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Abstract

We propose a funding scheme for theoretical research that does not rely on project propos-

als, but on recent past scientific productivity. Given a quantitative figure of merit on the latter

and the total research budget, we introduce a number of policies to decide the allocation of

funds in each grant call. Under some assumptions on scientific productivity, some of such

policies are shown to converge, in the limit of many grant calls, to a funding configuration

that is close to the maximum total productivity of the whole scientific community. We present

numerical simulations showing evidence that these schemes would also perform well in the

presence of statistical noise in the scientific productivity and/or its evaluation. Finally, we

prove that one of our policies cannot be cheated by individual research units. Our work must

be understood as a first step towards a mathematical theory of the research activity.

1 Introduction

The introduction of performance-based funding at the end of the twentieth century, both at

the level of institutions and single researchers, has had a significant impact on the current

organization of the academic world. At the institutional level, research evaluation practices

with the goal of distributing public funding have been introduced in several countries [1]. At

the same time, universities and research institutions rely more and more on grants to pay sala-

ries, which are obtained by single researchers or consortia via a competitive procedure, in par-

allel to an increase of the percentage of non-permanent positions and competition among

scientists [2–5]. The goal of these policies is to improve the performance of the research sys-

tem, e.g., at a national or European level. On the one hand, these policies are supposed to

move funds from the “less efficient” to the “more efficient” institutions and researchers, thus

optimizing the fund allocation; on the other hand, the competition among researchers is sup-

posed to drive their productivity.

At present, most research policies rely on the unfortunate idea that there is just one way of

conducting science. In fact, there are two: experiments and theory, and science cannot advance

without either. Theoretical researchers propose mathematical models to predict the outcomes

of future experiments; and their experimental counterparts test the validity of such models in

the lab. The programs currently used by grant agencies to promote research seem to be solely

conceived with experimental science in mind. Not surprisingly, they are quite unfit for grant
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applicants from the theoretical sciences, such as mathematicians, computer scientists and the-

oretical physicists.

Let us explain why. In order to apply for a grant, most funding agencies demand a research

project, i.e., they require scientists to detail their research activities within a period of 2 to 5

years in the future. While this scheme reflects the way many experimentalists organize their

research agenda, it is incompatible with the current practice of theoretical research. One can-

not “plan” discovering mathematical calculus, quantum cryptography or neural networks.

Quite the opposite, some of the most celebrated ideas in history have arisen during the course

of an unrelated investigation (see, e.g., [6] for a few examples). It is by following these new

threads that theorists keep their scientific productivity. On the contrary, stubbornly sticking to

a single research line no matter what is a sound predictor of scientific sterility.

Agencies also demand theorists to lay out their “methodology”. Namely, they expect theo-

rists to explain how they intend to prove this or that theorem. The honest answer is that they

don’t know. If they did, the theorem would be proven already, and they would not be applying

for funds to crack it.

For the working theorist, applying for research funds is therefore a long and unethical task.

It involves concocting an elaborate fantasy where the theorist pretends to know what theorems

he/she will be proving in the next few years and through which particular mental processes.

This activity, not clearly correlated with the applicant’s success, takes a lot of time away from

research [7]. The product of these efforts, the project proposal, has no value whatsoever for

society, and yet it is kept secret on the grounds of avoiding plagiarism. This lack of transpar-

ency makes grant panels unaccountable of any decision they make.

Let us stress that the current grant system pushes theorists to lie in order to get funded.

Indeed, if theorists carry their research sensibly, there will invariably be a mismatch between

the original goals of the project and the final research output. So far no major scandal has tran-

spired because the evaluators of a grant’s final reports are researchers themselves: acknowledg-

ing that the system is flawed, they almost always award a positive assessment. This state of

affairs, though, could change from one day to another, making thousands of theoretical

researchers liable to a civil suit for fraud. In this direction, Gillies documents grant rules which

advocate for the punishment of researchers who do not achieve the project goals [6]. E.g.: for-

bidding them to apply again for the next two years, or reporting them to the head of their

research institution.

We have reached this situation because, up to now, research policies have been based more

on political fashion than on solid science. To progress beyond this point, we need an open sci-

entific debate on research funding practices, where the scientific method is applied to the prob-

lem, i.e., with hypothesis, models, and experiments [8]. The problem of research funding can

be roughly divided into two sub-problems: first, the identification of the best evaluation

method and corresponding parameters, e.g., of productivity or impact, and then the problem

of maximization of such parameters given the available financial resources.

Regarding the first problem, for the reasons above we believe that, at least for theoretical sci-

ences, agencies and institutions should focus on funding people rather than projects [9]. That

is, the evaluation of a researcher should be based on past scientific merits, as opposed to mega-

lomaniac delusions.

The gross of the present paper addresses the second problem. Namely, presuming the exis-

tence of a quantitative measure of research productivity, estimated through the analysis of

recent scientific activity, we investigate practical methods to optimize the total production of a

global research system.

We start by modeling the research system as a collection of agents or research units. A

research unit can represent an individual scientist, a research group or a whole research
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institute. Each research unit possesses a “scientific productivity function” that relates how

much science a given research unit can produce with the funds it holds to conduct research.

We allow productivity functions to be probabilistic and time-dependent. They are also

unknown, i.e., neither the research agency nor the scientists themselves can tell how they look

like.

Relying on our mathematical model of the research activity, we show that there exist sys-

tematic procedures to decide the budget distribution at each grant call with the property that

the total productivity of the research community will be frequently not far off its maximum

value.

The simplest of such procedures is what we call the rule of three, by which the funds xkþ1
i for

research unit i after grant call k + 1 are proportional to the research output gki of the unit dur-

ing the kth term. If the total budget for science during the (k + 1)th term is X euros, this means

that

xkþ1
i ¼ X

gkiP
j gkj

: ð1Þ

The returns of this policy must be contrasted with those of “excellence” schemes, whereby,

under equal research outcomes, researchers which were funded in the past have a greater

chance of receiving further funds. Such policies can be shown to converge to configurations

where the total scientific productivity is an arbitrarily small fraction of the maximum achiev-

able by the research system. They are therefore better to be avoided.

We also study to what extent research policies can be cheated by dishonest research units.

We conclude, for example, that hacks of the rule of three would require either influencing the

evaluation stage or a coalition of research units. They are hence unlikely.

An important aspect of the current funding system is the fact that the increased competition

and instability generate pressure among researchers, the so-called “publish or perish” culture,

with possible negative consequences discussed in the literature, such as the focus on popular

topics, short-term goals, and conservative research [6, 10, 11] and the proliferation of useless

research or even dishonest practices [12–15].

The new funding framework that we advocate for is probably not a solution to the above

problems, which are also closely connected to evaluation practices. Our framework, however,

does not force theorists to engage in unethical practices, it is transparent and does not require

the applicant to waste months of working time in writing project proposals. In addition, our

mathematical analysis of scientific populations suggests that our grant schemes are relatively

free from the so-called Matthew effect (i.e., “the rich get richer and the poor get poorer.”) [16].

The paper is organized as follows. In Sect. 2, we will introduce and motivate the use of a

funding scheme not based on project proposals, but rather on the evaluation of recent-past

productivity of single scientists or research institutions. In Sect. 3, we will discuss which math-

ematical properties an idealized productivity function should possess. In Sect. 4 we will define

mathematically the problem of maximizing the total productivity of the system, given con-

straints on the total funding, and discuss possible ways of solving it, assuming the knowledge

of all the parameters of the problem. In Sections 5, 6 we will adapt the previous analysis to the

more realistic case of unknown model parameters, and explain how to extract a funding policy

in this situation. In particular, we will perform numerical simulations to compare the perfor-

mance of the different funding schemes under noise. In Sect. 7 we will analyze the security of

one of our policies against dishonest players. In Sect. 8, we will discuss possible extension of

the model to handle more complex situations, e.g., competing funding agencies. Finally, we

will present our conclusions.
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2 Funding policies not based on research projects

The purpose of public research agencies is to help scientists generate useful knowledge, and

the problem they face in each grant call is how to make sure that their funding reaches those in

a position to generate such knowledge. Most funding agencies assign grants with a competitive

process based on a peer-review evaluation of research proposals. As we argued at the introduc-

tion, this approach is not suitable for theoretical sciences because theorists cannot predict their

future work activity.

A more appropriate indicator of the quality of future theoretical research is the recent past

performance of the grant candidate. This motivates an alternative grant scheme for theoretical

sciences based on the principle that, if candidates have recently shown a remarkable scientific

productivity, it is worth funding them for the next few years so that they keep doing their good

work. But what does “good work” mean?

There are many ways to quantify scientific productivity, and deciding which one suits best

reflects a political stance. All such approaches fall in one of two main categories, namely, those

based on bibliometrics and those based on peer-review. Bibliometric data has the advantage of

being easy and cheap to obtain, e.g., through online databases containing publications and

citations data, hence, it is often preferred by managers and administrators. However, there has

been a proliferation of bibliometric indicators of scientific productivity and impact [17, 18],

often without a clear understanding of their pros and cons, from the perspective of evaluation

and decision making. It has being argued that many of these indicators reflect “what can be

easily counted, rather than what really counts” [18].

From the point of view of researchers, some methods may be considered fairer, such as

expert assessment of the most important recent papers of the candidate. However, peer-review

may be impractical in terms of cost and time, and even be partially flawed (see, e.g., [19, 20]

and references therein) showing, for instance, low reliability in the evaluations [21] or low rat-

ings for highly novel ideas [22]. Several authors have investigated whether peer-review and

bibliometrics can be used together and how much they agree [23–25]. Bollen et al. go further

and propose an alternative funding scheme whereby the evaluation is conducted by the whole

scientific community [26, 27].

In summary, notwithstanding the growing interest in the problem of research evaluation

and the important results achieved so far, we feel that there is no general agreement on what

the best evaluation methods are. As a consequence, we will leave this problem open and just

start from the assumption of the existence of an abstract indicator of “scientific productivity”.

Once a measurable figure of scientific productivity is established, the question is how to

decide how much funds each research unit should receive. This is the problem we tackle in the

rest of this paper. Curiously enough, we find that, given an agreed measure of scientific pro-

ductivity, reaching an optimal allocation of research funds is not a political problem, but a

mathematical one. In fact, we will show that under ideal conditions there exists a systematic

procedure to decide the budget distribution at each grant call with the property that the total

productivity of the research community will be frequently close to its optimal value.

At this point, it is important to remark which problems we are not addressing in our work

and what possible use we can recommend or discourage. First, given the possible negative con-

sequences of the publish-or-perish culture and the attitude towards experimenting with

research policies, discussed in the previous section, we believe only a fraction of the entire

research budget, e.g., at a national level, should be assigned through competitive grants. It is

still an open question how much competition is desirable in academia, see, e.g., the discussion

in Ref. [28] and references therein. Second, we leave open the question of at which level the

evaluation and funding distribution should be applied. We will speak, generically, of “research
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units”. Each research unit could be a single scientist, a research group, a department, a small

research institution, or a university. We will occasionally speak of “a scientist” to provide

examples and motivations for our assumptions, but the results of our work are independent of

this choice. Third, we would like to remark that the methods and computational tools pre-

sented in this work are intended to aid human decisions. We do not advocate for a scenario

where scientists are constantly evaluated by an algorithm that decides and directly modifies

their salary. Finally, it is important to remark that political decisions are sometimes disguised

as technical or scientific ones, e.g., budget cuts for universities and research institutions may

be justified as technical decisions for the optimal use of available financial resources. The dis-

tinction between technical and political decisions should be made as clear as possible. We

hope that separating the problem of funding from that of evaluation may bring clarity to the

political debate.

3 Scientific productivity functions: Definition and properties

Consider an idealized scenario where there is just one grant agency administering all public

funds for research, and N “players” (using a game-theoretic terminology) or research units

apply for funding in consecutive grant calls. For further simplicity, we will adopt first a simple

model where each player i = 1, . . ., N has a time-independent productivity function gi. That is:

if we award a player x euros and demand it to use these funds within a time span T, then the

scientific productivity of this player after time T, however we measure it, will be gi(x). More-

over, this quantity will be the same, independently of when we awarded the player the research

funds. In Sect. 6, we will present a generalization to probabilistic and time-dependent produc-

tivity functions.

We have three main assumptions about the productivity functions gi, which we will further

discuss and motivate in the following. Namely,

1. gi(0) = 0, i.e., the productivity is zero when the budget is zero;

2. gi is non-decreasing, i.e., if we increase the budget we should not decrease the productivity;

3. gi is concave, i.e., the slope of the function is not increasing.

An example of a productivity function satisfying (a)-(c) is presented in Fig 1.

Assumption (a) is quite straightforward: we do not expect a scientist without a salary to pro-

duce any science. There are indeed examples of outstanding individuals, such as Einstein, Bose

or Gosset (Student), who carried out important theoretical contributions while working out-

side the academic world. However, all those individuals had also a salary, i.e., they had a

monthly money input x to play with.

For assumption (b), we expect that if the player behaves rationally, the productivity function

should not decrease with x. Indeed, suppose for example that g(x0)> g(x), for x> x0, see Fig 2.

Then the player awarded with x> x0 could simply spend x − x0 euros to organize a conference

and use the remaining x0 euros to fund its research. Effectively, the player would then be oper-

ating according to a new increasing productivity function ~gðxÞ, with the property ~gðxÞ � gðxÞ
for all x.

Similarly, one can argue that any productivity function must be approximately concave, i.e.,

assumption (c). For suppose that, on the contrary, the increasing function g(x) is convex in the

region [x0, x1], see Fig 2. Fix x0
0
� x0

1
and consider the following research strategy: if the fund-

ing x satisfies x =2 ½x0
0
; x0

1
�, then the scientist conducts research as usual, i.e., it will produce an

output g(x). If, on the contrary, x 2 ½x0
0
; x0

1
�, then there exists a number 0� λ� 1 such that

x ¼ lx0
0
þ ð1 � lÞx0

1
. In this case, we require the scientist to spend x0

0
l euros for a fraction λ of
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the total duration of the grant; and x0
1
ð1 � lÞ, for the remaining time 1 − λ. Assuming that,

under a constant monthly salary, scientific productivity is time independent (namely, a scien-

tist working for 2tmonths will produce twice as much as the same scientist working for t
months under the same salary), the total productivity will be lgðx0

0
Þ þ ð1 � lÞgðx0

1
Þ. As shown

in Fig 2, one can choose x0
0
� x0; x01 � x1 such that the new effective productivity function ~gðxÞ

the scientist is operating under is concave. Moreover, ~gðxÞ � gðxÞ for all x� 0.

The only problem with the above argument is that scientific productivity is just approxi-

mately linear with time. Indeed, one cannot expect 1000 postdocs to advance significantly a

new research line if they just have one day to do so (and we are overlooking the fact that very

few would accept being employed for such a short time!). Hence, if x0
0

and x0
1

are very distant

and x� x0
1
, the previous scheme is not realistic.

Fig 1. Expected productivity gi of a research unit as a function of its budget x. This picture illustrate the three main

assumptions: the function is zero for zero budget, it is non-decreasing, and it is concave.

https://doi.org/10.1371/journal.pone.0214026.g001

Fig 2. The productivity of a research unit as a function of the funding x. As a function of x, the scientific

productivity g of a rational player cannot have: (a) decreasing regions; or (b) convex regions. In both cases, using the

same budget, the research unit can switch to a more favorable productivity function (dashed line) that is increasing

and concave.

https://doi.org/10.1371/journal.pone.0214026.g002
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In the following, though, we will assume for simplicity that the individual productivity is a

concave function. This may not be very accurate to model the activity of a single scientist, but

should be a good approximation to assess the productivity of a large group or a whole research

institute. In sum, the shape of function gi(x) is expected to be approximately of the form

depicted in Fig 1.

Note that, from the conditions of concavity and gi(0) = 0, it follows that

giðxÞ
x
� g 0iðxÞ; ð2Þ

for x� 0. Indeed, compute a first-order Taylor expansion of gi(0) on x. That gives us

0 ¼ gið0Þ ¼ giðxÞ � xg0iðxÞ þ
g 00i ðcÞx

2

2
; ð3Þ

for some c 2 [0, x]. Since gi(x) is concave, its second derivative is smaller than or equal to zero

[29]. It follows that the right hand side of the above equation is upper bounded by

giðxÞ � xg0iðxÞ. Eq (2) will be extensively used throughout the paper. If the inequality in (2) is

strict for x> 0, we will say that the function gi(x) is curved at the origin. Intuitively, this means

that, for any a> 0, the productivity function gi(x) is not a straight segment from x = 0 to x = a.

A family of productivity functions satisfying all these properties and rich enough to model

interesting grant scenarios is the one given by “power functions” of the form g(x) = Axα, where

A> 0, α 2 (0, 1). This family was already considered in [30], where an attempt was made to

estimate the average productivity function of a group leader. Moreover, the same power func-

tion, with an exponent smaller than (but close to) 1, was obtained by analyzing total citation

counts (across 26 scientific disciplines) versus funds (Higher Education expenditure on

Research & Development expressed in Purchase Parity Power dollars) for OECD countries

[31].

4 The problem of fund allocation

Let X be the total funding that the agency can award in a given grant call. The goal of the fund-

ing agency is to identify the distribution of funds that maximizes the research output, given

upper and lower bounds of the form X�i � xi � X
þ
i on each player’s budget xi. The upper

bounds stem from both the unwillingness of the individual to coordinate a large research

group/institution and/or the desire of the funding agency of not concentrating a large amount

of research funds in the hands of a few players. The lower bounds fX�i gi could correspond to

negotiated minimum budgets for each research institute or public servant. Through the rest of

the paper, the set of constraints

X

j

xj ¼ X;

X�i � xi � X
þ
i ; for i ¼ 1; . . . ;N

ð4Þ

will be denoted the funding conditions. In case X�i ¼ 0;Xþi ¼ 1, for i = 1, . . ., N, i.e., in case

the only restriction of the individual budgets is that they are non-negative, we will speak of free
funding conditions. In case X�i ¼ 0, we will speak of capped funding conditions.
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Ultimately, any funding agency wants to solve the optimization problem:

g?ðXÞ � maximize
XN

i¼1

giðxiÞ;

such that
XN

i¼1

xi ¼ X;

X�j � xj � X
þ
j ; j ¼ 1; . . . ;N:

ð5Þ

Since the funding conditions define a convex set and the objective function
PN

i¼1
giðxiÞ is

concave, any local maximum of
PN

i¼1
giðxiÞ is also a global maximum. In other words: inde-

pendently of our current budget configuration fx0
i g, one can always identify the direction

towards the optimal productivity by exploring how the objective function grows locally. It is

also easy to prove that, as a function of the total funding X, g?(X) is also concave.

For free funding conditions and fully homogeneous productivity functions, i.e., gi = g1 for

i = 2, . . ., N, the best strategy turns out to be distributing the funding equally among the

researchers, in order to exploit the greater initial gradient of their productivity functions. That

is, the solution of the above problem is Ng1
X
N

� �
. If g1(x) admits a first derivative at x = 0, for

N� 1, the latter quantity tends to g 0
1
ð0ÞX.

Unfortunately, scientists can have very different productivity functions. Consider a scenario

where each scientist i has a power productivity function

giðxÞ ¼ Aixai : ð6Þ

In Appendix A it is shown that the maximal productivity of this scientific population is

given by

g?ðXÞ ¼
X

i

AiðaiAimðXÞÞ
ai

1� ai ; ð7Þ

where μ(X) is computed by solving the equation

X

i

ðaiAimÞ
1

1� ai ¼ X: ð8Þ

Example

It is at this point instructive to try to apply this simple model to “real data”. Of course, this

example is only illustrative of certain peculiar properties of the productivity functions and of

the funding model. For instance, for simplicity, we will measure productivity simply by count-

ing the number of papers, which is clearly a terrible quantifier, which we do not endorse.

Moreover, contrary to the method present in Sect. 5, the current example uses the assumption

of the specific productivity function of Eq (6), which is in general not necessary. Finally, we do

not claim that the numerical values obtained are particularly realistic, as they are extracted

from only two data points and we provide no statistical analysis. Let us first go through the

details of the example and, then, discuss at the end.

Since 1996, FWF Austrian Science Fund’s START program provides the successful appli-

cant with a funding amount between 0.8 and 1.2 million euros, to be spent in six years [32].

The elegibility requirements demand that the doctoral degree of applicants be completed no

less than two years and no longer than eight years before the deadline for submission of appli-

cations. It is thus not unreasonable to assume that most successful candidates did not have any
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prior funding, other than their own postdoc salary, before receiving the START grant. We ran-

domly selected six START awardees, all of which work either in theoretical physics or mathe-

matics, and estimated their scientific individual productivities by counting their number of

peer-reviewed published papers in the six years prior to the year of the award and also in the

six next years. For each candidate i that provided us with two productivity points g1
i ; g

2
i for

each candidate. Complemented with the two funding inputs x1
i ¼ 435; 780:00 euros (the salary

of a Senior Postdoc in Austria for six years) and x2
i ¼ 1; 200; 000:00 euros (the maximum

START funding), we had enough information to infer Ai, αi for each researcher.

Just for the matter of illustration, we have adopted the number of publications as a figure of

merit. Since all the considered researchers received their START grants between 2007 and

2011, one would expect them to have been raised in the culture of “publish or perish”. It is

therefore sensible that most of them dedicated a substantial amount of effort to maximize their

publication number.

The parameters of the so-computed productivity function for each researcher are displayed

in the table below:

Note that all exponents α are between 0 and 1, in agreement with our assumption that pro-

ductivity functions are increasing and concave.

The total amount of funds destined to these six researchers was X = 6 × 1.2 million euros.

Since the FWF distributed the funds equally among each researcher, the total productivity of

this population due to the START grant is
P6

i¼1
giðX=6Þ � 184. Using Eq (7), however, we

obtain a maximal productivity of g?(X)� 225. This is obtained by distributing budget X in the

way shown in Fig 3.

Fig 3. Optimal distribution of START funds over the N = 6 researchers.

https://doi.org/10.1371/journal.pone.0214026.g003
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If the aim of the START program is to maximize the number of publications, then the pro-

gram is just operating at 100 × 184/225� 81% of its optimal yield. This percentage decreases

as we increase the total funding X. Indeed, take X = 100 million euros. In that case, an equal

redistribution of the budget would produce an research output of 592 publications. In contrast,

the optimal allocation of such funds would give rise to g?(X)� 886. The performance of the

egalitarian fund allocation would thus be 100 × 592/886� 67%. Of course, the aim of this

example is to provide a simple illustration of our method, rather than to criticise the egalitarian

fund distribution.

What is fundamental to notice is that, despite the extreme and unrealistic simplification of

the model in this example, in particular the evaluation of “productivity” as a one-dimensional

parameter, the player that obtains most of the funding in Fig 3 is not necessarily “the best

researcher”. In fact, by changing the total amount X available, one would change the optimal

distribution of funds, hence, the (purported) induced “ranking” among researchers. More spe-

cifically, researchers with αi� 1 would receive most of the funds for low values of X, e.g.,

because they excel at working alone or in small groups, while researchers with αi� 1 would

claim the greatest portion of the science budget in the high X regime, e.g., because they excel at

directing large research groups. This goes against the (possibly commonly accepted idea) that

evaluation committees should choose, among a group of candidates for a grant, the one with

the highest scientific productivity, irrespectively of the available resources. This concludes our

example.

In alternative to the estimation of the function parameters, one can apply a very intuitive

rule of thumb to decide fund allocation. It consists of transferring funds between the different

players until their average productivity rates fiðxiÞ �
giðxiÞ
xi

are as close as possible. That way, we

arrive at a final distribution of funds fx]igi such that, for any i 6¼ j, i, j = 1, . . ., N,

fiðx
]
i Þ > fjðx

]
j Þ implies that x]j ¼ X�j or x]i ¼ Xþi : ð9Þ

In principle, one can achieve such a configuration by solving the optimization problem:

maximize
XN

i¼1

GiðxiÞ;

such that
XN

i¼1

xi ¼ X;

X�j � xj � X
þ
j ; j ¼ 1; . . . ;N;

ð10Þ

where GiðxÞ �
R x

0
dy giðyÞy . It can be easily proven that, for each i, Gi(x) is a concave function.

This means that the maximization (10), like (5), does not risk getting stuck in local maxima.

Define g]ðXÞ ¼
P

igiðx
]
i Þ, where fx]igi is the configuration of funds maximizing (10). Since

fx]igi 6¼ fx?i gi, we expect that g](X) < g?(X), i.e., this manner of allocating funds will not be

optimal in general.

In this regard, consider a bipartite (N = 2) scientific population where, for x 2 (0, 1] player

1 has an almost constant productivity function g1(x) = 1 for x> 0, while player 2’s productivity

function is linear, i.e., g2(x) = x. Then the optimal funding configuration consists in assigning

player 1 an infinitesimal amount of funds (x?
1
¼ d), while giving player 2 the rest (x?

2
¼ X � d).

The supremal (not maximal) productivity is thus g?(X) = 1 + X. On the contrary, using the

above rule of thumb, it is easy to see that, for X< 1, x]1 ¼ X, x]2 ¼ 0, and so g](X) = 1. As X gets
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close to 1, the fraction g](X)/g?(X) tends to 1

2
. Not only we do not achieve the maximal produc-

tivity, but the funding distributions in one case and the other are complete different!

Nonetheless, it is possible that, while not being optimal, g](X) is not that far off the optimal

scientific productivity. In this line, we have the following result.

Theorem 1 Consider a scientific population characterized by productivity functions
fgiðxÞg

N
i¼1

, subject to capped funding conditions f0 � xj � Xþi ;
P

ixi ¼ Xg. Then

g]ðXÞ �
1

2
g?ðXÞ: ð11Þ

In other words: even though the grant scheme (21) is suboptimal, its performance is, at worst,

half of the optimal one. Moreover, due to the example above, the constant 1

2
cannot be

improved. See Appendix B for a proof.

As shown in Appendix D.1, for free-funding conditions, and provided that the slope of

each function gi at x = 0 is “big enough” (more concretely: fið0Þ > fj X
N� 1

� �
for all i, j), we have

that the optimal configuration fx]igi will satisfy

giðx
]
i Þ

x]i
¼

1

l
; for all i; ð12Þ

for some λ> 0.

Note that the slope condition holds for power productivity functions (since fi(0) =1 for all

i). For populations of research units described by such functions, we can thus use Eq (12) to

derive an explicit expression for g](X, namely:

g]ðXÞ ¼
X

lðXÞ
; ð13Þ

where λ(X) is obtained by solving the equation:

X

i

ðAilÞ
1

1� ai ¼ X: ð14Þ

Applying formula (13) to the scientific population described in Table 1 of the example, with

X = 6 × 1.2 million euros, we obtain g](X)� 213 publications. This represents an efficiency of

100 × g](X)/g?(X� 95%. For X = 100 million euros, we obtain g](X)� 861, with an efficiency

of 100 × g](X)/g?(X� 97%. This allocation scheme thus seems to give a good performance

when applied to real scenarios.

Table 1. Power productivity functions of a population of N = 6 scientists.

i A α

1 0.1447 0.35212

2 0.0213 0.44621

3 4.9761 0.14333

4 0.1574 0.41840

5 0.0312 0.43619

6 0.0076 0.62321

https://doi.org/10.1371/journal.pone.0214026.t001
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5 Funding policies

Unfortunately, neither the funding agency nor the scientists themselves know the explicit form

of their productivity functions. So how can a funding agency expect to solve problem (5)?

In the following two sections, we provide a number of automatedmethods to carry out this

task. Under some assumptions on scientific production, some of these methods are guaran-

teed, on their own, to steer the productivity of a scientific population near its maximum possi-

ble value.

Nonetheless, these computational tools are intended to be used by human agents as an

aid to reach a final budget decision. Note that the sole purpose of these tools is to maximize a

given figure of merit, irrespective of any other considerations. We strongly doubt that the

whole scientific enterprise can be reduced to an optimization problem. Thus, by removing

human intervention completely from scientific policy decision-making, we risk reaching a dys-

topian scenario where any aspect of science other than an agreed objective function is viewed

as an obstacle towards the maximization of the latter. On the other hand, we know, from the

world of chess, that in some situations the best decision-makers are neither human nor artifi-

cial, but a team of both kinds of entities. We are therefore confident that funding agencies will

greatly benefit from the ideas that we present next.

We will start by dividing time in terms, of s years each. At the end of the kth term, the fund-

ing agency announces the (k + 1)th call, and, after a proper evaluation, distributes the funds in

such a way that player i receives xkþ1
i euros to be spent on the (k + 1)th term.

Now, let us forget for the time being that we ignore the objective function

gð�xÞ �
PN

i¼1
giðxiÞ. A very effective tool to solve maximization problems like (5) is the pro-

jected gradient method [33]. The output of this method is a sequence of feasible budgets

�x1; �x2; �x3; . . . with the property that

1

k

Xk

j¼1

gð�xjÞ � gð�x?Þ; ð15Þ

with �x? being the optimal configuration. Each budget �xkþ1 is obtained from the previous one

�xk by the following iterative equation:

�xkþ1 ¼ pBð�xk þ � �rgð�xkÞÞ; ð16Þ

where � > 0 is a free parameter known as the learning rate and pBð�zÞ denotes the closest vector

�y to �z (in Euclidean norm) belonging to the set B ¼ f�x : �x � 0,
PN

i¼1
xi ¼ X; 0 � xj � Xj; 8jg

of allowed budget configurations. Computing pBð�zÞ ¼ arg min�y2Bk�z � �yk
2

can be cast as a

semidefinite program [34], a type of optimization problems which we know how to solve

efficiently.

Now suppose that, at the (k + 1)th call of the grant, we chose to distribute the funds accord-

ing to �xkþ1 in Eq (16), and that we repeated this operation in all subsequent calls. Since gð�xÞ is

(approx.) concave, by Eq (15), very frequently the current budget distribution would (approx.)

maximize the total scientific output of the community.

Our problem is, however, that we don’t know �rgðxÞ. Consider then the following modifi-

cation of the iterative equation:

�xkþ1 ¼ pBð�xk þ � ~rkgÞ; ð17Þ
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where we have approximated the gradient

�rgð�xkÞ ¼
@g1ðxk1Þ
@xk

1

;
@g2ðxk2Þ
@xk

2

; . . . ;
@gNðxkNÞ
@xkN

� �

ð18Þ

by the vector

~rkg ¼
gk

1
� gk� 1

1

xk
1
� xk� 1

1

;
gk

2
� gk� 1

2

xk
2
� xk� 1

2

; . . . ;
gkN � g

k� 1
N

xkN � xk� 1
N

� �

; ð19Þ

where gki is the declared scientific production of player i at the end of the kth term (that should

equal giðxki Þ, if the player is being honest, see Section 7).

One can show that the iteration scheme (17) also satisfies Eq (15), see Appendix E. Note,

though, that the vector component ð ~rkgÞi can be computed given the funding xk� 1
i ; xki received

by the candidate in the last two grant calls and the corresponding research outputs gk� 1
i ; gki .

Hence this procedure can be implemented in practice. By using Eq (17) to decide the budget

distribution in the (k + 1)th term, we make sure that, in the long run, research funds are distrib-

uted in an optimal way. Note that there may be situations where we lack data to compute

~rkgðxÞ, e.g.: the candidate just finished the PhD studies, or had a child-raising break. In those

cases, one can replace ð ~rkgÞi by
ĝ i
x̂ i

, where ĝ i; x̂i are, respectively, the last known scientific pro-

duction of the candidate and the science funds it was enjoying at the time.

The recursive method (17), that we will in the following refer to as the gradient scheme, is

an instance of a grant policy. There are others. Consider, for instance, the following one:

xkþ1
i ¼ pB xki þ �

gki
xki

� �

: ð20Þ

This is none other than the gradient method, applied to solve optimization problem (10).

For � small enough, the orbit ð�xkÞk will often be very close to the optimal configuration fx]igi.
Moreover, for capped funding conditions, Theorem 1 guarantees that the corresponding total

productivity will be, at least, one half of the optimal one. Note that this scheme only requires

knowledge of the total scientific budget X and the immediate past performance of the players:

it is a zero-order scheme, as opposed to the first-order scheme (17), that requires information

of the last two grant calls. We will dub this policy the average rates scheme A.

Alternatively, one can use (for free funding conditions) the iterative method:

xkþ1
i ¼ X

gkiPN
j¼1
gkj
: ð21Þ

This is also a zero-order scheme, where we do not even need to know the funds fxki gi awarded

to each researcher at call k in order to decide the funding distribution of call k + 1.

Interestingly, if the initial distribution of funds fx0
i g satisfies x0

i > 0 for all i and all produc-

tivity functions are curved at the origin, it can be proven that this policy converges exponen-

tially fast to the configuration fx]igi of Eq (12) (see Appendix D for a proof). We will refer to

this grant policy as the average rates scheme B, or, more colloquially, as the rule of three, since,

given xkþ1
1
; gk

1
, any other player i = 2, . . ., n can use gki and the rule of three to compute its future

funding.

Finally, there is another grant policy, that we will hereby call the standard scheme, by which

the funding of each researcher is proportional to the funds it received in the previous grant call
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and its productivity. That is:

xkþ1
i ¼ pB X

xki g
k
iP

jxkj gkj

 !

; ð22Þ

where πB denotes, as before, the projection onto the set of budgets satisfying the funding con-

ditions. The standard scheme reflects the growing perception in the theoretical physics com-

munity that the probability of being awarded a grant for a theoretical project grows with both

the productivity of the candidate and the funding obtained in the past. For an evidence, con-

sider the following extract from the Application Guidelines for Stand-Alone Projects, FWF

Austria Science Fund: “Most important research projects funded in the past (no more than 5).
[. . .] For each project, please provide the following information: Project title, funding agency,
project duration (from/to) and amount of funding granted”.

Both the distribution of funds and the final total productivity of this scheme depend signifi-

cantly on the initial budget configuration �x0. Indeed, consider free funding conditions, and

assume that the productivity functions are all identical and equal to the power function (6).

Then one can show that the standard scheme converges to a fund configuration where just the

players i with maximum values of x0
i receive any funds whatsoever. For generic initial configu-

rations �x0, only one player iwill satisfy this demand, in which case the asymptotic total produc-

tivity of the standard scheme will be g[ðX; �x0Þ ¼ AXa. This has to be compared to the optimal

productivity g?(X) = N1−α AXα, achieved by the “egalitarian” configuration xi ¼ X
N, for i =

1, . . ., N. In this example, the final configuration enforced by the standard scheme is thus max-

imally unfair, with just one player holding all the resources, instead of an equal distribution of

funds. In addition, for large populations of scientists (N� 1), the quotient
g[ðX;�x0Þ

g?ðXÞ becomes

arbitrarily small. This gives some theoretical grounds for Nobel Laureate Jeffrey C. Hall’s

remarks in [35]:

I can’t help feel that some of these [scientific] ‘stars’ have not really earned their status. I won-
der whether certain such anointees are ‘famous because they’re famous’. So what? Here’s
what: they receive massive amounts of support for their research, absorbing funds that might
be better used by others.

6 Probabilistic time-dependent productivity functions

In realistic scenarios, it is expected that a player’s productivity will not only depend on fund-

ing, but also on a number of variables which escape our control (health, lack of sleep, love

affairs. . .). We can model the effect of these variables by postulating that productivity functions

must be probabilistic. Actually, in the real world things are even more complicated: productiv-

ity functions vary with time, as researchers acquire new knowledge and skills, or their motiva-

tions waver. In these conditions formula (17) is not guaranteed to generate orbits close to an

optimal productivity.

Suppose then that gi is a probabilistic function that varies with time, i.e., the productivity of

player i at the end of term k is a random variable gki of the form gki ¼ giðx; kÞ. Then deciding

which quantity to optimize in this scenario is again a political (subjective) matter. A reasonable

figure of merit, that we will use from now on, is the average scientific productivity at each term

k. Note that one can repeat the arguments in Section 3 to suggest that hgi(x, k)i should also be

increasing and approximately concave in x. Our goal is therefore to identify a policy to decide
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the fund allocation �xj at each grant call j, such that, for k� 1,

1

k

Xk

j¼1

gð�xj; jÞ �
1

k

Xk

j¼1

max
�x2B
hgð�x; jÞi ð23Þ

with high probability.

This puts us in a conundrum. On one hand, a single estimate of gi(xi, t) does not allow us to

assess its average value, which we need to know in order to maximize the average productivity

of the whole community. On the other hand, we cannot rely on the early past history of the

candidate, because the productivity function also changes with time.

One possibility is to apply the gradient scheme (17), but with a correction that guarantees

that random fluctuations do not squander the optimum budget. Note that, using the grant pol-

icy (17), it could be the case that a candidate receives the same funding twice consecutively,

xki ¼ x
k� 1
i , but outputs different results giðxki Þ 6¼ giðx

k� 1
i Þ. That would lead us to estimate an infi-

nite gradient that would either put all the future budget in the hands of this candidate, or

reduce its budget to 0 in the present grant call. In such a predicament, it is more convenient to

use the corrected formula

zkþ1
i ¼ xki þ �Hðx

k
i ; x

k� 1
i ; gki ; g

k� 1
i Þ;

�xkþ1 ¼ pBð�zkþ1Þ;
ð24Þ

whereHðxki ; x
k� 1
i ; gki ; g

k� 1
i Þ is a “filtered version” of ð ~rgÞi, defined as:

Hðxki ; x
k� 1
i ; gki ; g

k� 1
i Þ ¼ 0; if ð ~rkgÞi < 0;

gki
xki
; if ð ~rkgÞi >

gki
xki
;

ð ~rkgÞi; otherwise:

ð25Þ

The filter’s goal is to get rid of non-sensical estimations ~rkg of the actual gradient �rkg of the

objective function. Indeed, since gi(x) is increasing, it can’t be that g 0iðxÞ < 0. Similarly, by

Eq (2), g 0iðxÞ � fiðxÞ.
For g deterministic and time-independent, Hðxki ; x

kþ1
i ; gki ; g

kþ1
i Þ ¼

~rkg. The policy (24) is,

in this scenario, equivalent to algorithm (17), and so its outputs ð�xkÞk will satisfy Eq (15). We

leave as an open question under which conditions Eq (23) is satisfied in the probabilistic, time-

dependent case. For the rest of the article, the use of formula (24) to decide the funding alloca-

tion will be dubbed the modified gradient scheme.
Alternatively, we can resort to the average rates schemes (20), (21). Since these policies only

take into consideration productivity data and funds from the previous grant call, one would

expect them to be even more robust against the time evolution of the productivity function.

Moreover, by inspection of Eqs (20), (21) it is clear that small random fluctuations on the pro-

ductivity will hardly affect the resulting budget configuration after a few calls. In fact, for the

average rates scheme A, it can be proven (see Appendix F) that, if the productivity functions

change slowly with time, then with high probability we have

1

k

Xk

j¼1

gð�xj; jÞ �
1

k

Xk

j¼1

hgðyj; jÞi: ð26Þ

Here yj denotes �x], as defined in (9), for the functions gi(x)� hgi(x, j)i. By Theorem 1, this
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means that, under capped funding conditions, the average rates Scheme A is guaranteed to

produce on average at least half of the optimal productivity.

So far we have discussed three different grant policies. Which one shall we use in practice?

To help us answer that question, we will next compare their performance in a number of

numerical simulations.

In each simulation, we will consider a population of researchers with time-independent,

non-deterministic productivity functions. Their average productivity functions will be given

by Table 1. To model both the random fluctuations in productivity and the volatility of scien-

tific evaluation, we assign to each scientist a measure of unpredictability 0� U� 1: the actual

productivity of the scientist is taken to be gi(x)(1 + ui), where ui is a random number chosen

uniformly from the interval [−U, U]. In our simulations, we studied three cases of interest:

U = 0 (no noise), U = 1/8, (low noise) and U = 1/2 (high noise).

Starting with the random funding distribution �x0 ¼ ð1:6804; 1:8683; 0:2619; 1:8839;

1:3043; 0:2012Þ � 106, we estimated the fraction of the maximal productivity achieved via dif-

ferent policies at each call k. The normalized average productivity is depicted in Fig 4, together

with its variance. As we can see, even under low statistical noise the rule of three performs

slightly better than the modified gradient scheme after a reasonable number of calls (5, 6), and

substantially better than the standard scheme. In the asymptotic limit, the performances of the

average rates schemes A and B are comparable, but the latter converges faster to the optimal

value.

Which one of these policies should be chosen depends on the typical form productivity

functions, a matter that can only be decided through experiment. If the relevant productivities

exhibit almost no statistical noise, the modified gradient scheme shall be preferred. On the

contrary, under free funding conditions and a fair amount of noise, the rule of three seems to

be the wisest choice.

7 Dishonest players

So far we have been assuming that all players are honest, namely, that they won’t try to play the

system to obtain more funds than they should. Such is a very naive position: ideally, we would

like to have research policies which cannot be played. In this spirit, we will next study the secu-

rity of the rule of three against dishonest participants.

Fig 4. Productivity as a function of the grant call k, for different scientific policies. The colors green, yellow, blue

and red denote, respectively, the modified gradient scheme, the average rates scheme A, the rule of three and the

standard scheme. Starting from a random distribution of funds, we study the performance of different policies under

increasing amounts of statistical noise. For both the modified gradient scheme and the average rates scheme A, we

chose � ¼ 0:25�X
maxiðg0i =x

0
i Þ

. If each term lasts s = 4 years, then, in all cases, the rule of three would require 12 years to steer the

community to a configuration where the average scientific production is greater than 90% of the maximal value.

https://doi.org/10.1371/journal.pone.0214026.g004
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For simplicity, we will carry the analysis under the assumption that the dishonest player,

Daniel, belongs to a large scientific population where the budget distribution is almost station-

ary (i.e., it is close to an equilibrium). We will also assume that Daniel’s optimal productivity

function is time-independent, deterministic and curved at the origin. Finally, we will suppose

that, if Daniel plays honestly, in the asymptotic limit his budget x]i will be greater than zero.

Following Eq (21), by producing an amount of science gki at the end of the kth term, Daniel

will receive the funds xkþ1
i ¼ X gkiP

j
gkj

at the (k + 1)th call. Since the population Daniel belongs to

is large and its funding distribution close to stationarity, XP
j
gkj

will hardly vary with gki and k, so

we will take it constant, i.e., we will assume that xkþ1
i ¼ lgki , for some λ> 0.

Suppose that Daniel plays honest. Then, given an initial amount of funds x0
i , he will

invest them all on research, thus producing g0
i ¼ giðx

0
i Þ and earning x1

i ¼ lgiðx0
i Þ at the

end of the process. Iterating, we find that the Daniel’s funds will follow the orbit

x0
i ; lgiðx

0
i Þ; lgiðlgiðx

0
i ÞÞ; lgiðlgiðlgiðx

0
i ÞÞÞ; . . .. It can be shown that, in the limit, he will be

receiving x]i > 0 after each call, with x]i defined by the relation lgiðx
]
i Þ ¼ x

]
i . In other words,

lim
k!1

1

kþ 1

Xk

j¼0

xji ¼ x]i : ð27Þ

Now, we let Daniel be dishonest. How could he get more than x]i on average? If the funding

agency requires each player to spend all his/her funds by the end of the term, then the only

thing Daniel can do is keep a fraction of his scientific results secret. Perhaps, by declaring a

vast accumulation of scientific achievements in one go he may manage, on average, to squeeze

more money out of the grant agency.

More specifically: starting with the funds x0
i and an amount of undeclared scientific results

gþi , Daniel would produce an output giðx0
i Þ. He could then declare, at the end of the term, that

he has produced an amount of results g0
i , with 0 � g0

i � g
þ
i þ giðx

0
i Þ. In turn, the grant agency

would reward him with an amount x1
i ¼ lg0

i , that he would use to produce giðx1
i Þ results. In

the next term, he would declare g1
i , with 0 � g1

i � g
þ
i þ giðx

0
i Þ � g

0
i þ giðx

1
i Þ results, and so on.

Daniel’s declaration strategy is summarized in Table 2.

The second column denotes the funds received at the beginning of the call. Columns 3 and

4 denote, respectively, the reported and unreported scientific production when the funds run

out. Note that, for this table to represent a valid strategy, xkþ1
i ¼ lgki and the elements of col-

umn 4 must be greater than or equal to 0. The question is whether Daniel can choose g1
i ; g

2
i ; . . .

in such a way that, on average, he will obtain more funds than acting honestly. That is,

whether, for high k, 1

kþ1

Pk
j¼0
xji > x

]
i þ d, with δ> 0. In Appendix G we show this not to be the

case.

Thus, in the long run, Daniel will not win anything by delaying the publication of his scien-

tific production. On the contrary, by not publishing his results as soon as he produces them,

Table 2. Daniel’s cheating strategy.

term funds received reported productivity unreported productivity

0 x0
i g0

i gþi þ giðx0
i Þ � g0

i

1 x1
i g1

i gþi þ giðx0
i Þ � g0

i þ giðx1
i Þ � g1

i

2 x2
i g2

i gþi þ giðx
0
i Þ � g

0
i þ giðx

1
i Þ � g

1
i þ giðx

2
i Þ � g

2
i

..

. ..
. ..

. ..
.

https://doi.org/10.1371/journal.pone.0214026.t002
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he risks being scooped by some other player, in which case he would be losing well-deserved

science funds. It is therefore in Daniel’s interest to play honest and declare all his productivity

by the end of each term.

Note that this security analysis required assumptions on both Daniel’s productivity function

(determinism, time-independence and curvature at the origin) and the overall behavior of the

scientific population. It would be interesting to find out whether security also follows if such

assumptions are dropped. Similarly, it would be interesting to see if the modified gradient

scheme and the average rates scheme A are also secure under dishonest participants.

Most crucially, we have not studied the possibility that the evaluation of the scientific pro-

duction of the players is not impartial. Some studies suggest that for securying fund it is more

important how researchers build their collaboration network than what publications they pro-

duce and whether they are cited [36]. Actually, in some fields such a behavior has greatly influ-

enced the distribution of research funds in the past [37]. At the moment we do not have a

solution for this problem, other than hoping that not so many scientists engage in this

practice.

8 Discussion

Here we will examine some shortcomings of our model for research funding (5) and discuss

how the latter can be improved for its use in real-world scenarios. This section is much more

technical than the others and can be skipped on a first reading.

8.1 Assumptions on the productivity function

In section 3, we argued that the productivity function gi(x) of each player imust be increasing

and approximately concave. We did so by reasoning that any rational player who knows the

shape of its productivity function can improve it piece by piece until it becomes increasing and

approximately concave. The underlying assumptions are that the agent knows its productivity

function, that it is interested in maximizing it and that it acts rationally. These three conditions

may not be met in practice.

Consider, for instance, the second one. Suppose that the goal of the funding agency were to

maximize the total number of publications, while the personal goal of player i is to maximize

the quality of the said publications. Then, given more funding, player i would not use it to

increase its publication number, but to hire better researchers and hence produce better

papers. In such circumstances, there may not be a simple relation between xi and the produc-

tivity gi measured by the agency. In principle, gi(x) could be decreasing, or convex.

The maximization of non-concave functions is a conventional problem in artificial intelli-

gence, where the accuracy of the output of a neural network depends non-trivially on a num-

ber of continuous parameters. There exist a number of methods to achieve this effect, see [38].

Unfortunately, all of them require a reliable estimate of the gradient �rkg. Under very low sta-

tistical fluctuations and productivity functions independent of time, we can approximate �rkg
by ~rkg as in (17). In the general case, though, it is unclear what to do when one of the compo-

nents of ~rkg is negative or very high. Indeed, since gi may not be neither increasing nor con-

cave, we cannot assume that neither g 0iðxÞ � 0 nor Eq (2) holds, and so we are not entitled to

filter ~rkg as in Eq (25).

Another tacit assumption in (5) is that the productivity gi of a player i just depends on its

funding xi (and not on the funding {xj: j 6¼ i} of all the other players). This condition does not

capture frequent real-world situations where two or more research institutes compete for the

same gifted group leader. A more realistic model for scientific productivity would posit that
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there exists a global productivity function g(x1, . . ., xN) that does not necessarily decompose as

a sum of independent productivities, i.e., g(x1, . . ., xN) 6¼ ∑i gi(xi).
Funding agencies should therefore tackle the following optimization problem:

g?ðXÞ � maximize gðx1; . . . ; xNÞ;

such that
XN

i¼1

xi ¼ X;

X�j � xj � X
þ
j ; j ¼ 1; . . . ;N:

ð28Þ

Even under the assumption that g(x1, . . ., xN) is concave, deterministic and stationary, a

blind application of the gradient method will soon lead to trouble. As before, the difficulty

stems in estimating the gradient of g(x1, . . ., xN). One way to do so would be to keep the

funding of all players but one constant and then compute the difference between the two pro-

ductivities. For high N this is clearly impractical: even in the absence of statistical fluctuations,

proximity to the optimal configuration of funds would only be achieved after O(N) grant calls.

Finally, one could question whether productivity functions exist at all. In the most general

case, the productivity of a player at call k could also depend on his/her past success in securing

grant funds, i.e., it could be a non-deterministic function, not only of xki ; k, but also of

x1
i ; . . . ; xk� 1

i . On the other hand, it is possible that the much simpler model (5) already repre-

sents an accurate description of the scientific practice. This question cannot be settled by pure

mathematical reasoning, but through experimental work, e.g., via pilot research programs.

8.2 More than one funding agency

In real life there are several funding bodies at play. Depending on the goals of each funding

body, there are different optimization scenarios. If these bodies use the same measure of scien-

tific productivity and their goal is just to increase human knowledge, the best they can do is to

create a common budget pool and act as if they were a single funding entity. If they fund

completely different areas of research, they can use the policies above independently. If what

these bodies fund is pretty much the same, and each of these bodies seeks for recognition, then

we enter a complicated game-theoretic problem. One can then divide the funding xi of scien-

tist i between its sources, i.e., ∑s xi,s = xi, and credit each funding agency t with a proportional

amount of the total productivity of each scientist, i.e., gi;t �
xi;tP
s
xi;s
giðxiÞ. The goal of each fund-

ing agency t would be to maximize
PN

i¼1
gi;t, disregarding the performance of all the other

agencies.

First of all, as a function of xi,s, it is immediate to see that gi,s satisfies gi,s(0) = 0. One can

also prove easily that it is also an increasing function of xi,s, since

@gi;s
@xi;s
¼
giðxiÞ
xi
�
xi;t
x2
i

ðgiðxiÞ � g
0

iðxiÞxiÞ �
g 0iðxiÞ
xi
� 0: ð29Þ

Here the last inequality follows from Eq (2) and xi� xi,s.
In addition, assuming g 000i ðxÞ � 0 for all x (this is the case, e.g., for the power functions (6)),

one can prove that gi,s is also concave. Indeed, note that

x2
i

@
2gi;s
@x2

i;s

¼
xi;s
xi

2giðxiÞ � 2g 0iðxiÞxi þ g
00

i ðxiÞx
2

i

� �
� 2giðxiÞ þ 2g 0ðxiÞxi: ð30Þ

Define hðzÞ � 2giðzÞ � 2g 0iðzÞz þ g
00
i ðzÞz

2. It can be verified that h(0) = 0 and

h0ðzÞ ¼ z2g 000i ðzÞ � 0. Hence the term between brackets on the right hand side of Eq (30) is
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non-negative for xi� 0. Since
xi;s
xi
� 1, we thus have that the right hand side of Eq (30) is upper

bounded by g 00i ðxiÞx
2
i � 0.

Since, as a function of xi,s, {gi,s}i is concave, the problem of maximizing
PN

i¼1
gi;t for fixed

values of {xi,t: t 6¼ s}i is a convex problem. Moreover, {gi,s}i also vanishes at zero, and is increas-

ing, so agency s can apply the grant policy (17) to find an orbit of configurations close to the

optimal value. The conditions of Theorem 1 are also met, and so (under capped funding con-

ditions) agency s can similarly use the grant schemes (20), (21) to approximate this maximum.

All this under the assumption, of course, that the other agencies t 6¼ smeanwhile keep their

budget configurations fixed. If all agencies tried to maximize their total credited productivity

at the same time, the system would converge towards a Nash equilibrium, where, of course,
P

s

PN
i¼1
gi;s would not in general coincide with the maximum total productivity achievable.

Note that these conclusions also hold when the productivity functions used by the agencies dif-

fer, i.e., when the (raw) productivity of scientist i is evaluated differently by each agency.

9 Conclusion

In this paper, we have proposed a family of schemes to fund theoretical research. Contrary to

the rule in academic funding, these schemes do not rely on a project proposal, but on recent

academic performance, as quantified by a given figure of merit. We observed that, once the fig-

ure of merit is accepted, the distribution of grant funds becomes an academic problem as

opposed to a political issue.

In this regard, we proposed an algorithm to decide the allocation of funds on each grant

call. Under certain idealized assumptions, the algorithm is guaranteed to drive the system, via

successive grant calls, to budget distributions maximizing the total scientific productivity. We

also introduced alternative schemes, based on the notion of average rates, to tackle scenarios

with high statistical fluctuations in the scientific productivity or its evaluation. We explored

numerically the performance of the gradient and average rate schemes on real data and com-

pared it with the usual way funding agencies deal with theoretical project proposals.

One of the flaws of the proposed framework for research funding is that, like most others, it

may discourage theorists from conducting creative or very original research. Indeed, it is a

well-documented fact that creative and unusual ideas usually take time to be accepted by

experts [22]. A creative grant applicant may thus receive a poor evaluation on his/her recent

research, thus depriving him/her from a well-deserved funding. A reasonable policy to address

this matter, proposed in [37], would be to move researchers with a very high variance in their

expert evaluations to an entirely different funding program, perhaps relying on random grant

schemes, see [39].

Most worryingly, our models of scientific productivity are plagued with ad hoc assump-

tions. In order to propose a realistic grant scheme, we need basic information regarding the

regular practice of research, information that can only be acquired through experiment. How

do productivity functions look like? How are they distributed among theoretical researchers?

What is the volatility of expert referee scores? The answers to the questions will teach us

whether the research policies presented here work better when applied at the level of individual

groups or whole research institutes.

In any case, the purpose of this article is not to provide funding bodies with the ultimate

grant scheme, but to contribute to the ongoing academic discussion on the problem of research

funding. This problem won’t be solved by university administrators or politicians. The solu-

tion, if it exists, will be reached through the scientific method. Because whenever science

comes in, reason and truth follow.
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Appendix A Computation of g?(X) for geometric productivity

functions

Let gi(x) be of the form (6). Then the derivative of gi(x) diverges at x = 0. This implies

that the solution of fx?i gi of problem (5) satisfies x?i > 0 for all i. Under these conditions,

fx?i gi can be determined by demanding that any infinitesimal transfer of funds between

players i and j x?i ! ~xi ¼ x?i þ d; x
?
j ! ~xj ¼ x?j � d should not increase the value of the

objective function
PN

i¼1
gið~xiÞ. This implies that giðx?i þ dÞ � giðx

?
i Þ þ gjðx

?
j � dÞ � gjðx

?
i Þ �

d
dgiðx?i Þ
d xi �

dgjðx?j Þ

d xj
� �

� 0 independently of the sign of δ. This can only be true if, for some

μ > 0,

dgiðx?i Þ
dxi

¼
1

m
; ð31Þ

for i = 1, . . ., N. See also a detailed discussion of these conditions in Appendix D.1.

It follows that x?i ¼ ðaiAimÞ
1

1� ai . The condition ∑i xi = X is thus translated to

X

i

ðaiAimÞ
1

1� ai ¼ X: ð32Þ

Given a value of X, solving the above equation we can determine the value of μ, whose

explicit dependence with X we will express by μ(X). Once μ(X) is known, the final total pro-

ductivity is given by:

g?ðXÞ ¼
X

i

AiðaiAimðXÞÞ
ai

1� ai : ð33Þ

Appendix B Proof of Theorem 1

We will first prove the theorem for free funding conditions and functions gi(x) such that

fiðxÞ ¼
giðxÞ
x is invertible and ranges in (0,1).

Note that for any configuration ~x satisfying
P

i ~xi ¼ X, the quantity 1/λ in Eq (12) must

belong to the interval ½mini fið~xiÞ;maxi fið~xiÞ�. In fact, if x] is the optimal configuration, i.e., the

one satisfying fiðx
]
i Þ ¼

1

l
for all i, for any other configuration ~x 6¼ x], one would have at least

two indices i and j, such that ~xi > x
]
i and ~xj < x

]
j , since

P
i~xi ¼

P
ix
]
i ¼ X. Then fið~xiÞ <

fiðx
]
i Þ ¼

1

l
and fjð~xjÞ > fjðx

]
j Þ ¼

1

l
.

On the other hand,
P

igiðx
]
i Þ ¼

P
ix
]
i fiðx

]
i Þ ¼

P
i
x]i

l
¼ X

l
. It follows that

g]ðXÞ ¼
X

i

giðx
]

i Þ 2 X min
i
fið~xiÞ;max

i
fið~xiÞ

� �

: ð34Þ

Eq (34) implies that the statement of Theorem 1 holds iff, for any feasible distribution of

funds {xi}, there exists another feasible distribution of funds f�xigi such that

fið�xiÞ �
1

2

P
jxjfjðxjÞ
X

¼:
�f
2
: ð35Þ
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Let us see why. If Theorem 1 is true, then

g]ðXÞ ¼ Xfiðx
]
i Þ �

1

2
g?ðXÞ �

1

2

X

j

xj fjðxjÞ; ð36Þ

for i = 1, . . ., N, and for all feasible {xj}j. Dividing by X and identifying �x with x], we arrive at

Eq (35).

Conversely, if Eq (35) holds for x = x?, then by Eq (34) we have that

g]ðXÞ � Xmin
i
fið�xiÞ �

1

2

X

j

x?j fjðx
?

j Þ ¼
g?ðXÞ

2
: ð37Þ

Assuming that {fi}i are invertible (and decreasing), we have that Eq (35) is equivalent to:

�xi � f � 1
i

�f
2

� �

: ð38Þ

Summing on i and taking into account the normalization constraint we arrive at

X �
X

i

f � 1

i

�f
2

� �

: ð39Þ

Conversely, if the above condition is satisfied, then one can define

�xi ¼ X
f � 1
i

�f
2

� �

P
l f � 1
l

�f
2

� � : ð40Þ

Then one can verify that f�xig satisfy (38) and the normalization constraint. Eq (39) is hence a

reformulation of teh statement of Theorem 1.

Let us rewrite Eq (39) as

2

X�f

X

i
xi fiðxiÞFi xi;

�f
2

� �

� 1; ð41Þ

where Fiðx; yÞ ¼
yf � 1
i ðyÞ
giðxÞ

. Define pi �
xi
X, ~pi � pi

fiðxiÞ
�f , and note that both {pi}i and f~pigi are nor-

malized probability distributions on the variable i = 1, . . ., N.

Now, it can be seen that there exists a non-negative number f0 such that

X

i:fiðxiÞ�f0

~pi;
X

i:fiðxiÞ�f0

~pi �
1

2
: ð42Þ

Observe that the second equation implies that

�f
2
�

X

i:fiðxiÞ�f0

pifiðxiÞ � f0: ð43Þ
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Putting all together, we have that

1

X

X

i

f � 1

i

�f
2

� �

¼ 2
X

i

~piFi xi;
�f
2

� �

�

2
X

i:fiðxiÞ�f0

~piFi xi;
�f
2

� �

�

2
X

i:fiðxiÞ�f0

~pi

 !

min
i

Fi xi;
�f
2

� �

: fiðxiÞ �
�f
2

� �� �

�

min
i

Fi xi;
�f
2

� �

: fiðxiÞ �
�f
2

� �

;

ð44Þ

where the last inequality follows from Eq (42).

In Appendix C, we prove that, under the assumption that gi(x) admits a second

derivative, Fi(x, y) is a decreasing function of y. This means that, for fiðxiÞ �
�f
2
,

Fi xi;
�f
2

� �
� Fiðxi; fiðxiÞÞ ¼ 1. This concludes the proof for free funding conditions and pro-

ductivity functions such that fi(x) is invertible and ranges in (0,1).

Now, suppose that fi(x) is not invertible, or doesn’t range from (0,1), and suppose also

that Xþi <1. Then, for any δ> 0, we can always find a new concave, increasing function

~g iðxÞ, with ~g ið0Þ ¼ 0, and such that

1. ~f iðxÞ satisfies the conditions of invertibility and range.

2. ~g 0iðxÞ ¼ 0, for x � Xþi .

3. jgiðxÞ � ~g iðxÞj � d for x 2 ½0;Xþi �.

Indeed, it suffices to consider the function ~g iðxÞ ¼ giðxÞ þ d, for x 2 ½x̂; ~x�, with

0 < x̂ < ~x < g � 1
i ðgiðX

þ
i Þ � dÞ. For x 2 ½0; x̂� [ ½~x;Xþi �, once can find a concave, increasing

extension ~g iðxÞ of gi(x) + δ such that ~g iðxÞ has an infinite slope at x = 0 and conditions 2,3

above are satisfied. The reader may have a look at Fig 5 to understand why this is always the

case.

Now consider the optimization problem (5) over the productivity functions f~g iðxÞgi, under

free funding conditions. Since the slope of ~g i is zero from x ¼ Xþi onwards, this implies that

the optimal solution f~x?i gi will satisfy ~xi? � Xþi for all i. It therefore coincides with the solution

of (5) for capped funding conditions. Since we can choose δ> 0 at will, we can do so such that
P

i ~g ið~x
?
i Þ � g

?ðXÞ, where g?(X) denotes the optimal solution of the capped problem.

Let f~xigi be the solution of problem (10) for the functions f~g igi, assuming free funding con-

ditions. We know, by the previous proof, that

X

i

~g ið~xiÞ �
1

2

X

i

~g ið~x
?

i Þ �
1

2
g?ðXÞ: ð45Þ

However, in general ~xi≰Xþi . Now, define ~x 0i ¼ min ð~xi;Xþi Þ. Then it is evident that
P

i ~x
0
i �
P

i ~xi and
P

i ~g ið~x
0
iÞ ¼

P
i ~g ið~xiÞ. The solution f~x]igi of the capped problem with the

productivity functions ~g i will be the result of distributing the excess funds
P

i ~x
]
i � ~x 0i over the

players i such that ~xi < Xþi . The result can just increase the total productivity, and hence we
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have that

X

i

~g ið~x
]

i Þ≳
1

2
g?ðXÞ: ð46Þ

Finally, it is easy to see that, by decreasing δ, the total productivity of the optimizer of (10)

can be made arbitrarily close to the left hand side of the above equation. It follows that g]ðXÞ �
1

2
g?ðXÞ in the general case.

Appendix C Fi(x, y) is a decreasing function of y

One can easily check that

dFiðx; yÞ
dy

¼

f � 1
i ðyÞ þ

y
f 0i ðf � 1ðyÞÞ

giðxÞ
:

ð47Þ

Call z ¼ f � 1
i ðyÞ. Then, written in terms of gi(x), the numerator of the above equation is

proportional to z 1 �
giðzÞ

giðzÞ� xg0i ðzÞ

� �
. Now, by Eq (2), giðzÞ � zg0iðzÞ is non-negative. Since gi(z) is

also non-negative, it hence follows that
giðzÞ

giðzÞ� zg0i ðzÞ
� 1, and so

dFðx;yÞ
dy � 0, i.e., Fi(x, y) is decreasing

on y.

Fig 5. Cosmetic surgery. We modify gi(x) + δ from x̂ to 0 such that the new function ~g iðxÞ has an infinite slope at x = 0. Similarly, we

modify gi(x) + δ from ~x onwards so that the slope of ~g iðxÞ is zero from Xþi onwards.

https://doi.org/10.1371/journal.pone.0214026.g005
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Appendix D Convergence for zero-order method

D.1 Conditions on the functions gi
In this section, we will discuss under which conditions the zero-order method will converge to

the optimal solution. To simplify the notation, in the following we will assume that the total

budget X is normalized, i.e., X = 1. This physically corresponds to a change of unit for measur-

ing the budget, so it will not affect the solution. From a mathematical perspective, the same

arguments hold for the general case of X 6¼ 1. We will not consider the case of capped funds.

Our assumptions on the single productivity functions {gi}i are as follows:

• dom gi = [0, 1],

• gi(0) = 0,

• g 0i > 0, monotonicity (exclude flat case, for uniqueness of solutions)

• g 00i < 0 concavity (exclude linear case).

By concavity, it follows that

gðx1Þ þ ðx2 � x1Þg 0ðx1Þ > gðx2Þ; for x2 > x1 ð48Þ

which, together with g(0) = 0 implies

gðxÞ � xg0ðxÞ > 0)
gðxÞ
x

> g 0ðxÞ; for x > 0: ð49Þ

The problem in Eq (10), then, becomes

maximize
XN

i¼1

GiðxÞi;

such that
XN

i¼1

xi ¼ 1;

xj � 0; j ¼ 1; . . . ;N:

ð50Þ

It is convenient to define the functions fi(x) ≔ gi(x)/x, for all i. We can now derive the condi-

tions for the functions fi such that the optimal solution x] for the problem (50) satisfies

G0iðx
]
i Þ ¼

giðx]Þ
x]
¼ fiðx

]Þ ¼
1

l
; for all i: ð51Þ

A necessary condition for a point x] to be optimal is given by the Karush-Kuhn-Tucker (KKT)

conditions [40]. Moreover, since the problem is concave, with linear inequality constraints

and an interior feasible point, by Slater’s condition [40], the KKT conditions are also sufficient.
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We can write KKT conditions for the optimal point x].

�
giðx

]
i Þ

x]i
� mi � n ¼ 0;

XN

i¼1

x]i ¼ 1;

x]i � 0; for i ¼ 1; . . . ;N

mi � 0; for i ¼ 1; . . . ;N

mix
]
i ¼ 0; for i ¼ 1; . . . ;N:

ð52Þ

The last two conditions imply that when x]i > 0, then μi = 0. We want to find conditions on

giðx
]

i Þ

x]i
¼ fiðx

]
i Þ, such that there is no solution of Eq (52) with x]i ¼ 0. In this case, we can identify

n ¼ 1

l
and obtain the condition in Eq (51).

For example, one could ask that limx!0

giðxÞ
x ¼ g

0
ið0Þ ¼ fið0Þ ¼ 1, for all i. In fact, let us

assume that f1(0) =1 and x]1 ¼ 0, then to satisfy
Pn

i¼1
x]i ¼ 1, at least another x]i , say x]2 must

be strictly greater than zero. But then μ2 = 0 and the condition f2ðx
]

2Þ ¼ f1ðx
]

1Þ þ m1 cannot be

satisfied for μ1� 0. More generally, one could simply ask that fi in zero is “big enough” with

respect to the other functions fj, j 6¼ i. A sufficient condition to exclude the case x]i ¼ 0 for

some i is given by

fið0Þ > fj
1

N � 1

� �

; for all i; j 6¼ i: ð53Þ

This correspond to the configuration in which we assign 0 to i and an equal amount to j 6¼ i,
i.e., x]i ¼ 0 and x]j ¼ 1

N� 1
for j 6¼ i. If fi(0) is too big, then Eq (52) cannot be satisfied. In order to

increase the value of some fj we would have to decrease x]j , however, given the condition
PN

i¼1
x]i ¼ 1, some other x]j0 should be increased, consequently decreasing the value of fj0.

Finally, let us comment on the assumptions on our productivity such as Eq (53). First,

notice that such conditions involve only the local behavior of the function around x = 0. As a

consequence, given any “actual” productivity function g, we can modify it in a neighborhood

of x = 0 to obtain ~g such that, e.g., ~g 0ð0Þ ¼ 1 but ~gðxÞ ¼ gðxÞ for all x> ε, for some ε> 0.

Applying the iterative method to gi or ~g i for each iterative step k such that xki > ε will give the

same results. Since ε can be chosen arbitrary small, we can always chose a value such that the

values xi� ε correspond, as a fraction of the total budget X, to, e.g., 10−3 euros. This implies

that the difference between gi and ~g i will be relevant only at the step k where we have to redis-

tribute funds of the order of 10−3 euros. Thus, in practical applications, the assumption on the

behavior of g in a neighborhood of x = 0 implies no loss of generality.

D.2 Proof of convergence

We have seen in the previous section that, under condition (53), the optimal solution x] for the

problem (50) satisfies

fiðx]Þ ¼
1

l
; for all i: ð54Þ

Now, notice that f 0i ðxÞ ¼ ½xg
0
iðxÞ � giðxÞ�=x

2 < 0, due to Eq (49), hence f is monotone and the
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solution of Eq (54) is unique. In fact, if there were two solutions x and ~x, then 1=l ¼ fiðxiÞ ¼
fið~xiÞ ) xi ¼ f � 1

i fið~xiÞ ¼ ~xi for all i.
Moreover, we have seen in Appendix B that for any normalized budget distribution ~xi, we

have

1

l
2 ½min

i
fið~xiÞ;max

i
fið~xiÞ�: ð55Þ

Given the total productivity P(x) = ∑i gi(xi), the iterative method is defined as

xki ! xkþ1
i ¼

giðxki Þ
PðxkÞ

; ð56Þ

with initial point x0 such that x0
i > 0 for all i.

To show that the method converges to x], we will show that for any initial point x0, with

x0
i > 0 for all i and x0 6¼ x] the sequences of intervals Ik≔ ½mini fiðxki Þ;maxi fiðxki Þ� satisfies

Ikþ1⫋Ik; and jIkj ! 0 for k!1; ð57Þ

where for I = [a, b] we define |I| ≔ b − a.

By substituting gi(xi) = xi fi(xi) in the definition of Eq (56), we have

fiðxki Þ
PðxkÞ

> 1) xkþ1

i > xki ;

fiðxki Þ
PðxkÞ

< 1) xkþ1

i < xki ;

fiðxki Þ
PðxkÞ

¼ 1) xkþ1

i ¼ xki ;

ð58Þ

which implies, by the strict monotonicity of fi that

fiðxki Þ
PðxkÞ

> 1) fiðx
kþ1

i Þ < fiðx
k
i Þ;

fiðxki Þ
PðxkÞ

< 1) fiðx
kþ1

i Þ > fiðx
k
i Þ;

fiðxki Þ
PðxkÞ

¼ 1) fiðx
kþ1

i Þ ¼ fiðx
k
i Þ;

ð59Þ

Moreover, by the definition of P(xk) and ∑i xi = 1, we have

min
i
fiðx

k
i Þ � Pðx

kÞ ¼
X

i

xki fiðx
k
i Þ � max

i
fiðx

k
i Þ: ð60Þ

Next we want to prove a condition on the increase (and decrease) for fi in the iteration,

namely

fiðxki Þ
PðxkÞ

> 1) fiðx
kþ1

i Þ > Pðx
kÞ;

fiðxki Þ
PðxkÞ

< 1) fiðx
kþ1

i Þ < Pðx
kÞ:

ð61Þ

Theoretical research without projects

PLOS ONE | https://doi.org/10.1371/journal.pone.0214026 March 28, 2019 27 / 35

https://doi.org/10.1371/journal.pone.0214026


Let us consider first the case 0< α< 1 with a≔ fiðxki Þ=PðxkÞ ¼ xkþ1
i =xki . We have

fiðxkþ1
i Þ < Pðx

kÞ , fiðaxki Þ <
fiðxki Þ
a
, a

fiðaxki Þ
fiðxki Þ

< 1: ð62Þ

It is sufficient, then, to notice that

afiðaxÞ
fiðxÞ

¼ a
giðaxÞ
ax

x
giðxÞ

¼
giðaxÞ
giðxÞ

< 1; ð63Þ

since gi(x) is monotonically increasing in [0, 1] (g 0i > 0), 0< α< 1 and x0
i > 0. Analogously,

one can prove that in the case α> 1,

giðaxÞ
giðxÞ

> 1) fiðx
kþ1

i Þ > Pðx
kÞ: ð64Þ

It remains to be proven that limk!1|Ik| = 0. We will argue by contradiction. Let us assume

that limk!1 Ik = [a, b], with b − a> 0. Since {xk}k is bounded, there exist a converging subse-

quence fxkngn with limit xkn ! x�, with mini fiðx�i Þ ¼ a and maxi fiðx�i Þ ¼ b. However, since

b − a> 0, at least one of the following must be true: either P(x�) 6¼ a or P(x�) 6¼ b. Let us

assume that P(x�) 6¼ a, as the other case is identical. Then, by applying the iterative map, we

obtain a new interval I0 ¼ ½a0; b�⊊ ½a; b�, in contradiction with the assumption that [a, b] was

the limit.

D.3 Speed of convergence

In the following, we will show that the iterative method converges exponentially. First, we

need to prove that there exists β< 1 such that sequence {xk}k obtained via the iterative method

of Eq (56) satisfies

jfiðxkþ1
i Þ � Pðx

kÞj � bjfiðxki Þ � Pðx
kÞj; 8; i; k: ð65Þ

Let us define γ≔ P(xk)−1. We can rewrite the iterative step as xkþ1
i ¼ giðxki Þg and

fiðxki Þ=Pðx
kÞ ¼ ggiðxki Þ=x

k
i . Let us first assume fiðxki Þ=Pðx

kÞ ¼ 1þ ε with ε> 0, we will treat the

other case below. We then have

fiðxkþ1
i Þ � Pðx

kÞ

fiðxki Þ � PðxkÞ
¼

fiðx
kþ1
i Þ

PðxkÞ � 1

fiðxki Þ
PðxkÞ � 1

¼

giðgiðxki ÞgÞg

ggiðxki Þ
� 1

giðxki Þg

xki
� 1

¼

giðgiðxki ÞgÞ

giðxki Þ
� 1

giðxki Þg

xki
� 1

: ð66Þ

Let us simplify the expression, using also ggiðxki Þ ¼ ð1þ εÞx
k
i , the expression (66) becomes

giðxki ð1þ εÞÞ � giðx
k
i Þ

εgiðxki Þ
<
εxki g

0
iðx

k
i Þ

εgiðxki Þ
¼
xig 0iðx

k
i Þ

giðxki Þ
� bi < 1; ð67Þ

where we used Eqs (48),(49), respectively, for the two inequalities, and defined

bi ¼ maxx2½0;1�
xg0i ðxÞ
giðxÞ

. Notice that such a maximum exists since
xg0i ðxÞ
giðxÞ

is a continuous function, as

it is continuous in 0, and [0, 1] is a closed and bounded interval.

The case fiðxki Þ=Pðx
kÞ ¼ 1 � ε with ε> 0 is slightly more complicated. Repeating the initial

steps, we obtain

PðxkÞ � f ðxkþ1
i

PðxkÞ � f ðxki
¼
giðxki Þ � giðx

k
i ð1 � εÞÞ

εgiðxki Þ
<
xki g

0
iðð1 � εÞx

k
i Þ

gðxki Þ
; ð68Þ

Theoretical research without projects

PLOS ONE | https://doi.org/10.1371/journal.pone.0214026 March 28, 2019 28 / 35

https://doi.org/10.1371/journal.pone.0214026


again using Eq (48). Now, let us drop the indices i, k to make the notation lighter and define

HxðεÞ≔
gðxÞ � gðxð1 � εÞÞ

εgðxÞ
; H1xðεÞ≔

xg0ðð1 � εÞxÞ
gðxÞ

: ð69Þ

Eq (68) becomesHx(ε)<H1x(ε). We can then verify that the derivative w.r.t. ε is strictly posi-

tive, i.e.,

H0xðεÞ ¼
1

ε2gðxÞ
� gðxÞ þ gðð1 � εÞxÞ þ εxg 0ðð1 � εÞxÞ½ � > 0; ð70Þ

again using Eq (48), (compare also to Eq (68)). As a consequence,Hx is monotonically increas-

ing. Notice that this implies thatHx is continuous in 0 since it is positive and limε!0Hx(ε)�

limε!0H1x(ε) = xg0(x)/g(x) < 1. Its maximal value for ε 2 [0, 1] is given byHx(1) = 1. How-

ever, such a value of ε cannot be reached, since by assumption

1 � ε ¼
fiðxki Þ
PðxkÞ

�
a0

b0

) ε � 1 �
a0

b0

; ð71Þ

where a0, b0 are the endpoints of the interval I0 ¼ ½a0; b0� ¼ ½min ifiðx0
i Þ;maxifiðx0

i Þ�, computed

by evaluating all {fi}i on the first iteration point x0, with x0
i > 0 for all i.

We then obtain, for the case 1 − ε, βi≔ max(x, ε)2[0, 1]×[0,1−a0/b0]Hx(ε). Since, for x� 0,

Hx(ε) is strictly increasing in ε and equals 1 at ε = 1, it follows that βi< 1. Finally, β appearing

in Eq (65) can be obtained as β≔ maxi βi.
To complete the proof of exponential speed, we will first show that for each iterative step k,

and each pair of indices i, j such that fiðxki Þ � Pðx
kÞ > 0 and fjðxkj Þ � Pðx

kÞ < 0,

jfiðxkþ1
i Þ � fjðx

kþ1
j Þj � bjfiðx

k
i Þ � fjðx

k
j Þj: ð72Þ

In fact, fiðxki Þ � Pðx
kÞ > 0) fiðxkþ1

i Þ � Pðx
kÞ > 0 and

fjðxkj Þ � Pðx
kÞ < 0) fjðxkþ1

j Þ � Pðx
kÞ < 0, hence, we can write

jfiðxkþ1
i Þ � fjðx

kþ1
j Þj ¼ jfiðx

kþ1
i Þ � Pðx

kÞj þ jPðxkÞ � fjðxkþ1
j Þj

� bðjfiðxkþ1
i Þ � Pðx

kÞj þ jPðxkÞ � fjðxkþ1
j ÞjÞ

¼ bðfiðxkþ1
i Þ � Pðx

kÞ þ PðxkÞ � fjðxkþ1
j ÞÞ ¼ bjfiðx

kþ1
i Þ � fjðx

kþ1
j Þj:

ð73Þ

Finally, denoting bym the index associated with the minimum at the step k + 1 i.e.,

fmðxkþ1
m Þ ¼ mini fiðxkþ1

i Þ andM the index associated with the maximum, i.e.,

fMðxkkþ1
M Þ ¼ maxi fiðxkþ1

i Þ, we can write.

jIkþ1j ¼ jfMðxkþ1
M Þ � fmðx

kþ1
m Þj � bjfMðx

k
MÞ � fmðx

k
mÞj

� bjmax
i
fiðx

k
i Þ � min

j
fjðx

k
j Þj ¼ bjIkj;

ð74Þ

which completes the proof of exponential convergence.

Appendix E Proof of convergence of the gradient scheme for

deterministic productivity functions

In this Appendix, we will prove that funding policy (17), under deterministic, time-indepen-

dent productivity functions, generates an orbit over the space of budget distributions that stays

for most of the time near the optimal productivity. That is, it satisfies Eq (15).
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To do so, we will follow the lines of [33]. We will assume that jg 00i ðxÞj � G for x 2 ½X�i ;X
þ
i �;

that the diameter of the set B of valid budget distributions is D; and that k �rgð�xÞk � G, for

�x 2 B.

First, by contractivity of projections, we have that

k�xkþ1 � �xkk � k�zkþ1 � �xkk ¼ �k ~rkgk: ð75Þ

Now, ð ~rkgÞi ¼
giðxki Þ� giðx

k� 1
i Þ

xki � x
k� 1
i

¼ g 0iðx
k
i Þ þ

Gki
2
ðxk� 1
i � x

k
i Þ, where Gki � g

00
i ðxÞ, for some

x 2 ½xki ; x
kþ1
i �. It follows that ~rkgð�xkÞ ¼ �rkg þ 1

2
Gkð�xk� 1

i � �xki Þ, where Γk is a diagonal matrix

whose (negative) entries are lower bounded by −Γ. This implies, by Eq (75), that

k�xkþ1 � �xkk � � Gþ Gk�xk � �xk� 1kð Þ � � Gþ
1

2
GD

� �

: ð76Þ

Now, let �x� be the budget distribution that maximizes the total scientific productivity.

Again, by contractivity of projections, we have that

k�xkþ1 � �x�k2
� k�zkþ1 � �x�k2

� k�xk � �x�k2
þ �2k ~rkgð�xÞk2

þ 2� ~rkg � ð�xk � �x�Þ �

k�xk � �x�k2
þ �2 Gþ

1

2
GD

� �2

þ 2�rkg � ð�xk � �x�Þ þ �Gk�xk � �xk� 1kk�xk � �x?k �

k�xk � �x�k2
þ �2 Gþ

1

2
GD

� �

Gþ
3

2
GD

� �

þ 2�rkg � ð�xk � �x�Þ:

ð77Þ

By induction, we arrive at

k�xkþ1 � �x�k2
� k�x1 � �x�k2

þ �2k Gþ
1

2
GD

� �

Gþ
3

2
GD

� �

þ 2
Xk

j¼1

� �rg � ð�xk � �x�Þ: ð78Þ

Invoking the inequalities k�xkþ1 � �x�k2
� 0, k�x1 � �x�k2

� D2 and putting all this together, we

have that

1

k

Xk

j¼1

�rg � ð�x� � �xjÞ �
1

2�k
D2 þ �2k Gþ

1

2
GD

� �

Gþ
3

2
GD

� �� �

: ð79Þ

By concavity of g, we have that �rkg � ð�x� � �xkÞ � gð�x�Þ � gð�xkÞ � 0. Putting all together,

we arrive at

1

k

Xk

j¼1

gð�x�Þ � gð�xjÞ �
1

2�k
D2 þ �2k Gþ

1

2
GD

� �

Gþ
3

2
GD

� �� �

: ð80Þ

In the limit k!1, the right hand side of the equation above can be approximated as
�

2
Gþ 1

2
GD

� �
Gþ 3

2
GD

� �
, i.e., it can be made arbitrarily small by decreasing the learning rate �.

Appendix F Convergence of the average rates scheme A for time-

dependent, non-deterministic productivity functions

The proof follows the same steps as the convergence of the stochastic subgradient method, see

[41]. It is also very similar to the proof in Appendix E. Call yk the feasible budget maximizing

hGð�x; kÞi, and suppose that kyk−yk + 1k � δ. Call (xj)j the sequence of budgets produced by the
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average rates scheme A. We will prove that, for high k and suitably chosen learning rate �, with

probability 1 � O d1=4

y

� �
, 1

k

P
j¼1
jgð�xj; jÞ � gðyj; jÞj � y.

By Taylor’s theorem, we have that

Gðx; kÞ ¼ Gðyk; kÞ þ �rGðyk; kÞ � ðx � ykÞ þ 1

2
ðx � ykÞT � H � ðx � ykÞ, whereH is the Hessian

of G(x, k) evaluated at a point c within the set fp�x þ ð1 � pÞykg. Such is a diagonal matrix with

diagonal elements of value
g0i ðciÞ�

giðciÞ
ci

ci
. By Eq (2), we have that each of them is negative. We will

assume that, for i = 1, . . ., N, there exists a number h> 0 such that 1

2

�
�
�
�
g0i ðxÞ�

giðxÞ
x

x

�
�
�
� � h for all

x 2 ½X�i ;X
þ
i �. This can be seen equivalent as taking gi(x) to be curved at the origin. On the

other hand, since yk is a maximum, we have that 0 �
dGðtxþð1� tÞyk;kÞ

dt jt¼0
¼ �rGðyk; kÞ � ðx � ykÞ.

This allows us to write

Gðyk; kÞ � Gðx; kÞ � hkyk � xk2
: ð81Þ

We will use this relation soon.

Similarly, we will assume that there exists γ> 0 such that γ|g(x, k) − g(y, k)|� kx − yk for

all feasible x, y. Calling �rkG the random vector
gk
1

xk
1

;
gk
2

xk
2

; . . .
� �

, we will also assume that

k �rkGk � G. Of course, by assumption h �rkGi ¼ �rhGðx; kÞi. We will denote by R the radius

of the feasible region of budgets.

Now, fix the values of {gj: j = 1, . . ., k − 1}. Following Appendix E, we have that

kxkþ1 � ykþ1k � kxk � ykþ1k
2
þ 2� �rkG � ðxk � ykþ1Þ þ �2k �rkGk2

: ð82Þ

In turn, kxk − yk+1k � kxk − ykk + kyk − yk+1k � kxk − ykk + δ. It follows that kxk − yk+1k2�

kxk − ykk2 + δ2 + 2Rδ. Also, k �rkGk2
� G. Putting all together, we have that

kxkþ1 � ykþ1k
2
� kxk � ykk2

þ 2� �rkG � ðxk � ykÞ þ �2G2 þ 2�Gdþ d
2
þ 2Rd ¼

kxk � ykk2
þ 2� �rkG � ðxk � ykÞ þ rðd; �Þ;

ð83Þ

with r(δ, �) = 2Γ�δ + δ2 + 2Rδ + Γ2 �2.

Taking an average over the possible values of gk, we have that

hkxkþ1 � ykþ1k
2
ig1 ;...;gk� 1 � kxk � ykk2

þ 2� �rG � ðxk � ykÞ þ rðd; �Þ

� kxk � ykk2
þ 2�ðGðxk; kÞ � Gðyk; kÞÞ þ rðd; �Þ:

ð84Þ

Now we can fix {xj: j = 1, . . ., k − 1} and use the same idea to get rid of the term kxk − ykk2.

Iterating, we have that

0 � hkx0 � y0k
2
i � R2 þ 2�

Xk

j¼1

ðGðxj; jÞ � Gðyj; jÞÞ

* +

þ krðd; �Þ: ð85Þ

Rearranging, we have that

1

k

Xk

j¼1

ðGðy j; jÞ � Gðxj; jÞÞ

* +

�
rðd; �Þ

2�
þ
R2

2�k
: ð86Þ

Taking the limit k!1, we have that the right hand side is bounded by
rðd;�Þ
�

. On the other

hand, it can be verified that the value of � that minimizes
rðd;�Þ
�

is �? ¼ ð
ffiffiffi
d
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

dþ 2R
p

Þ=G, in
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which case we have that

lim
k!1

1

k

Xk

j¼1

ðGðyj; jÞ � Gðxj; jÞÞ

* +

� Oð
ffiffiffi
d
p
Þ: ð87Þ

By (81), G(yj, j) − G(xj, j) can be lower bounded by hkyj − xjk2, and, in turn, the term kyj −
xjk can be lowerbounded by γ|g(yj, j) − g(xj, j)|. Putting all together, we have that

lim
k!1

1

k

Xk

j¼1

gðyj; jÞ � gðxj; jÞ

* + !2

� lim
k!1

1

k
h
Xk

j¼1

jgðyj; jÞ � gðxj; jÞji

 !2

�

lim
k!1

1

k

Xk

j¼1

jgðyj; jÞ � gðxj; jÞj2
* +

� Oð
ffiffiffi
d
p
Þ:

ð88Þ

Using the relation PðZ � yÞ � hZi
y

, valid for any non-negative random variable Z, we con-

clude that

P lim
k!1

1

k

Xk

j¼1

gðyj; jÞ � gðxj; jÞ

�
�
�
�
�

�
�
�
�
�
� y

 !

� ð89Þ

P lim
k!1

1

k

Xk

j¼1

jgðyj; jÞ � gðxj; jÞj � y

 !

� O
d

1=4

y

 !

: ð90Þ

Appendix G Security of the rule of three

In Section 7, we considered the possibility that Daniel, a member of a large scientific commu-

nity subject to the rule of three, could win more funds by suitably choosing when to report his

research achievements. The purpose of this Appendix is to prove that, in the long run, Daniel

cannot expect to obtain more funds than by acting honestly.

Following Table 2, in the (k − 1)th call, Daniel’s undeclared scientific output equals

gþi þ
Pk� 1

j¼0
giðx

j
iÞ � g

j
i . Multiplying by λ, invoking the identity xjþ1

i ¼ lg ji and taking into

account that undeclared scientific outputs are non-negative, we have that

Xk

j¼0

xji � x0

i þ lg
þ

i þ
Xk� 1

j¼0

lgiðx
j
iÞ � x0

i þ lg
þ

i þ klgi

Pk� 1

j¼0
xji

k

 !

; ð91Þ

where the last inequality follows from the concavity of gi.
Define sk via the relation 1

k

Pk� 1

j¼0
xji ¼ x

]
i þ sk, for k> 0, and x0

i þ lg
0 ¼ x]i þ s0. Then, the

above equation implies

x]i þ skþ1 �
1

kþ 1
ðx]i þ s

0Þ þ
k

kþ 1
lgi x

]

i þ s
k� 1

� �
: ð92Þ

Now, lgiðx
]
i þ sÞ � lgiðx

]
i Þ þ lg 0iðx

]
i Þs ¼ x

]
i þ lg 0iðx

]
i Þs. In turn, by Eq (2), we have that

lg 0iðx
]
i Þ < lgiðx

]
i Þ=x

]
i ¼ 1. Here we have assumed that x]i > 0 and that gi is curved at the origin.
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Putting all together, we have that

lgiðx
]
i þ sÞ � x

]
i þ ais; ð93Þ

with ai � lg 0iðx
]
i Þ < 1.

Applying this relation to the right-hand side of (92) and rearranging, we end up with

skþ1 �
1

kþ 1
s0 þ

k
kþ 1

ais
k: ð94Þ

Since αi< 1, it follows, from the above formula, that the sequence (sk)k can neither keep

growing indefinitely nor converge to a value greater than 0. This finishes the argument.
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