting of 7 M urea, 2 M thiourea, 4% CHAPS,

100 mM DTT, 2% Biolyte, and 0.5% bromophenol blue. The strips were rehydrated at 20˚C

for 12 h. The proteins were subjected to isoelectric focusing with a Multiphor III Electrophore-

sis System (Amersham Biosciences, Little Chalfont, UK) at the following voltages: 500 V for

300 Vh (step and hold), 1000 V for 800 Vh (gradient), 8000 V for 11,300 Vh (gradient), and

8000 V for 4400 Vh (step and hold). After focusing, the immobilized pH gradient (IPG) strips

were reduced in equilibration buffer consisting of 50 mM Tris-HCl (pH 8.8), 6 M urea, 30% v/

v glycerol, 2% SDS w/v, and 1% bromophenol blue with 100 mM DTT for 30 minutes. The

strips were then alkylated in equilibration buffer containing 150 mM iodoacetamide (IAA) for

45 minutes. The proteins were separated in the second dimension via 12.5% SDS-PAGE. Each

pooled sample was run in triplicate 2D gels. The gels were stained with Coomassie Brilliant

Blue G250 overnight and destained with Milli-Q water until the background color was clear.

The 2D gels were scanned at a 600 μm/pixel resolution and analyzed with ImageMaster 2D

Platinum version 7.0 software (Amersham Biosciences). Each sample was run in triplicate, and

differentially expressed protein spots were detected as significant by ANOVA with a P-value of

less than 0.05.

Tryptic in-gel digestion and protein identification by LC-MS/MS

The significantly differentially expressed protein spots were excised from the gels and

destained with 50% acetonitrile (ACN) in 100 μL of 25 mM ammonium bicarbonate. After

destaining, tryptic digestion was performed according to a previously described method [49].

The resulting peptide mixtures were analyzed with an UltiMate 3000 RSLCnano System (Ulti-

mate 3000, Dionex, USA) coupled to a micrOTOF-Q II ESI-Qq-TOF mass spectrometer (Bru-

ker Daltonics, Germany). The MS/MS spectra data from each sample were searched against

the NCBI databases using the MASCOT search engine (Matrix Science, London, UK) (http://

www.matrixscience.com/) [50].
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Prediction of biological functions and networks

The biological functions and networks associated with the differentially expressed proteins

were predicted using Ingenuity Pathway Analysis (IPA) version 6.0 (QIAGEN Bioinformatics,

https://www.qiagenbioinformatics.com/products/ingenuity-pathway-analysis/). IPA is a man-

ually curated web-based functional analysis and knowledge discovery tool for omic data. IPA

Knowledgebase collects from the literature all information about diseases, canonical pathways,

biological functions, interactions, and regulators associated with genes and proteins in any

context. Thus, a single gene/protein may have been reported to be involved in several different

categories based on previously published research. To determine the association between a list

of genes/proteins and each disease/process/pathway, IPA overlaps the list of genes/proteins

provided by the user with the list of genes/proteins associated with a category in the database.

The P-value is then calculated using the Fisher Exact test as a measure of the likelihood that

the association between a set of focus genes in the experiment and a given disease/process/

pathway is due to random chance. A P-value < 0.05 is considered to be a statistically signifi-

cant, nonrandom association. The GeneCards database was also employed to predict functions

and phenotypes associated with proteins (www.genecards.org) [51]. Moreover, to determine

whether the differentially expressed proteins had previously been associated with ASD or

reported in ASD studies as “ASD candidate” genes/proteins, the list of differentially expressed

proteins was searched against AutismKB Knowledgebase (http://autismkb.cbi.pku.edu.cn/)

[52].

Western blot analysis

Western blot analysis was performed to validate selected differentially expressed proteins in

the ASD phenotypic subgroup with severe language impairment identified by 2D gel electro-

phoresis and subsequent mass spectrometry analysis. A total of 15 μg of each LCL protein sam-

ple was separated via 10% SDS-PAGE and transferred to a 0.2 μM Immun-Blot PVDF

membrane (Bio-Rad Laboratories, Hercules, CA, USA) in a Mini-PROTEAN Tetra system.

The membranes were then blocked with 5% nonfat dry milk (Vivantis Technologies Sdn.

Bhd., Malaysia) in TBST for 1 h at room temperature. After blocking, the membranes were

incubated overnight with a 1:8,000 dilution of rabbit monoclonal anti-human IDH2 antibody

[EPR7576] (ab129180, Abcam) or a 1:12,000 dilution of rabbit polyclonal anti-human DBI

antibody (ab196485, Abcam), followed by incubation in a 1:12,000 dilution of preadsorbed

donkey anti-rabbit IgG H&L (HRP) (ab7083, Abcam). As a protein loading control, the mem-

branes were stripped with 0.2 M NaOH for 5 minutes and reprobed overnight with a 1:8,000

dilution of a rabbit polyclonal anti-GAPDH antibody (sc25778, Santa Cruz Biotechnology,

Dallas, Texas, USA). All of the membranes were visualized with Amersham ECL Select West-

ern Blotting Detection Reagent with ECL Hyperfilm. The band images were obtained with the

Syngene Gbox EF Gel Documentation System using the GeneTools program. The significance

of differences between the groups was calculated using two-tailed paired t-test analysis. Pear-

son correlation analysis of the levels of selected proteins and ADI-R scores was conducted

using IBM SPSS Statistics version 22.

Results

The experimental workflow of this study is illustrated in Fig 1. First, to reduce the heterogene-

ity of the ASD population prior to subsequent transcriptome and proteome profiling analyses,

we performed a cluster analysis of clinical phenotypes associated with ASD. For this analysis,

we obtained the scores from 123 items in the ADI-R questionnaire and the demographic infor-

mation of 85 individuals with ASD from a study by Hu & Steinberg published in 2009 [41].
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These 123 ADI-R items cover a broad spectrum of behaviors and functions across multiple

ASD domains, including language, nonverbal communication, social interactions, play skills,

interests and behaviors, physical sensitivities and mannerisms, aggression, and savant skills, as

previously described [41]. Unsupervised hierarchical clustering (HCL) and principal compo-

nent analysis (PCA) of the ADI-R score data were performed (Fig 2). The HCL and PCA of

the ADI-R scores showed that the individuals with ASD separated distinctly into 4 main clus-

ters, labeled G1 (blue, n = 24 individuals), G2 (green, n = 11 individuals), G3 (red, n = 30 indi-

viduals), and G4 (yellow, n = 20 individuals), as shown in Fig 2. Consistent with a previous

study by Hu and Steinberg (2009), all of the individuals in each subgroup appeared to share a

similar pattern of clinical phenotypes. Interestingly, individuals in G3 (red) exhibited scores

for ADI-R items related to language that were higher than in the other groups, reflecting a

higher degree of severity of language impairment.

Transcriptome profiling analysis of LCLs

To identify differentially expressed transcripts in these 85 individuals with ASD and in each of

the four ASD phenotypic subgroups identified by the cluster analysis, the transcriptome pro-

files of LCLs derived from these 85 individuals with ASD and 29 sex-/age-matched unaffected

individuals were obtained from the NCBI GEO DataSets database (GSE15402) and reanalyzed.

To ensure that the expression fold-change determinations for a particular gene/transcript were

based on a majority of the samples tested, a 70% cutoff filter was applied. As many as 14,838

out of 41,472 probes were abundantly expressed in at least 70% of samples, which reflected

Fig 1. Schematic diagram showing the experimental workflow of this study.

https://doi.org/10.1371/journal.pone.0214198.g001
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substantial abundance of transcripts across LCL samples for the subsequent significance analy-

sis of differentially expressed transcripts and also supported the feasibility of using LCLs for

gene expression profiling analysis. Significantly differentially expressed transcripts in ASD and

in each ASD phenotypic subgroup were identified via t-test analysis with standard Bonferroni

correction (P-value < 0.05). The numbers of significantly differentially expressed transcripts

and the corresponding proteins in the all-ASD group and in each subgroup are shown in

Table 1. When all of the individuals with ASD were combined into one group, as many as 815

transcripts encoding 384 proteins were found to be dysregulated in ASD. After the ASD cases

were further subgrouped via the ADI-R cluster analysis, we found that the G3 (red) subgroup

exhibited the highest number of differentially expressed transcripts, including 3,024 transcripts

corresponding to 1,726 proteins. The lists of differentially expressed transcripts and corre-

sponding proteins in the all-ASD group and in each subgroup are shown in S2 Table. An over-

lap analysis of these differentially expressed transcripts revealed 549 transcripts that were

Fig 2. Cluster analysis of ADI-R scores of individuals with ASD. (A) Hierarchical cluster analysis of 123 ADI-R scores of 85 individuals with ASD. Each

column in the heat map represents each ADI-R question, whereas each row represents each individual with ASD. The colors in the heat map represent

ADI-R scores and reflect the severity of that behavior/function, ranging from a lower score (blue, less severe) to a higher score (yellow, more severe). (B)

Principal component analysis (PCA) of the ADI-R scores of 85 individuals with ASD used in this study revealed four distinct clusters (G1–G4). Each dot

represents an individual with ASD.

https://doi.org/10.1371/journal.pone.0214198.g002

Table 1. Numbers of differentially expressed transcripts and corresponding protein products in different comparisons.

Comparison #Differentially Expressed Transcripts #Corresponding Protein Products

Control vs All ASD 815 384

Control vs G1 (Blue) subgroup 1,192 643

Control vs G2 (Green) subgroup 367 164

Control vs G3 (Red) subgroup 3,024 1,726

Control vs G4 (Yellow) subgroup 497 243

A total of 815 differentially expressed transcripts were identified by a 2-class t-test analysis with standard Bonferroni correction, comparing the gene expression between

controls and all ASD individuals without subgrouping. Then, ASD individuals were further subgrouped, and the differentially expressed transcripts were identified by

2-class t-test analyses with standard Bonferroni correction for each of the ASD subgroups and controls.

https://doi.org/10.1371/journal.pone.0214198.t001
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altered in more than one subgroup as well as transcripts that were disrupted in only a specific

subgroup (Fig 3). We next used IPA to analyze the biological functions of these differentially

expressed transcripts. We found that the significantly differentially expressed transcripts in

every subgroup were significantly associated with the “developmental disorder” and “neuro-

logical disease” categories (P-value < 0.05). Interestingly, we found that the differentially

expressed transcripts in G3 (red) were significantly associated with “autism or intellectual dis-

ability” (n = 59 genes, P-value = 0.008), “mental retardation” (n = 56 genes, P-value = 0.006),

and “congenital malformation of the brain” (n = 28 genes, P-value = 0.016). The results of this

gene ontology analysis are shown in S3 Table. Compared to the other subgroups, the G3 (red)

subgroup exhibited the greatest number of differentially expressed transcripts, suggesting that

this subgroup might have consisted of individuals with the most severe form of ASD. More-

over, while all of the lists of differentially expressed transcripts from all phenotypic subgroups

were significantly associated with ASD-related neurological functions or comorbid disorders,

it is notable that the list of differentially expressed transcripts in the G3 (red) subgroup was the

only list that was significantly associated with “autism” by IPA. We therefore focused on the

G3 (red) subgroup in the subsequent proteome profiling analysis.

Proteome profiling analysis of ASD

To determine whether the differentially expressed transcripts in LCLs reflected dysregulation

at the proteome level, we conducted a hypergeometric distribution analysis between the list of

differentially expressed transcripts in the all-ASD group and the list of differentially expressed

proteins identified by previously published proteomic analyses of ASD. For this analysis, we

employed the list of 815 differentially expressed transcripts in the all-ASD group that corre-

sponded to 384 proteins (S2 Table). Notably, the number of predicted protein products was

lower than the number of transcripts because multiple transcripts encode the same protein.

Fig 3. Overlap analysis of differentially expressed transcripts in the ASD phenotypic subgroups, as determined by

the cluster analysis of ADI-R scores. The Venn diagram shows differentially expressed transcripts across the

identified ASD subtypes, with significance determined using t-tests with standard Bonferroni correction (P-

value< 0.05).

https://doi.org/10.1371/journal.pone.0214198.g003
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Moreover, several transcripts in the original transcriptome dataset encode hypothetical pro-

teins, potential noncoding RNAs, or unidentified probes. For the list of proteins, we collected

data on significantly differentially expressed proteins from 14 proteomic studies in the NCBI

PubMed database [25–38]. The details of all of the selected studies as well as the numbers of

differentially expressed proteins identified in each study are shown in Table 2. A total of 145

proteins were identified as differentially expressed in at least one ASD proteomic study. Ontol-

ogy analysis of these proteins using IPA revealed that these proteins were associated with the

“neurological disease” (n = 86 proteins, P-value = 7.46E-23–3.41E-08), “psychological disor-

der” (n = 66 proteins, P-value = 7.46E-23–6.01E-08), and “embryonic development” (n = 9

proteins, P-value = 4.62E-08–4.62E-08) categories. Moreover, these proteins were associated

with known ASD-related functions, including “inflammatory disease” (n = 71 proteins, P-

value = 9.06E-26–1.55E-07), “lipid metabolism” (n = 31 proteins, P-value = 1.86E-22–1.47E-

07), “free radical scavenging” (n = 26 proteins, P-value = 8.58E-20–2.36E-09), and “digestive

system development and function” (n = 18 proteins, P-value = 3.27E-15–6.15E-12) [53–56]. A

biological network of these proteins is shown in Fig 4.

A hypergeometric distribution analysis between the list of 145 differentially expressed pro-

teins identified in previous ASD proteomic analyses and the 384 proteins encoded by the dif-

ferentially expressed transcripts in the all-ASD group revealed a significant association (P-

value < 0.05) between the transcriptome and proteome data, with 4 proteins in common (Fig

5). Moreover, the list of 3,024 differentially expressed transcripts in the G3 (red) subgroup that

corresponded to 1,726 proteins (S2 Table) was also used for comparison. A total of 8 proteins

were found in common.

Table 2. Previously published ASD proteome profiling studies with data used in this study and the number of significant proteins identified by each study.

Year Study Title Sample Type #

Differently Expressed

Proteins

2007 A proteomic study of serum from children with autism showing differential expression of apolipoproteins and

complement proteins [26]

Serum 5

2008 Hypo-Phosphorylation of Salivary Peptidome as a Clue to the Molecular Pathogenesis of Autism Spectrum

Disorders [38]

Saliva 8

2011 A Proteomic Investigation of B Lymphocytes in an Autistic Family: A Pilot Study of Exposure to Natural Rubber

Latex (NRL) May Lead to Autism [32]

Lymphocytes 14

2013 Identification of an age-dependent biomarker signature in children and adolescents with autism spectrum

disorders [27]

Serum 12

2014 Neonatal cytokines and chemokines and risk of Autism Spectrum Disorder: the Early Markers for Autism

(EMA) study: a case-control study [33]

Neonatal blood

spots

2

2014 Proteomic analysis of postmortem brain tissue from autism patients: evidence for opposite changes in prefrontal

cortex and cerebellum in synaptic connectivity-related proteins [25]

Postmortem

brain

13

2014 A pilot proteomic study of protein markers in autism spectrum disorder [28] Serum 3

2015 Comparative two-dimensional polyacrylamide gel electrophoresis of the salivary proteome of children with

autism spectrum disorder [36]

Saliva 40

2015 A Pilot Proteomic Analysis of Salivary Biomarkers in Autism Spectrum Disorder [37] Saliva 18

2015 Neonatal Cytokine Profiles Associated with Autism Spectrum Disorder [34] Neonatal blood

spots

16

2016 Urine Protein Biomarker Candidates for Autism [35] Urine 25

2016 Expression and oxidative modifications of plasma proteins in autism spectrum disorders: Interplay between

inflammatory response and lipid peroxidation [30]

Plasma 13

2017 Redox proteomic identification of carbonylated proteins in autism plasma: insight into oxidative stress [29] Plasma 2

2017 iTRAQ-based proteomic analysis reveals protein profile in plasma from children with autism [31] Plasma 24

https://doi.org/10.1371/journal.pone.0214198.t002
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In addition to the LCL transcriptome dataset (GSE15402), we compared the list of 145 dif-

ferentially expressed proteins from previous ASD proteomic analyses to the lists of predicted

proteins identified by four other ASD transcriptome studies (GSE6575, GSE18123, GSE25507,

and GSE42133) involving peripheral blood cells or whole blood (Fig 5). Consistent with the

LCL transcriptome dataset, there was a significant association between differentially expressed

proteins in ASD from previous proteome studies and the lists of predicted proteins from all

four ASD transcriptome studies. Among the proteins encoded by the transcripts that were dif-

ferentially expressed in ASD LCLs or blood, several have been reported to be dysregulated in

ASD serum/plasma or blood based on proteome studies (Table 3). These findings suggest that

the dysregulation of at least some transcripts in LCLs or peripheral blood cells might reflect

molecular changes at the proteome level.

Proteome profiling analysis of LCLs from patients with ASD with severe language

impairment. Because the differentially expressed transcripts in the G3 (red) ASD subgroup

(i.e., ASD with severe language impairment) were significantly associated with “autism” based

Fig 4. Biological network of differentially expressed proteins identified by previous ASD proteome studies. The list of 145

differentially expressed proteins from previous ASD proteome studies was analyzed, and a protein-protein interaction network

was created using IPA. One of the networks is shown in this figure. Several proteins in the network were significantly associated

with developmental disease (highlighted in purple), neurological disease (highlighted in light blue), and both developmental

disease and neurological disease (highlighted in blue).

https://doi.org/10.1371/journal.pone.0214198.g004
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on IPA analysis, we selected this subgroup for further investigation of proteome profiles. Two-

dimensional gel electrophoresis analysis of LCLs derived from six individuals with ASD in the

G3 (red) subgroup and six sex-/age-matched unaffected controls was performed. A total of 527

protein spots were detected via 2D-gel electrophoresis analysis. Among these protein spots, as

many as 82 spots were significantly differentially expressed (ANOVA; P-value < 0.05), as

shown in S4 Table. A total of 18 protein spots that exhibited a greater than twofold up- or

downregulation in the ASD with severe language impairment group when compared to con-

trols were selected for further protein identification through LC-MS/MS analysis (Fig 6 and

S1 Fig). To identify the proteins, the MS/MS spectra data corresponding to peptide m/z values

from the digestion of each protein spot by trypsin were analyzed using the MASCOT Peptide

Mass Fingerprint program in the MASCOT Server (http://www.matrixscience.com/). For each

sample, the MASCOT score was calculated to determine the probability that the protein pre-

diction was a random event (Table 4).

To predict the biological functions associated with these 18 proteins, ontology analysis was

conducted using several tools. Predicted functions and phenotypes associated with these

Fig 5. Overlap analysis between the list of differentially expressed proteins from previous ASD proteomic studies

and the list of proteins encoded by differentially expressed transcripts from ASD transcriptome studies. P-values

were calculated via hypergeometric distribution analysis.

https://doi.org/10.1371/journal.pone.0214198.g005

Table 3. Hypergeometric distribution analysis between the list of differentially expressed proteins from previous ASD proteomic studies and the list of proteins

encoded by differentially expressed transcripts from ASD transcriptomic studies using LCLs, peripheral blood cells, or whole blood.

Comparison Transcriptome GEO

Datasets

P-

values

# Overlapping

Proteins

Protein Symbols

ASD Proteome (all

sources)

GSE15402 0.047 4 PPP1R2, FGB, PRH1, C5

GSE6575 0.011 6 PRPF4, PCMTD1, CDC37, ENO1, MBP, VCP

GSE18123 0.014 14 ATP6V1C1, B2M, ITGA6, HERC1, TYK2, THBS1, PCMTD1, MBP, ACTN1,

C1QC, PRKCD, EIF4G1, ITGA2B, MAP2K5

GSE25507 0.001 13 MAP4, A2M, MXRA8, CCL4, GRTP1, STATH, CDC27, STX1A, IGHA1, PIP,

APOA1, ACTN1, SELENBP1

GSE42133 9.88E-

04

15 TLN1, B2M, SERPINA4, VAC14, PCMTD1, MBP, ACTG1, ANXA1, SERPINA1,

AMY2A, PPP1R2, PRPF4, CTSL, HTRA2, PIP

P-values were calculated via hypergeometric distribution analysis. The proteins in bold are those encoded by the differentially expressed transcripts that were also

differentially expressed in blood from individuals with ASD.

https://doi.org/10.1371/journal.pone.0214198.t003
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proteins were determined using the GeneCards database. Interestingly, as many as 13 of the 18

differentially expressed proteins are involved in neurological functions/disorders (Table 5). In

addition, 5 of the 18 proteins (i.e., PGAM1, DLD, IDH2, ENO1, and COX5A) are involved in

mitochondrial function and energy production, processes that have been implicated in ASD.

Fig 6. Differentially expressed protein spots in ASD with severe language impairment compared with age-

matched controls. Representative images show differentially expressed protein spots identified through 2D gel

electrophoresis in the ASD with severe language deficit group compared with sex-/age-matched controls. The red

circles show detectable proteins in the gel, and the green circles show significantly differentially expressed protein spots

based on statistical analysis via ANOVA (P-value< 0.05).

https://doi.org/10.1371/journal.pone.0214198.g006
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Furthermore, we searched for these 18 proteins in the AutismKB ASD database [52]. Of the 18

proteins, as many as 14 have been associated with ASD according to the AutismKB database

(Table 5). IPA revealed that these proteins are associated with endocrine system disorders,

neurological disease, lipid metabolism, inflammatory disease, developmental disorders, and

psychological disorders (Table 6). Detailed IPA results are shown in S5 Table. Biological net-

work analysis showed that these proteins interact with one another (Fig 7). Interestingly, sev-

eral proteins were also found to be encoded by differentially expressed transcripts in ASD

transcriptome studies (GSE15402, GSE6575, GSE18123, GSE25507 and GSE42133) (S6

Table).

Overlap analysis of proteome-transcriptome profiles. We next determined whether the

differentially expressed proteins identified via our proteome profiling analysis have been iden-

tified in previous proteome studies and/or are related to the differentially expressed transcripts

identified in the transcriptome analysis. We therefore compared the list of 18 differentially

expressed proteins identified via 2D-PAGE followed by LC-MS/MS analysis with the list of

proteins from previous proteome studies and the list of differentially expressed transcripts in

patients with ASD with severe language impairment (Fig 8 and Table 7). Among the 18 top

differentially expressed proteins, isocitrate dehydrogenase (IDH2) was also differentially

expressed at the transcript level, and two proteins (ENO1, AHSG) have been identified as sig-

nificantly affected proteins in previous proteome studies.

Western blot analysis. To validate the dysregulation of the proteins identified via 2D gel

electrophoresis, DBI and IDH2 proteins were selected for the Western blot analysis (Fig 9).

Changes in DBI have been reported in ASD urine samples [35], and loss of function of this

Table 4. List of the top differentially expressed proteins in ASD with severe language impairment.

No. Predicted

Proteins

Description Fold change (ASD/Control) P-value

(ANOVA;

ASD vs Control)

MASCOT Scores of the Predicted Proteins

1 DLD Dihydrolipoyl dehydrogenase, mitochondrial # 0.097 5.95E-06 666

2 IDH2 Isocitrate dehydrogenase [NADP], mitochondrial # 0.088 1.59E-04 629

3 TPT1 Translationally controlled tumor protein # 0.080 2.03E-04 92

4 ANXA5 Annexin A5 # 0.092 6.26E-04 308

5 CCT5 T-complex protein 1 subunit epsilon # 0.259 8.47E-04 545

6 COX5A Cytochrome c oxidase subunit 5A, mitochondrial " 2.324 1.73E-03 233

7 LGALS1 Galectin-1 " 2.354 3.63E-03 612

8 GSTP1 Glutathione S-transferase P " 3.132 3.77E-03 57

9 HNRNPA1 40S ribosomal protein SA " 3.000 4.31E-03 53

10 PGAM1 Phosphoglycerate mutase 1 (brain isoform) # 0.149 5.39E-03 951

11 TUBB Tubulin beta chain # 0.083 6.30E-03 557

12 ENO1 Alpha-enolase # 0.017 6.81E-03 339

13 H3F3C Peptidyl-prolyl cis-trans isomerase A # 0.046 8.80E-03 50

14 DBI Diazepam-binding inhibitor " 2.407 2.21E-02 116

15 AHSG Alpha-2-HS-glycoprotein # 0.186 3.13E-02 552

16 ERH Enhancer of rudimentary homolog " 2.950 3.51E-02 32

17 CLTA Clathrin light chain A # 0.364 3.65E-02 215

18 CALM1 Calmodulin-1 " 3.760 4.33E-02 69

P-values were calculated via ANOVA between the ASD with severe language impairment group and the control group. MASCOT scores were calculated with the

MASCOT Peptide Mass Fingerprint program. The MASCOT score is provided as the -10log(P), where P is the absolute probability that the observed match is a random

event. The higher the MASCOT score is, the higher the confidence level.

https://doi.org/10.1371/journal.pone.0214198.t004
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Table 5. Biological functions and phenotypes associated with the top differentially expressed proteins in ASD with severe language impairment.

Proteins Description GeneCards Functions/Phenotypes AutismKB

Databases

AHSG Alpha-2-HS-glycoprotein Present in the cortical plate of the immature cerebral cortex, brain development /

ANXA5 Annexin A5 Calcium channel activity, inflammation, placental anticoagulation /

CALM1 Calmodulin-1 Calcium-modulated protein -

CCT5 T-complex protein 1 subunit

epsilon

Hereditary sensory and autonomic neuropathy with spastic paraplegia (HSNSP), Increased

circadian period length

/

CLTA Clathrin light chain A Component of coated vesicles and synaptic vesicles /

COX5A Cytochrome c oxidase subunit 5A,

mitochondrial

Mitochondrial respiratory chain /

DBI Diazepam-binding inhibitor Diazepam-binding inhibitor via GABAA receptor binding, behavior/neurological phenotype,

mortality/aging

-

DLD Dihydrolipoyl dehydrogenase,

mitochondrial

Global/neurodevelopmental delay, cerebellar ataxia, seizure, etc. /

ENO1 Alpha-enolase Activator of plasminogen on the cell surface of several cell types, such as leukocytes and neurons /

ERH Enhancer of rudimentary

homolog

A component of the methylosome, targeting proteins to the survival of motor neurons (SMN)

complex for assembly into small nuclear ribonucleoprotein (snRNP) core particles

-

GSTP1 Glutathione S-transferase P Detoxification, decreased NANOG and OCT4 protein expression /

H3F3C Peptidyl-prolyl cis-trans isomerase

A

Chromatin/nucleosome remodeling /

HNRNPA1 40S ribosomal protein SA Pre-mRNA processing, early-onset Paget disease, frontotemporal dementia /

IDH2 Isocitrate dehydrogenase [NADP],

mitochondrial

Global/neurodevelopmental delay, seizure, etc. /

LGALS1 Galectin-1 Expressed in brain endothelial cells, immune tolerance in pregnancy, enhanced apoptosis,

autophagy

/

PGAM1 Phosphoglycerate mutase 1 (brain

isoform)

Corticobasal degeneration -

TPT1 Translationally controlled tumor

protein

Allergic hypersensitivity disease, paraneoplastic cerebellar degeneration /

TUBB Tubulin beta chain Mutations in this gene cause complex cortical dysplasia, with other brain malformations /

Biological functions and phenotypes associated with each protein were obtained from the GeneCards Database and AutismKB (/ = present in the database).

https://doi.org/10.1371/journal.pone.0214198.t005

Table 6. Top diseases associated with differentially expressed proteins in ASD with severe language impairment.

Category P-value Proteins

Endocrine System

Disorders

5.93E-06–

4.16E-02

TUBB, COX5A, ANXA5, GSTP1, AHSG, ENO1,

CCT5

Neurological Disease 3.19E-05–

3.72E-02

HNRNPA1, DLD, CALM1, TUBB, LGALS1, TPT1, ANXA5, DBI,

GSTP1, H3F3C, CCT5, IDH2

Lipid Metabolism 6.25E-05–

1.47E-02

LGALS1, ANXA5, DBI, GSTP1

Inflammatory Disease 4.95E-04–

4.17E-02

HNRNPA1, LGALS1, ERH, ANXA5, GSTP1, AHSG, ENO1

Developmental Disorder 9.24E-04–

1.06E-02

HNRNPA1, DLD, CALM1, TUBB, IDH2

Psychological Disorders 4.61E-03–

3.72E-02

HNRNPA1, TUBB, LGALS1, TPT1, DBI, GSTP1

The list of 18 differentially expressed proteins identified via 2D-PAGE and LC-MS/MS analysis was uploaded for

Ingenuity Pathway Analysis, and diseases associated with these proteins were predicted. P-values were calculated

using Fisher’s exact test.

https://doi.org/10.1371/journal.pone.0214198.t006
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gene/protein causes disruption of social interaction [57], a key behavioral domain that is nega-

tively impacted in ASD. IDH2 is disrupted at the transcript level and is involved in energy pro-

duction in association with ASD [16]. The results of the Western blot analysis showed that the

DBI protein level was significantly decreased in individuals with ASD with severe language

impairment compared to sex-/age-matched controls (P-value < 0.05) but was not significantly

changed in the other ASD subgroups (S2 Fig). The expression level of IDH2 in individuals

with ASD with severe language impairment tended to be lower than that in the age-matched

controls but was not changed in the other subgroups (S2 Fig). Although the reduction of

IDH2 in ASD was not statistically significant, it was notable that IDH2 expression in four indi-

viduals with ASD with severe language impairment was lower than the average IDH2 level in

the control group.

To determine whether a correlation exists between the protein levels of DBI and IDH2 and

ASD-related clinical phenotypes, we conducted a correlation analysis between the protein lev-

els of DBI and IDH2 and 123 ADI-R scores of individuals with ASD from all four subgroups

(Table 8). Although significant differences in the ADI-R items were not observed after multi-

ple testing correction using the Benjamini-Hochberg procedure (FDR = 0.05), it is interesting

to note that the DBI protein levels were correlated with certain ADI-R items (nominal P-

value < 0.05), including direct gaze, visuospatial ability, memory skill, musical ability, drawing

skill, reading ability, and computational ability. Moreover, the IDH2 protein level were corre-

lated with the overall level of language, reciprocal conversation, neologisms/idiosyncratic lan-

guage, verbal rituals, head shaking, initiation of appropriate activities, undue general

sensitivity to noise, other complex mannerisms or stereotyped body movements, gait, aggres-

sion to non-caregivers or nonfamily members, visuospatial ability, memory skill, reading abil-

ity, and computational ability.

Fig 7. Biological network of the top 18 differentially expressed proteins in the ASD subgroup with severe

language impairment identified via 2D-PAGE, followed by LC-MS/MS analysis. We employed the list of predicted

differential protein spots from the 2D gel coupled with nano-LC-MS/MS to assemble a protein-protein interaction

network using Ingenuity Pathway Analysis (IPA) software.

https://doi.org/10.1371/journal.pone.0214198.g007
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Discussion

In the present study, we integrated clinical phenotype subgrouping through a cluster analysis

with transcriptome-proteome profiling analyses. Here, 2D-SDS PAGE followed by LC-MS/MS

analysis were used to identify proteins that were differentially expressed in a subgroup of indi-

viduals with ASD with severe language impairment. Because the expression of two of these

proteins was significantly correlated with a number of specific behavioral manifestations of

ASD, these proteins as well as other differentially expressed proteins might serve as candidate

proteins for future research into the molecular mechanisms of ASD or the discovery of ASD

biomarkers.

Proteomic analysis reveals novel differentially expressed proteins in a

subtype of ASD

PCA and HCL analyses of ADI-R scores showed that the 85 ASD cases could be divided into

four subgroups/clusters based on their clinical phenotypes (Fig 2). Reanalysis of the transcrip-

tome profile data of LCLs derived from ASD cases revealed specific transcriptome profiles that

were disrupted in each subgroup (Fig 3 and S2 Table). Notably, the protein products of cer-

tain differentially expressed transcripts identified in LCLs or in blood have been reported to be

Fig 8. Overlap analysis of the top differentially expressed proteins identified via 2D-PAGE and LC-MS/MS

analysis, differentially expressed transcripts, and significant proteins from previous proteomic studies. This Venn

diagram shows the number of overlapping transcripts/proteins among the three types of analyses. The list of significant

proteins from previous proteomic studies was obtained from the studies listed in Table 2.

https://doi.org/10.1371/journal.pone.0214198.g008
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Table 7. Overlap analysis of the top differentially expressed proteins identified via 2D-PAGE and LC-MS/MS analysis, differentially expressed transcripts, and sig-

nificantly affected proteins from previous proteomic studies.

Comparison Total Proteins LC-MS/MS Transcriptome_CvsG3(Red) Previous Proteome [Ref]

LC-MS/MS vs

Previous Proteome

2 ENO1 # -5.909 NA # -1.743 [31]

AHSG # -2.428 NA #NA [35]

LC-MS/MS vs

Transcriptome CvsG3(Red)

1 IDH2 # -3.493 # -0.294 NA

Previous Proteome vs Transcriptome CvsG3(Red) 8 FN1 NA " 0.478 " 2.363 [31]

C5 NA " 0.313 " 2.127 [31]

VTN NA " 0.181 " 2.390 [31]

IGFBP5 NA " 0.363 " 0.024 [27]

PPP1R2 NA # -0.316 # NA [32]

PTGDS NA # -0.302 " NA [35]

MBP NA # -0.290 " 0.495 [25]

APOA1 NA " 0.285 " 0.024 [28]

This table shows the number of overlapping transcripts/proteins among the three types of analyses and the log2 expression ratios (ASD/control). The list of significant

proteins from previous proteomic studies was obtained from the studies listed in Table 2.

https://doi.org/10.1371/journal.pone.0214198.t007

Fig 9. DBI protein levels are decreased in ASD with severe language impairment. Western blot analysis of LCLs from individuals with ASD with severe

language impairment and sex-/age-matched controls was conducted using GAPDH as the endogenous control. P-values were determined with the two-tailed t-

test. The error bars represent the S.E.M. The protein expression of DBI was significantly reduced in LCLs from individuals with ASD with severe language

impairment (P-value< 0.05).

https://doi.org/10.1371/journal.pone.0214198.g009
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Table 8. Correlation analysis between the levels of DBI or IDH2 proteins and ADI-R scores.

DBI VS ADI-R Scores

ADI-R

Items

ADI-R Description Pearson

Correlation

P-

value

Benjamini-Hochberg P-

value

GAZE5 Direct gaze 0.443 0.014 0.190

CVISSPZ Visuospatial ability

(i.e., in puzzles, jigsaws, shapes, patterns, etc.)

-0.520 0.003 0.190

EVISSPZ Visuospatial ability

(i.e., in puzzles, jigsaws, shapes, patterns, etc.)

-0.507 0.004 0.190

CMEMZ Memory skill

(accurate memory for detail, as of dates or timetables)

-0.462 0.010 0.190

EMEMZ Memory skill

(accurate memory for detail, as of dates or timetables)

-0.450 0.011 0.190

CMUSICZ Musical ability

(recognition, composition, absolute pitch or performance)

-0.424 0.020 0.222

EMUSICZ Musical ability

(recognition, composition, absolute pitch or performance)

-0.411 0.022 0.224

CDRAWZ Drawing skill

(unusually skilled use of perspective or creative approach)

-0.453 0.012 0.190

EDRAWZ Drawing skill

(unusually skilled use of perspective or creative approach)

-0.437 0.014 0.190

CREADZ Reading ability (e.g., early sight reading) -0.436 0.016 0.195

EREADZ Reading ability (e.g., early sight reading) -0.401 0.025 0.235

CCOMPUZ Computational ability (e.g., mental arithmetic) -0.463 0.010 0.190

ECOMPUZ Computational ability (e.g., mental arithmetic) -0.440 0.013 0.190

IDH2 VS ADI-R Scores

ADI-R

Items

ADI-R Description Pearson

Correlation

P-

value

Benjamini-Hochberg P-

value

LEVELL Overall level of language 0.385 0.030 0.312

CCONVER Reciprocal conversation

(at whatever verbal level of complexity possible)

0.395 0.025 0.312

CNEOID Neologisms/idiosyncratic language 0.410 0.022 0.312

ENEOID Neologisms/idiosyncratic language 0.451 0.011 0.312

EVERRIT Verbal rituals 0.387 0.029 0.312

HSHAKE5 Head shaking 0.368 0.046 0.312

INITIA5 Initiation of appropriate activities 0.513 0.005 0.312

CNOISE Undue general sensitivity to noise 0.456 0.011 0.312

COTHMAN Other complex mannerisms or stereotyped body movements (do not include isolated

rocking)

0.380 0.035 0.312

EOTHMAN Other complex mannerisms or stereotyped body movements (do not include isolated

rocking)

0.372 0.039 0.312

CGAIT Gait 0.451 0.012 0.312

CAGGOTH Aggression to noncaregivers or nonfamily members 0.483 0.031 0.312

CVISSPZ Visuospatial ability

(i.e., in puzzles, jigsaws, shapes, patterns, etc.)

-0.368 0.045 0.312

EVISSPZ Visuospatial ability

(i.e., in puzzles, jigsaws, shapes, patterns, etc.)

-0.386 0.032 0.312

CMEMZ Memory skill

(accurate memory for detail, as of dates or timetables)

-0.406 0.026 0.312

EMEMZ Memory skill

(accurate memory for detail, as of dates or timetables)

-0.423 0.018 0.312

EREADZ Reading ability (e.g., early sight reading) -0.373 0.039 0.312

(Continued)
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disrupted in previous proteome analyses of ASD (Fig 5), which prompted us to examine the

proteomic profile of LCLs for which transcriptomic data had been already obtained [16]. We

focused on the G3 (red) subgroup because it was the only subgroup with differentially

expressed transcripts that were significantly associated with the term “autism” by the IPA. A

proteome profiling analysis of LCLs from this subgroup of ASD patients and sex-/age-matched

controls using 2D-PAGE showed that as many as 82 protein spots were differentially expressed

in this subgroup (S4 Table). Based on at least a 2-fold change in spot intensity (Fig 6), a total

of 18 spots were selected for protein identification via LC-MS/MS analysis. Table 4 shows the

list of proteins identified by the LC-MS/MS analyses with high confidence levels, as indicated

by the high MASCOT scores. Interestingly, 14 of the 18 identified proteins have been associ-

ated with neurological functions/diseases (Table 4, Table 5, Fig 7, and S5 Table). A Western

blot analysis of the LCLs further showed that the DBI and IDH2 proteins were specific for the

severely language-impaired group, suggesting their potential as protein biomarkers for this

subgroup (Fig 9). Interestingly, the expression levels of both proteins showed significant

inverse correlations with all six of the savant skill items (visuospatial ability, memory skill,

musical ability, drawing skill, reading ability, and computational ability) (Table 8), suggesting

their possible involvement in critical neural pathways related to the development of these

skills. In addition, the level of IDH2 protein is directly correlated with a number of language

items on the ADI-R scoresheet (including overall level of language), complex mannerisms or

stereotyped body movements, unusual gait, and auditory sensitivity, which are frequently asso-

ciated with ASD. Although the association of these genes with these specific ADI-R items is

intriguing, further investigations are needed to determine the molecular and/or physiological

mechanisms through which deficits in these proteins may increase the manifestation of savant

skills and other stereotyped behaviors characteristic of ASD.

IDH2 was also found to be dysregulated at the transcript level, and the proteins AHSG and

ENO1 have been reported in previous proteome studies of ASD [31,35]. These findings suggest

that certain differentially expressed proteins in LCLs from the ASD subgroup with severe lan-

guage impairment are reproducible in different ASD cohorts, thus emphasizing the impor-

tance of reducing the heterogeneity of ASD by clinical phenotype clustering or other methods

in future proteomic research on ASD.

Comparison of ASD subgroups obtained by cluster analyses of ADI-R

scores

Recent transcriptome studies have demonstrated that subgrouping individuals with ASD

based on ADI-R scores helps reduce the heterogeneity of ASD populations, thus permitting

the identification of differentially expressed genes and molecular mechanisms specific to ASD

subpopulations. Subgroup-specific genes might be useful in the development of ASD subtype

biomarkers or personalized treatments for specific groups of individuals with ASD [41]. In

this study, we used the same subgrouping strategy, by performing cluster analysis of the

ADI-R scores of 85 individuals with ASD whose LCLs were previously subjected to a

Table 8. (Continued)

ECOMPUZ Computational ability (e.g., mental arithmetic) -0.369 0.041 0.312

Pearson correlation analysis was conducted using the levels of DBI/GAPDH or IDH2/GAPDH and the scores of 123 ADI-R items of individuals with ASD from all four

subgroups. Only ADI-R items that showed a significant correlation (nominal P-value < 0.05) are shown. Multiple testing corrections was also conducted using the

Benjamini-Hochberg procedure (FDR = 0.05).

https://doi.org/10.1371/journal.pone.0214198.t008
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transcriptome profiling analysis using cDNA microarrays [16]. Similar to a previous study by

Hu et al. (2009), cluster analyses of the ADI-R scores showed that the individuals with ASD

clustered into distinct subpopulations. Our study revealed at least four distinct subgroups, des-

ignated G1-4, among the original 85 cases used for the transcriptomic analyses (Fig 2). The

HCL analysis revealed that each subgroup exhibited distinct patterns of ADI-R scores, with the

G3 (red) subgroup consisting of individuals who represented a subset of the original ASD sub-

group identified as “severely language-impaired”[16]. A closer examination of the HCL data in

Fig 2A reveals that the G2 (green) subgroup represents individuals with severe language

impairment who also have notable savant skills (notably high ADI-R scores in the 12 columns

at the extreme right of the graph for the G2 cluster), and they are separated from the language-

impaired G3 group without savant skills. The remaining two subgroups, G1 (blue) and G4

(yellow), show some discrepancies with the blue and yellow subgroups from the earlier tran-

scriptomic study. The source of the minor discrepancies can be explained in part by the num-

ber of cases included in the cluster analyses. For the original transcriptomic study [16], cluster

analyses were performed on ADI-R scores from 1,954 individuals with ASD which resulted in

the current G2 and G3 subgroups being represented within one severely language-impaired

subgroup [41]. Three other subgroups were identified, with two of them similar in phenotype

to the G1 and G4 subgroups identified in this study. The remaining subgroup (called “green”

or “intermediate” in the original paper) was not included in the expression profiling analyses

and thus is not represented here. The present study shows that it is possible to further divide

the ASD population into more clinically defined subgroups by applying hierarchical cluster

analyses of ADI-R scores for smaller groups of individuals with ASD (85 cases vs. 1,954 cases)

or by selecting smaller clusters from the dendrogram resulting from HCL analyses of larger

samples.

Genes and pathways implicated by functional and network prediction

analyses

DBI has not been identified in any other blood-based proteomic study of ASD, but a recent

study indicated that DBI protein was differentially expressed among as many as 231 proteins

in urine from individuals with ASD [35]. DBI is also known as acyl-CoA-binding protein

(ACBP) or endozepine (EP). DBI can displace diazepam from the benzodiazepine (BZD) rec-

ognition site located in the GABA type A receptor and act as a neuropeptide to modulate its

action [58]. DBI is highly expressed in several regions of the brain, including the cerebellar cor-

tex, area postrema, and ependyma of the third ventricle [59]. A recent study in mice reported

that genetic loss of DBI leads to reduced social interest in both males and females, with a

greater effect in males than in females [57]. Moreover, male and female mice lacking DBI

exhibit increased repetitive grooming [57]. These altered behaviors are key phenotypes of

ASD, and the sex differences in the effects of DBI loss on social behavior may be related to the

sex bias of ASD, which deserves further investigation. Moreover, in addition to LCLs, the

reduction of DBI protein levels should be further confirmed in peripheral blood or brain sam-

ples from individuals with ASD with severe language impairment in a larger cohort.

The other differentially expressed proteins in LCLs from individuals with ASD with severe

language impairment that were reproducible were AHSG, ENO1, and CALM1. AHSG, or

fetuin-A, is found in the peripheral blood and is produced by the liver [60]. The protein is

involved in several processes, including brain development, endocytosis, and the formation of

bone tissue [61]. A proteomic study using liquid chromatography-electrospray ionization-

mass spectrometry (LC-ESI-MS) analysis revealed the upregulation of AHSG in the serum of

low-functioning ASD individuals compared with controls [26]. Moreover, a genomic linkage
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scan performed in a study of SNPs in individuals with ASD also identified AHSG as a potential

candidate gene for a chromosome 3q26.31–q27.3 region mutation [62]. ENO1 and CALM1

were reported to be decreased in another previous proteome study using isobaric tags for rela-

tive and absolute quantitation (iTRAQ)-based mass spectrometry analysis of plasma from

patients with ASD and age-matched unaffected individuals [31]. ENO1 (alpha-enolase) is a

multifunctional enzyme that plays a role in glycolysis and functions as an activator of plasmin-

ogen on the cell surface of leukocytes and neurons. CALM1 (calmodulin 1) is a calcium-bind-

ing protein involved in the regulation of a number of ion channels and enzymes through

calcium binding and is important for neurological functions. Like DBI, these proteins deserve

further study.

In addition to these differentially expressed proteins identified in previous proteome stud-

ies, other proteins have also been linked to ASD. One example is TUBB, which is the major

constituent of microtubules and is highly expressed in the developing brain. Mutations in the

gene encoding this protein lead to cognitive impairment with motor and language delay,

ataxia, and severely delayed psychomotor development, all of which are associated with ASD

[63,64]. Notably, a reduction in TUBB protein levels was also observed in the ASD G3 sub-

group, whose members exhibited severe language impairment.

In addition to neurological functions, several differentially expressed proteins are involved

in mitochondrial functions and energy production, which have been reported to be negatively

impacted in ASD [see reviews in [65,66]]. For example, IDH2 (isocitrate dehydrogenase) is

found in the mitochondria and plays a role in intermediary metabolism and energy production

by catalyzing the oxidative decarboxylation of isocitrate to 2-oxoglutarate. In the present

study, we found that IDH2 transcript and protein levels were dysregulated in ASD with severe

language impairment. The expression of mutated IDH2 has been associated with white matter

abnormalities throughout the central nervous system (CNS) and with muscular dystrophy in

transgenic adult mice [67]. Both of these conditions have been associated with ASD [68–70].

Western blot analysis of protein from the ASD with severe language impairment group

showed that IDH2 protein levels tended to be lower in the ASD subgroup, although this differ-

ence was not statistically significant (Fig 9). The potential role of this protein should be further

examined in a larger cohort.

Other proteins related to mitochondrial functions identified by this study included

PGAM1, DLD, ENO1, and COX5A. PGAM1 is an enzyme of the glycolytic pathway that cata-

lyzes the conversion of 3-phosphoglycerate to 2-phosphoglycerate. DLD functions as the E3

subunit of three mitochondrial multienzyme complexes: pyruvate dehydrogenase (PDH),

alpha-ketoglutarate dehydrogenase (α-KGDH) and branched chain 2-oxoacid dehydrogenase

(BCKDH). COX5A is the nuclear-encoded Va subunit of the human mitochondrial respira-

tory chain enzyme. Abnormalities in these important mitochondrial proteins might be respon-

sible for susceptibility to ASD and therefore require further investigation.

Limitations and future directions

Our study shows that ASD subgrouping performed to reduce clinical heterogeneity can iden-

tify proteins with the potential for use as molecular marker candidates in future studies. All

LCLs used in this study were obtained from the AGRE. The control LCLs were derived from

male unaffected individuals who do not have ASD. These LCLs have been used for gene

expression profiling analysis using high-throughput microarrays in a previous study [16],

allowing us to obtain transcriptome data for comparison with the proteome data in this study

and others. A limitation of this study with regard to proteomic data is that we combined the

lists of differentially expressed proteins from different proteomics studies on ASD for
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comparison with differentially expressed genes from a handful of transcriptomics analyses.

However, a risk of bias and lack of consistency may occur because of the different analytical

techniques, types of tissues, and other confounding factors among the various studies. In

future work, a comprehensive meta-analysis and/or a systematic review of published proteome

profiles might be conducted to generate a list of differentially expressed proteins in each type

of tissue. Another limitation may be the unknown ethnicity of the majority of the individuals

whose LCLs were used in this study. Although we do not have information about the specific

ethnicity of the individuals in this study, most individuals were Caucasian and described as

“Not Hispanic or Latino” according to the AGRE. Whether ancestry has a notable impact on

proteome and/or transcriptome profiles has not been clarified; therefore, the findings from

this study should be confirmed in a larger cohort with age-, sex-, and ethnicity-matched con-

trols in the future.

Conclusions

The findings of this study demonstrate that subgrouping individuals with ASD based on clus-

ter analyses of ADI-R scores is useful for identifying protein candidates for ASD, particularly

in the phenotypic subgroup of individuals with ASD with severe language impairment. Inte-

grated transcriptome-proteome profiling analyses of LCLs revealed that differentially

expressed transcripts in LCLs from individuals with ASD with severe language impairment

were significantly associated with proteins reported to be affected in patients with ASD based

on proteomics analyses. Thus, several of the altered proteins identified in LCLs might reflect

molecular changes in patients, and LCLs may be employed as a surrogate tissue for screening

candidate proteins in ASD. As the majority of differentially expressed genes may not correlate

with differential protein levels, additional proteomic studies are clearly needed to identify pro-

tein markers and the molecular mechanisms underlying ASD. Proteome profiling of LCLs

from individuals with ASD with severe language impairment revealed several dysregulated

proteins. These proteins included DBI, which was significantly decreased in ASD cases com-

pared with sex-/age-matched controls and which may serve as a candidate protein for future

studies of molecular mechanisms or biomarker discovery in ASD.
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