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Abstract

Computational modeling of engineered gene circuits is an important while challenged task in

systems biology. In order to describe and predict the response behaviors of genetic circuits

using reliable model parameters, this paper applies an optimal experimental design(OED)

method to obtain input signals. In order to obtain informative observations, this study

focuses on maximizing Fisher information matrix(FIM)-based optimal criteria and to provide

optimal inputs. Furthermore, this paper designs a two-stage optimization with the modified

E-optimal criteria and applies harmony search(HS)-based OED algorithm to minimize esti-

mation errors. The proposed optimal identification methodology involves estimation errors

and the sample size to pursue a trade-off between estimation accuracy and measurement

cost in modeling gene networks. The designed cost function takes two major factors into

account, in which experimental costs are proportional to the number of time points. Experi-

ments select two types of synthetic genetic networks to validate the effectiveness of the pro-

posed HS-OED approach. Identification outcomes and analysis indicate the proposed HS-

OED method outperforms two candidate OED approaches, with reduced computational

effort.

Introduction

In synthetic biology, synthetic gene circuits and networks offer the opportunity to modify

behaviors of cellular systems in a controllable and stable way. With well-designed modules or

so-called biobricks, it has become feasible to design and build complex DNA circuits that can

detect and trigger activities in cells [1]. One purpose of synthetic biology is to design and con-

struct artificial biological systems with certain cellular functions [2, 3]. For instance, a DNA-

based chemical oscillator has been constructed to accomplish molecular computing in the

future [4]. This prototype DNA oscillator was programmed to generate repeating patterns.

Synthetic gene circuits have also been applied for programming cellular functionality [5, 6].

Constructing gene networks involves optimization of biochemical parameters and network

topologies. The SynNet method applied a two-step optimization strategy to find the global
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biochemical parameters [7]. Accurate predictive models are important in aiding the process of

designing synthetic biological systems. In order to construct mathematical models, computa-

tional approaches are used to infer unknown model parameters using expression data. Emerg-

ing genomic data provide necessary information in modeling. The topics discussed in model

identification include network structures, functional form of nonlinear dynamics and coeffi-

cients that represent reaction rates.

Computational modeling of genetic circuits is not only useful in modular construction of

synthetic biological systems, but also is beneficial for exploring the gene regulations mecha-

nisms underlying expression data. Gene circuit modeling has became a powerful tool for syn-

thetic biologists. Multiple types of computational methods have been developed for modeling

gene regulatory circuits [8, 9]. Mathematical models of genetic oscillators have been derived to

investigate the dynamics of gene regulation [10]. Prior biological knowledge such as sparse

interactions and network motifs also play crucial roles in identification [11]. Furthermore,

sparse regression approaches have been applied to infer biological networks of nonlinear

dynamics [12, 13]. Parameter estimation using single cell expression data will be another

promising option. In this study, the fluorescence levels of the reporter protein are used to

reflect the expression levels, leading to limited sample size [14]. Compared with experiment-

based trail and error approaches, model-based computer aided techniques are able to find the

best solution within a defined search space using validated models. However, both solutions

are considered to lack efficient predictive capabilities.

Deterministic modeling has the advantage of relatively clear biophysical meanings and

computational efficiency. However, current computational approaches and mathematical

models are still lacking efficient ability to accurately capture and predict the expression

dynamics [15]. In general, such computational modeling tasks are time-consuming, even for

medium-size gene circuits [16]. Before identification, the model sets, computational complex-

ity and experimental conditions should be taken into consideration. There are some practical

problems, such as the number of experiments and measured time points to guarantee the plau-

sibility and reliability of predictive models. The model complexity, partly reflected by the num-

ber of unknown kinetic parameters, directly influence the computational complexity. Some

research works have noticed the cost in measuring the expression levels of mRNA and

expressed proteins [17]. This analysis is qualitative to some extent. This study tries to analyze

the measurement cost quantitatively and introduce a penalty in the cost function. Further-

more, a heuristic optimization is applied to solve the optimization problem.

In order to obtain predictive models of genetic circuits, the principle of maximum entropy

was employed to build a minimal model with three constraints [18]. As protein synthesis, deg-

radation and positive feedback have been taken into consideration in the modeling, feedback

parameters can be yielded for circuit design. The difficulties in modeling of synthetic biological

systems partly lie in structural and parametric uncertainty as well as the lack of efficient infor-

mation. In order to obtain accurate kinetic parameters, increasing the number of experiments

and measured data will be a candidate choice. Meanwhile, the quality of data should not be

ignored since it directly influences the accuracy of modeling. Only with high-quality measure-

ments, parameter estimation approaches are possible to obtain reliable parameters of biologi-

cal networks. Global optimization and nonlinear least square methods are commonly used to

infer possible model parameters. In most cases, established parameter estimation methods still

have high level of uncertainty in dealing with biochemical networks. Under this circumstance,

optimal identification through well designed perturbation experiments become a feasible and

promising solution.

As researches always explore approaches to accomplish the model identification of syn-

thetic gene networks in an ACAP(as accurate as possible) style, increasing the amount of
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measurement is a direct and feasible solution. This expensive and time-consuming solution

has limited ability to increase information content of experiments. Accurate models need

high-quality measurements, which depend on appropriately designed experiments. Relying

only on prior experience is not enough to design input signals in modeling of synthetic gene

circuits. In this way, optimal experimental design(OED) provides a feasible way to design

input signals, including selection of sampling periods and the number of measured points.

The basic principle of OED is to yield informative measurements, thus increasing accuracy

of identification. As computational modeling is an importance part in computational sys-

tems biology, the topic of OED have been discussed to improve the accuracy of identified

models [19]. Measurement noise as well as robust architecture of biological circuits are fac-

tors that influence the accuracy and reliability of predictive models. Thus, optimal experi-

ment design is regarded as a powerful tool to minimize the number of experiments needed

to infer biological parameters, thus reducing experimental cost. Dynamic models of regula-

tory networks can be denoted in the form of differential equations [20]. In modeling of bio-

chemical network models, pros and cons of three optimal design approaches have been

compared [21]. For computational modeling of biochemical networks, lack of efficient

experimental data make it difficult to obtain reliable mathematical models. Under the frame-

work of Bayes estimation, the OED is used to predict which experiments can infer accuracy

model parameter distribution [22]. This method applied the k-Nearest Neighbor method to

estimate the Jensen Shannon divergence between predictive densities of competing models.

For gene network, experimental design is beneficial to reduce the uncertainty in network

inference. To collect enough observations for network inference, the resource spent on per-

turbation experiments is considerable [23]. Well-designed perturbation experiments are nec-

essary to obtain high-quality observations.

The problem of OED is usually converted to an optimization problem that involves the

judgment of model quality, which is related the scalar functions of FIM [24]. Several factors

such as measured time points, sampling time and efficient information contained in measure-

ments have influence on the modeling quality of synthetic gene circuits. Given a cost function,

screening search strategies can be applied to find the suitable input level for a given system.

However, this brute search strategy may become ineffective due to huge space of viable points,

especially for complex gene networks. Considering this limitation, the optimal input level can

be determined in another search strategy. The core problem in optimal identification is to

keep balance between estimation accuracy and measurement cost using a well designed cost

function. This study applied a modified harmony search algorithm to solve OED problem in

modeling gene circuits.

Under the framework of deterministic modeling, the paper proposes an two-stage identifi-

cation method to obtain model parameters at a low experimental cost. In this method, the

model quality is judged by the modified E-optimal criteria and the measurement cost is

reflected the number of collected data points. Regarding two factors in computational model-

ing of gene networks, a cost function with two terms is constructed and minimized in the cost

function. The first penalty term represents the derivation between predicted and measured

output, while the second penalty term denotes the normalized experimental cost related with

the number of collected time points. It is noted that selection of measured time points should

consider the complexity of the given system, i.e. the number of unknown parameters. Tradi-

tional gradient-based methods hardly accomplish computation of the scalar function of infor-

mation matrix. This paper applies a optimal identification based on harmony search algorithm

to compute FIM-based modified E-optimal criteria as well as the parameter vector of ODE sys-

tems. Different with existing parameter estimation methods, the proposed method searches an

optimal input level to get most informative observations in the outer loop. Experimental
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outcomes that involve two kinds of synthetic gene networks illustrate that the proposed opti-

mal identification is able to achieve a tradeoff between estimation accuracy and measurement

cost.

1 Model identification of gene networks

Under the framework of deterministic modeling, the modeling of gene regulatory networks

can be converted to parameter estimation of ordinary differential equation(ODE)-based sys-

tems. The task of parameter estimation is to compute parameters of predictive models that

predict the system behaviors by extracting information from measurements. There are inher-

ent limitations when applying common estimation approaches in in biological networks.

Firstly, empirical parameterizations of the functional form is usually difficult for complex

biological networks. Secondly, estimating system parameters typically requires high-quality

measured data that is supported by well-designed experiments. Correlation between model

parameters is another negative factor that influence estimation accuracy [25]. Other factors

such as sampling frequencies and regularization terms in regression also have impact on the

performance of deterministic modeling [26].

1.1 Parameter estimation of gene networks

System identification approaches need the model set such as ordinary differential equations

(ODE) or stochastic differential differential equations(SDE) to describe the expression behav-

iors for a given system. In this case, low-order approximation of objective function become a

feasible solution. In order to describe the expression behaviors of gene networks, the ODE

models are defined by Eq (1).

dy
dt
¼ f ðxðtÞ; uðtÞ; pÞ ð1Þ

where x(t) denote the observed expression levels of genes, u(t) is the experimental input signal

that can be artificially modified. Parameter vector p� can be estimated by minimizing the cost

function that is related with prediction error. As a typical kind of biological networks, gene

regulatory networks(GRN) consist of a series of biochemical reactions. Coding regions of

DNA will be firstly transcribed as mRNA molecules, then translated to proteins. Expression

levels of genes or transcription factors (TFs) are used to estimate unknown kinetic parameters.

In deterministic modeling of gene networks, prediction errors between measurements and

model parameters are defined by Eq (2).

ei ¼ yi � ŷi ð2Þ

where yi and ŷi denote the measured and predicted output at the measured time ti. In order to

estimate the parameters in ODE models for gene networks, gene expression levels often play

the role of information source. The operating principle of parameter estimation is mainly

based on the minimization of deviation between model prediction and experimental measure-

ments. This study selects the root-mean-square error(RMSE) index to reflect the degree of

deviation, which is defined in Eq (3).

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

ðyi � ŷiÞ
2

s

ð3Þ

where n is the number of time points collected. In addition, the residual sum of squares(RSS)

is also a measure of the discrepancy between the measured data and the model. As the quality

Optimal identification of synthetic gene networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0213977 March 29, 2019 4 / 28

https://doi.org/10.1371/journal.pone.0213977


of measurements influence the accuracy of estimation, effects of parameter variations are

taken into consideration in the weighted residuals sum square error(wRSSE) index, that is

defined in Eq (4).

�ðpÞ ¼
Xn

k¼1

ð
yk � ŷk
sk
Þ

2
ð4Þ

This wRSSE index reflects the degree of uncertainty in measured data to some degree. Gra-

dient-based methods are used to search local minimums of the cost function [27]. According

to gradient-based methods, the objective function is approximated by gradient vector, defined

by Eq (5).

r�ðpÞ ¼ ð
@�ðpÞ
@p1

; . . . ;
@�ðpÞ
@pnp

Þ
T

ð5Þ

where pi(i = 1, . . ., np) are inferred components of the parameter vector. Unknown parameter

vectors represented as individuals are operated by genetic operations including mutation and

selection. Such individuals in the population of heuristic algorithms are regarded as candidate

solutions. For instance, solutions are represented as strings of binary numbers in genetic algo-

rithms. Evolutional strategies are relatively efficient in dealing with nonlinear ODEs. With the

assumption of positive definite Hessian matrix, unique minimizer for the model can be found

by solving the linear system. Thus the parameter vector for next iteration can be defined as

Eq (6).

pkþ1 ¼ pk þ sk ð6Þ

Global optimization methods that minimize ϕ(p) over all possible values of p are hard to

find, but local optimization approaches are feasible. To search the optimal parameter vector

p�, evolutionary algorithms have been widely applied in the optimization problem.

1.2 Sensitivity analysis of gene networks

The initial purpose of sensitivity analysis is to find those parameters that influence system

dynamics significantly. Sensitivity analysis also plays a special role in analyzing practical iden-

tifiability and uncertainty assessment. For the given system y = f(x, p, t), changes of systems

states x(t) depend on changes of model parameters p around a reference point s(0), described

by Eq (7).

sðtÞ ¼
@xðtÞ
@p

ð7Þ

Regarding the parameter space, time-dependent linear approximation of parameter

sensitivity behaviors can be captured by finite difference approximation. Using augmented

dynamic ODE system, implicit computation of the sensitivity matrices for gene network are

calculated as Eq (8).

dsðtÞ
dt
¼ Jxðt; p0ÞsðtÞ þ Jpðt; p0Þ ð8Þ

Where Jx(t, p0) = @f(x, p, t)/@x and Jp(t, p0) = @f(x, p, t)/@p are Jacobian matrices evaluated at

the parameter values p0. With the assumption of Gaussian approximation and Q = I, the Hes-

sian matrix HijðpÞ ¼ r2
ij�ðpÞ of the objective function ϕ(p) can be rewritten in terms of
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parameter sensitivities, denoted by Eq (9).

HijðpÞ ¼ ðSðpÞSðpÞÞ
T
ij ð9Þ

where S(p) denotes a matrix of time-dependent blocks sij(tk) = @xi(tk)/@pj. Existence of linearly

dependent columns of the sensitivity matrix S(p) will lead to non-unique solutions of p. That

indicate part of model parameters are unidentifiable at a specific reference point p0 in parame-

ter space. Correlations between two column vectors S.,i, S.,j of the sensitivity matrix S are

described by Eq (10).

corrðS:;i; S:;jÞ ¼
covðS:;i; S:;jÞ
sðS:;iÞsðS:;jÞ

ð10Þ

where σ(S.,i), σ(S.,j) represent the covariance between the i-th and j-th columns of S. For two

linearly dependent columns, the correlation index is |corr(S.,i, S.,j)| = 1. Threshold for correla-

tion between two model parameters is related with pairwise correlations.

1.3 FIM-based estimation accuracy analysis

After obtaining the optimal parameter vector p̂, goodness-of-fit(GOF) and estimation accu-

racy will be analyzed in subsequent evaluation. As true kinetic parameters p� are unknown, it

is crucial to judge the accuracy of estimated parameters and the degree of deviation. Assume

fixed model structure, the observed data become mixed with the measurement noise, that is

described by Eq (11).

xMðtiÞ ¼ xðp; tiÞ þ �ðtiÞ ð11Þ

With the assumption of a normally distributed random variable on measurement error, the

resulting residuals for each measurement are given as Eq (12).

eðx; p; tiÞ � Nð0; s2
i Þ ð12Þ

With the objective function �ðpÞ ¼
PN

i¼1
eTi Qiei, the measurement variance can be applied

to construct weight matrix Q. Generally, there are two options in values of weight matrix Q.

The choice of Q = I corresponds to equal weight for errors, regardless of measurement accura-

cies. The situation Q = C−1 indicates weighting based on the inverse of the measurement

covariance matrix C. In the second situation, standard deviations of measurements appear on

the diagonal positions. According to the principle of goodness-of-fit(GOF), statistics for ϕ(p)

should follow χ2 distribution with r degrees of freedom, where r equals to the number of

data points minus that of estimated parameters. With an assumption of norm distribution, i.e.

Xi� N(μ, σ2), the average value is denoted as
PN

i¼1

Xi
N . Additionally, the sampling distribution

is defined as Eq (13).

S2 ¼
P ðX � XiÞ

2

N � 1
ð13Þ

This sampling distribution associated with the sample variance follows a χ2 distribution

with N − 1 degrees of freedom, i.e. S2ðN � 1Þ=s2 � w2
n� 1

. If a new statistic Z is constructed as

Z ¼ ðX � mXÞ=s
2
X , then this statistic index implies the chi-squared distribution χ2(k), denoted
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by Eq (14).

Xk

i¼1

Z2 � w2ðkÞ ð14Þ

In computational modeling of gene networks, large-scale models and scarce experimental

data will inevitably lead to limited observability of states as well as uncertainty in parameter

estimation. Under the Gaussian-Markov assumption, the least squares estimator can be

regarded as un-biased estimators, in which the variance is minimized. With the optimal

parameter vector p�, the inverse matrix of variance for p� is called the information matrix.

After solving the time-dependent ODE equations, the sensitivity matrices are computed as

Sti ¼ @c=@p at time points ti(i = 1, . . ., N). Under the Gaussian assumption, the Fisher infor-

mation matrix can be calculated as Eq (15).

Fðp�Þ ¼
XN

i¼1

ð
@c
@p
Þ
TC� 1ðtiÞð

@c
@p
Þ ð15Þ

Given input-output data, the FIM represents a measures of the information content with

regard to the parameters θ in the model. If the measurements for cp(ti) and cs(ti) are indepen-

dent, then the covariance matrix of measurements consist of diagonal elements, described by

Eq (16).

cm;nðtiÞ ¼ s2
mðtiÞ ð16Þ

In Eq (16), crjj denotes the diagonal elements of the inverted FIM and s2
mðtiÞ represent the

variance of measured state variables m at time point ti. Assume that Gaussian noise in the mea-

sured data, the FIM is given by Eq (17).

Fðp�Þ ¼
XN

i¼1

Sðti; p
�Þ

Tdiagð
1

s2
i

ÞSðti; p
�Þ ð17Þ

Where S(ti; p�) denote sensitivity matrix for p�, and diagð1=s2
kÞ represents the measurement

covariance. The diagonal elements of covariance matrix C(ti) should be positive. Parameter

uncertainty region can be further determined by eigenvectors and inverse eigenvalues of the

FIM. In order to analysis estimation accuracy in deterministic modeling, the parameter uncer-

tainty region is investigated using the information matrix F(p�). In general, small eigenvalues

of F(p�) indicate large uncertainty. If the calculated F(p�) is non-singular, then the Crámer-

Rao lower bound for the variances of estimated parameters can be determined according to

Eq (18).

sj �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Fðp�Þ� 1

i;i

q
ð18Þ

where Fðp�Þ� 1

i;i are diagonal elements of information matrix. The framework of estimation

accuracy analysis using FIM-based optimality is designed considering both model accuracy

and measurement cost. Given measured expression levels of expressed proteins, the locally

optimal kinetic parameters are inferred through curve fitting. Sensitivity matrices for model

parameters are calculated to construct FIM.
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2 Optimal identification of gene networks

Considering complex regulations between network components, it is beneficial to perform

optimal experimental design to obtain measurements with maximized information content.

Informative measurements are useful in enhancing the accuracy of parameter identification.

Generally, experimental design can be performed based on statistic criterions that are closely

related with covariance matrices of the selected models. The OED problem for gene network

inference have been investigated in order to obtain mathematical models with high credibility

[28–30]. For simulation-based OED, the basic purpose is to minimize the uncertainty bounds

on the estimated parameters [31, 32]. Computational approaches play a crucial role in reduc-

ing the uncertainty of structure identification and parameter estimation. This section will pro-

pose a novel framework that pursue a balance between estimation accuracy and measurement

costs in modeling synthetic gene networks.

2.1 Basic framework of optimal experiment design(OED)

For deterministic modeling of synthetic gene circuits, major factors that influence the

accuracy of estimation include but are not limited to information content of measurement,

the number of time points, the sampling periods of output. There are several optimal princi-

ples that guide the process of optimal design. The D-optimality principle tries to minimize

the covariance matrix of parameter estimate, which correspond to maximizing the determi-

nation of information matrix. The A-optimality seeks to minimize the trace of the inverse

of the FIM. This A-optimality criterion results in minimizing the average variance of esti-

mated regression coefficients. As for the commonly used D-optimality, this principle

maximize the determinant of the FIM and results in maximizing the differential Shannon

information content of the parameter estimation [33, 34]. The OED problem can be

solved by maximizing measures of FIM, i.e. z� = argmaxF(FIM(θ, z)), where z is a function

of input level and sampling periods etc. The measurement set selection design can be con-

verted to an optimization problem mins2ðSn
i¼1
liSTi SiÞ

� 1
, where λi is an integer weight that is

either 0 or 1.

Another design principle is based on E-optimality, where the minimum eigenvalue of FIM

is maximized. This study applies the modified E-optimal criteria as the quantitative index to

evaluate the constructed mathematical models of gene networks. The modified E-norm of the

FIM is defined as the ratio of the maximum eigenvalue of the FIM by its minimum eigenvalue

[35, 36]. This modified E-optimal criteria is defined by Eq (19).

kFðtf ; yÞk ¼
maxlF

minlF
ð19Þ

where λF represent the eigenvalues of information matrix Fðtf ; ŷÞ, tf represents the duration

time of perturbation experiments. Information matrix are calculated based on best available

estimated parameter vector θ instead of true value θ�. This modified E-optimal criteria can be

further used a useful index to determine the appropriate input level that is likely to provide

highly informative measurements.

As the sample sizes of measurements are usually limited for regulatory networks due to

experimental cost [37], this paper applies an optimization method that reduce experimental

cost without loss of modeling accuracy. Both quality and experimental cost have been taken

into consideration in the cost function. The proposed OED method search an appropriate
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sample size by solving the optimization problem, shown by Eq (20).

JðnmÞ ¼ argminnm
ð
Xn

i¼1

ðyi � ŷiÞ
2
þ l

nm � np

nm
Þ ð20Þ

where nm and np represent the number of measured time points and parameters. In the pro-

posed cost function, the first penalty term represents estimation accuracy, with a modified E-

optimal criteria. The second penalty term corresponds to the normalized measurement cost,

which is related with the number of measured time points. The second penalty term is moti-

vated by the degree of freedom in χ2 distribution. Since the combination of two monotonic

functions lead to a unimodal function, the trajectory of cost function is expected to firstly

decline and then increase after reaching the minimal point.

2.2 Harmony search-based OED

As a kind of nature-inspired optimization, harmony search(HS) algorithm shares certain char-

acters with other evolution strategies algorithms such as genetic algorithms. The basic idea of

harmony search algorithm is to find a vector x that minimizes a given objective function [38].

Standard HS algorithm begins with generating HMS random vectors and stores these vectors

in harmony memory denoted by HM. New candidate solution vectors xnew are generated to

replace the worse vector in HM. As initial algorithm parameters, global variables including

the number of variables v, the maximum of iterations uIter, pIter, harmony memory size HMS
and harmony consideration rate HMCR are defined. The pseudo code of HS-based OED is

described by Algorithm 1.

There are two iteration loops in the diagram, where the outer loop is responsible to find the

best input level u� and the inner loop update the best model parameter estimation p�. In Algo-

rithm 1, lb, ub represent the lower and upper bound for the values of HMu, HMp. The cfun1,

cfun2 represent the cost function of inner and outer iteration loop respectively.

Algorithm 1: Pseudo code of HS-based optimal experimental design algorithm.
Input: Choose input u0 based on prior knowledge.;
1 Initialization of HS-OED algorithm: HMu,HMp,PAR,HMCRu,HMCRp,NV AR;
2 Estimate parameter vector p0 using u0;
3 for i = 1 to uIter do
4 initialize HMu;
5 HMu(1,:) = u�best;
6 HMu(2:end,:) = lb+(ub-lb)�rand();
7 Compute cfun1(u, p) of every u in HMu and load them into fitness

array;
8 Compare fitness array to find best input;
9 Update HMu and fitness array;
10 Update u�best as best input;
11 for j = 1 to pIter do
12 initialize HMu;
13 HMp(1,:) = p�best;
14 HMp(2:end,:) = lb+(ub-lb)�rand();
15 Compute cfun2(u, p) for every parameter in HMp and load to fit2;
16 Compare fit2 array to determine the best parameter vector p�;
17 Update HMp and fit2 array;
18 Update p�best as the current best parameter vector;
19 end
20 end
Output: Optimal input level u�, parameter vector p�;
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In the HS-based OED framework, ubest and p�best are used to find better parameter vector

pbest. The proposed HS-based OED determines the optimal input level u� in the outer loop and

computes the model parameter p� in the inner loop. When the inner iteration obtains a candi-

date parameter vector pc, it is necessary to compare the value of cfun1(u, pc) with that of cur-

rent best parameter vector p�. When the condition cfun1(u, pc)< cfun1(u, p�) is satisfied, the

model parameter vector will be updated as p� = pc. In this way, the second stage of iteration

optimization begins searching the optimal parameter vector u� with optimal input level p�.
This two stage optimization framework is described by Fig 1.

When brute screening strategy is applied to find a suitable input level, the screening sizes

and steps should be carefully selected. Such screening strategy is relatively inefficient and

restricted to a fixed combination of possible input levels. Compared with the screening search

strategy, this study applies random search strategy which is able to find an flexible input level

rather than selecting one fixed input value. Another advantage of this random search strategy

is that the optimal parameter vector of a given system is estimated at the same time.

3 Experimental outcomes and analysis

The main purpose of deterministic modeling based OED is to offer an suitable input signal u�

for two types of genetic circuits. Kinetic model parameters are estimated and evaluated from

the view of error indexes. Two types of engineered gene circuits with mathematical models are

selected as benchmarks [39]. Each system is described by a set of ODEs that describe biochem-

ical reactions governing protein species. Parameter estimation for synthetic gene networks are

performed in two stages: initial estimation and parameter refinement. Initial parameter vectors

are computed based on prior information and biological experience such as the response time

of genetic circuits. The refinement pursues parameters with higher accurateness with the initial

parameter vector.

3.1 Unbuffered synthetic gene networks

In the unbuffered system, the chemical species SKN7m activates expression of green fluores-

cence protein(GFP) from the synthetic promoter PTR−SSRE. With the small molecule doxorubi-

cin DOX as input, the reactions considered in the unbuffered system include the DOX
activated production of SKN7m, the binding and unbinding of SKN7m, the activated produc-

tion of reporter protein(GFP) and degradation of all species. Define Cm as the complex formed

between SKN7m, the simplified reactions are described as followings:

SKN7mþ pÐ
kon

koff
Cm

Cm!
dc SKN7mþ p

ð21Þ

where δc denotes the degradation rate of Cm. Established modeling approaches choose periodic

inputs to maximize the steady state peak-peak amplitude percent error between the loaded

and unloaded trajectory of output protein GFP. Furthermore, multiple types of inputs includ-

ing two step and three square inputs are used to induce the response of unbuffered gene net-

works and to provide input-output data for parameter identification. Error indexes of wRSSE

and RMSE under different types of input signals are computed in Table 1.

In the parameter setting part of harmony search algorithm, the number of variables is

settled as np = 3, the harmony memory size HMS = 15, the harmony consideration rate

HMCR = 0.2. Matrices including HMu, fitu are initialized to store relevant indexes, where fitu
represents a fitness vector related with optimal input. The first step of optimal identification is
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Fig 1. The flow chart of harmony search-based OED using a double nested loops. The inner loop updates the

parameter vector based on an initial model parameter vector and the outer loop aims to determine the optimal input

level u� by minimizing the cost function.

https://doi.org/10.1371/journal.pone.0213977.g001
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to compute the parameter vector using measured input-output data. With the computed vec-

tor p, response curves of unbuffered gene networks using four types of inputs including single

step up and three periodic inputs are fitted, shown in Fig 2.

In Fig 2, the oscillatory periods for three square inputs are 100, 200 and 400 mins. Fitted

responses of the unbuffered system are basically consistent with the measured output trajecto-

ries. This indicates that estimated parameters kon and koff are able to capture part of response

dynamics under these circumstance.

Further estimation take all 9 kinetic parameters into consideration. Since incoherent noise

may have negative influence on parameter estimation, parameter estimation is performed in

two groups: simulation(S) and experimental(E) group. Deterministic modeling of unbuffered

systems with 9 kinetic parameters are performed using a step input and four periodic inputs.

Similarly, the weighted RSSE(wRSSE) and RMSE indexes under different types of input signals

are computed and compared in Table 2.

Since the step test in experimental group provides low-quality measurement, the realistic

group only discusses the errors using periodic inputs. Both wRSSE and RMSE indexes

Table 1. Error indexes of kon, koff in modeling unbuffered gene network. The wRSSE and RMSE indexes are selected to judge the performance of parameter estimation.

The title Step i(i = 1, 2) represent the single and double inputs with the same concentration 20 μM. The columns T100, T200, T400 denote the periodic inputs with periods T1

= 100min,T2 = 200min and T4 = 400min.

Errors Step 1 Step 2 T100 T200 T400

wRSSE 3.914×10−9 2.403×10−7 4.684×10−6 5.332×10−6 8.837×10−6

RMSE 6.995×10−6 5.481×10−5 2.419×10−4 2.581×10−4 3.323×10−4

https://doi.org/10.1371/journal.pone.0213977.t001

Fig 2. Curve fitting of unbuffered gene circuit using four types of input signals. The periods of first three square

inputs are 100,200 and 400 mins respectively. In order to get stable response curve, the simulation time is set as 3000

mins.

https://doi.org/10.1371/journal.pone.0213977.g002
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fluctuate depending on selection of input signals. This phenomenon indicates that selection of

input signals will influence the deviation of estimated parameters from the true values. One of

possible reasons is that degrees of perturbation posed to the system are in different levels.

Among four square inputs, error indexes obtained by Square 4 that has the least number of

measured data points are highest in two groups. During deterministic modeling, the values of

wRSSE indexes are generally lower than that of RMSE. To evaluate the effectiveness of esti-

mated parameters, the quantile-quantile(QQ) plots are introduced. When a set of observations

are approximately normally distributed, a normal QQ-plot of the observations will lead to an

approximately straight line. In this study, QQ-plot is used to compare the estimation error

with normal distribution. In numerical simulation, Step 2 represent double step inputs, while

square inputs denoted by Square 1,2,4 correspond to the periods of 100, 200 and 400(mins).

To visualize the accuracy of estimated model parameters, the quantile-quantile(QQ) plot of

Step 2 and Square 1 inputs are compared in Fig 3.

The QQ-plots of estimated parameters for the unbuffered system reflects the deviation of

estimated errors against that of standard normal quantile. In Fig 3, the deviation under Square

1 input is smaller than that of other three input signals. Subsequent sensitivity analysis com-

putes the variance for estimated parameters, especially key kinetic parameters. Sensitivity anal-

ysis aims to detect those parameters that have significant influence on the response behaviors

of a given system, depicted in Fig 4.

In Fig 4, the parameter kon has negative sensitivity while koff has positive sensitivity. That

means changes in the value of kinetic parameters kon, koff, have opposite impacts on the

response of GFP protein. The quantitative influence of kon is slightly higher than that of koff.
With the computed Fisher information matrix, the Crámer-Rao lower bound(CRLB) for kon
and koff are computed as 0.687 and 0.0415 respectively, illustrating that parameter uncertainty

for production rate kon is higher than that of the degradation rate koff.
Another important task of optimal identification is to provide a low-cost solution without

much loss of model accurateness. Measurement cost, which is reflected in the number of

inferred parameters, is expected to be high for complex systems. When the number of measured

points go beyond a specific level, the benefit brought by increasing the sample size become lim-

ited while the cost keeps increasing. The optimal identification approach uses a modified har-

mony search(HS) method to select a suitable sample size. Selection of measured output points

nm, should also consider the complexity of a given system, that is related with the number of

unknown parameters np. When the value of nm exceeds a specific level, the benefit of increasing

the amount of measured time points in enhancing the modeling accuracy will be limited.

3.2 Buffered synthetic gene networks

In the buffered gene networks, an additional driver module was introduced in the buffered

gene networks to eliminate the retroactivity and to improve the response dynamics of

Table 2. Error indexes of 9 kinetic parameters in modeling unbuffered gene network. The wRSSE and RMSE indexes are selected to evaluate the performance of param-

eter estimation. The column denoted Step 1 represents the single and double inputs with the same concentration 20 μM. The columns T150, T200, T250 and T500 denote the

periods of square inputs are 150, 200, 250 and 500mins. The symbol # indicates the shortage of relevant tests.

Errors Step 1 T150 T200 T250 T500

wRSSE(S) 0.0854 0.0006 0.0015 0.0019 0.0070

RMSE(S) 0.1660 0.0416 0.0679 0.0767 0.1476

wRSSE(R) # 0.0047 0.0063 0.0122 0.0079

RMSE(R) # 0.1215 0.1407 0.1951 0.1598

https://doi.org/10.1371/journal.pone.0213977.t002
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regulatory systems. Similar with the unbuffered system, the small molecule DOX induces

expression of protein STAT5 −HKRR and activator of transcription 5(STAT5). Buffered

genetic circuits accomplish cellular functions based on a series of biochemical reactions, which

include DOX activated production of STAT5-HKRR from promoter, SKN7 activated produc-

tion of reporter protein. Phosphorylation of STAT5-HKRR and YPD1/SKN7 phosphotransfer

reactions can be described as the followings:

STAT5 � HKRR� þ YPDÐ
k1

k2

STAT5 � HKRRþ YPD1�

SKN7þ YPD1�Ð
k3

k4

SKN7� þ YPD1

SKN7� þ YPD1�Ð
k3

k4

SKN7�� þ YPD1

ð22Þ

where SKN7�� denotes doubly phosphorylated SKN7, which activates expression of reporter

Fig 3. The quantile-quantile(QQ) plots for estimated parameters of unbuffered gene networks using step and periodic inputs.

These QQ plots for unbuffered systems show similar patterns observed in error indexes. Squared inputs are likely to reduce the

deviation between estimated parameters from the true values.

https://doi.org/10.1371/journal.pone.0213977.g003
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GFP from the synthetic promoter PTR−SSRE and also binds plasmid-encoded load sites. In

unbuffered systems, SKN7m binds promoter directly, while SKN7 in this buffered system

needs activation by a series of phosphotransfer reactions. Input concentrations of small mole-

cule DOX will change the response behaviors of genetic circuits. When the concentration of

step signal increases, the output level of reporter protein GFP increase as a consequence,

shown in Fig 5.

In Fig 5, the value of output-input ratio that can be also regarded as the gain of gene circuits,

changes in the interval [1.95 × 10−2, 350]. Low-level magnitude of input signal contain limited

energy to perturb the system dynamics while high level of input push the system to a saturation

condition. When the magnitude of input exceeds a threshold, the expression level of reporter

protein declines to increase and keeps a stable level. It is important to choose a suitable level of

input for subsequent parameter refinement. Instead of grid search, a novel two-step search

strategy is applied to determine the optimal level of input. After double nested iterations using

harmony search(HS) algorithm, the optimal level of input is selected as 28.6 μM and the model

parameter p� is inferred. Using this optimal input level, the comparison of predicted and mea-

sured output of buffered gene network using estimated parameter p� are shown in Fig 6.

In the first step, initial model parameter vector p0 in ODEs of buffered gene networks are

computed by minimizing the error index between the predicted and measured output. From

Fig 6, the trajectories of predicted output match the measured output, revealing that initial

parameter vector capture output dynamics to some extent. Multiple squared inputs are used to

Fig 4. Sensitivity analysis of unbuffered gene circuits. The kinetic parameter kon has negative sensitivity while the

degradation rate koff has positive sensitivity. The values of sensitivity matrices exhibit periodic changes.

https://doi.org/10.1371/journal.pone.0213977.g004
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Fig 5. The input-output relations between input DOX and output GFP for buffered genetic circuit. Optimal

experiment design requires a suitable input level to stimulate the system behaviors. In the numerical simulation, the

variation range of input DOX concentration is selected as [10−3,102]μM. The output-input ratio for buffered gene

circuit decreases as the concentrations of input DOX increases, and remains stable a level of 0.0195.

https://doi.org/10.1371/journal.pone.0213977.g005

Fig 6. Curve fitting for output of buffered gene networks. In order to validate the effectiveness of estimated

parameters, an additional step up signal is introduced to stimulate the response behavior of buffered systems.

https://doi.org/10.1371/journal.pone.0213977.g006
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validate the effectiveness of parameters under various experimental conditions. The magnitude

of testing inputs is set as 20μM and the oscillatory periods of square waves are selected as

100,200,300,400,500 (min) respectively.

In addition, response behaviors of the buffered system are also influenced by adding load

plasmids that are regarded as genetic loads. In numerical simulations, three levels of genetic

loads are introduced to evaluate the robustness of inferred model parameters. The load vari-

ants are encoded on high-copy 2μ yeast plasmids, with unloaded(model+0x), single loaded

(model+x) and double loaded(model+2x) additional copies of PTR−SSRE [40]. Such genetic

loads lead to reversible binding reactions and slow down the increase of free SKN7m that acti-

vates the expression of reporter protein GFP. Under these circumstances, the predicted trajec-

tories of expressed GFP are compared with that of the measured output, shown in Fig 7.

According to the principle of persistent excitation, square input signals are considered to

excite the system dynamics more sufficiently than step signals. It is observed from Fig 7 that

response curves under the conditions of model+0x, model+1x and model+2x are approxi-

mately the same trajectories. Under three levels of loads, the response curves of buffered sys-

tem show limited attenuation. In the part of parameter refinement, estimated parameter

vector p� reflects the desired behavior of buffered systems. Subsequent analysis will evaluate

the accuracy of parameter vector numerically.

Under regulation of multiple periodic inputs, the response curves of buffered gene net-

works exhibit oscillatory behaviors with different periods. With measured input and output

data, unknown parameters of the ODE model can be acquired by estimation algorithms. After

obtaining the parameter vector p� using simulated and experimental datasets, two kinds of

error indexes including wRSSE and RMSE indexes are calculated. Compared with single step

signal, double input signal is introduced in the simulation group. In simulation(S) and experi-

mental(E) group, two step inputs and four square inputs are introduced to perturb system

dynamics. Signal periods Square i(i = 12, 3, 4) in the simulation group are selected as

150,200,250 and 500 minutes, that are consistent with the settings of inputs in realistic experi-

ments. Two kinds of error indexes are computed and depicted in Table 3.

Fig 7. Comparison of predicted output trajectories and measured output GFP concentrations under three square inputs. The periods for three square inputs are

100,300,500 mins. The legends pt0, pt1 and pt2 correspond to the experimental conditions of unloaded(model+0x), single loaded(model+x) and double loaded(model

+2x).

https://doi.org/10.1371/journal.pone.0213977.g007
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It is observed from Table 3 that double input signal Step 2 is able to obtain relatively low

error indexes, than that obtained by single step input Step 1 in simulation. This phenomenon

indicates that double step input can improve the estimation accuracy by increasing the degree

of perturbation. Meanwhile, error indexes of the buffered system are slightly higher than that

of unbuffered system, reflecting robust of the proposed estimation algorithm. Among four

square inputs, the periodic input T2 = 200min obtains the lowest estimation error, showing

that oscillatory periods of square inputs is another potential factor that influence the accuracy

of deterministic modeling.

For this buffered network, sensitivity analysis is performed to detect key parameters that

have significant influence on the output behavior. Among 23 model parameters in the buffered

system, this study selects 18 parameters and computes the corresponding sensitivity matrices.

For buffered gene networks, the trajectories of sensitivity matrices of 18 kinetic parameters

that change over time are depicted in Fig 8.

From basic sensitivity analysis, kinetic parameters δz, k6, kp are considered kinetic parame-

ters with highest level of sensitivity. Chemical reactions involved in genetic networks can be

reversible. Each reaction has two parameters related with production rates. Perturbations of

production rates are more likely to alter the output behaviors of genetic circuits. It is noted

that δz, k6 have negative sensitivity while kp has positive sensitivity. Subsequent analysis focus

on quantitative impact of those kinetic parameters with high sensitivity levels on the system

output. Based on trajectories of sensitivity matrices in Fig 8, parameters kp and k6 have positive

and negative sensitivity respectively. Furthermore, ±50% numerical perturbations have been

introduced to kinetic parameters kp, kpp, k6 and k7 that have different degrees of influence on

the system output. Quantitative influences on the system output GFP are analyzed in three-

dimensions, shown in Fig 9.

Influence of kinetic parameters with various sensitivity levels are analyzed. Parameters

including kp and k6 with high sensitivity have relatively strong impact on the system output. In

Fig 9(a), parameters kp and k6 have exhibited opposite impacts on the system output, i.e. the

expressed GFP concentration. When the value of kp increases, the expressed GFP level is pro-

moted as a consequence. It is observed from Fig 9(b) that variation of kp has significant impact

on output behaviors while k7 has a limited power to change expression behaviors of reporter

protein GFP.

In order to compute the modified-E optimal criteria and select the optimal input magni-

tude, the proposed two-stage to calculate the best input level u� and the parameter vector p� in

double nested loops. In the outer iteration loop, the HS algorithm parameters are settled as

uIter = 3000, HMS = 15, HMSu = 10, HMCR = 0.8. According to the previous analysis of

input-response relations, the feasible interval for input level is selected as [1,30]μM. In the

second stage of optimization, the maximum number of iterations in the inner loop is

pIter = 5000. Other parameters are the same with that in outer loop. The modified E-optimality

criteria and cost function cfun1(u, p�) are minimized in the outer loop. In Fig 10, the

Table 3. Performance evaluation indexes of deterministic modeling for the buffered gene network. The columns T150, T200, T250 and T500 denote the periods of square

inputs are 150, 200, 250 and 500 minutes. The symbol # indicates the lack of measured data with efficient quality.

Errors Step 1 Step 2 T150 T200 T250 T500

wRSSE 0.0024 0.0276 0.0021 0.0019 0.0022 0.0014

RMSE 0.0271 0.0186 0.0813 0.0775 0.0838 0.0660

wRSSE # # 0.0066 0.0091 0.0103 0.0048

RMSE # # 0.1436 0.1689 0.1853 0.1223

https://doi.org/10.1371/journal.pone.0213977.t003
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trajectories of modified E-optimality criteria under five inputs monotonically decreases and

converges to a domain around zero.

During the first stage of optimization, the error value reaches the minimum when the itera-

tion number exceeds 2000. This study focuses on keeping a balance between experimental cost

and estimation accuracy in identification of synthetic gene networks. After initial curve fitting

and parameter refinement, the optimal parameter vector for the buffered system is estimated

using the proposed two-stage optimization approach.

In the two step optimization, the outer loop determines the optimal input while the inner

loop applies the designed input to estimate parameter vector. In order to compare the pro-

posed HS-based OED with other approaches, various optimization are compared in the inner

iteration loop, where the fitness function denote estimation error. Heuristic optimization

approaches including particle swarm optimization(PSO) and genetic algorithm(GA) are able

to perform the task of optimal experimental design with suitable fitness functions [41, 42].

Under the framework of deterministic modeling, GA and PSO algorithms have been applied

to minimize the fitness function value, thus estimating optimal parameter vectors. For GA

algorithm, the population size is 50, the mutation and crossover rate are settled as 0.8 and 0.2,

which correspond to HMCR and PAR in HS algorithm. For PSO algorithm, the weight is 1 and

Fig 8. Sensitivity analysis of model parameters for buffered gene network. Among these 23 kinetic parameters,

sensitivity matrices of 18 model parameters are plotted to reflect the various levels of influence.

https://doi.org/10.1371/journal.pone.0213977.g008
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coefficients are c1 = c2 = 1. Trajectories of fitness function provided by GA,PSO and HS-OED

algorithm are compared by Fig 11.

In Fig 11, the proposed HS-OED algorithm has shown similar convergence patterns com-

pared with GA and PSO optimization approaches. Standard PSO method usually suffers from

Fig 9. Quantitative influence of kinetic parameters on system output. Kinetic parameters with various sensitivity levels have different degree of influence on system

output, which correspond to the expressed level of reporter protein GFP in the synthetic genetic network.

https://doi.org/10.1371/journal.pone.0213977.g009

Fig 10. Trajectories of the modified E-optimality criteria using HS-OED algorithm. In the outer loop, the value of

modified-E optimal criteria decreases as the value of fitness function is minimized by the proposed HS-OED method.

https://doi.org/10.1371/journal.pone.0213977.g010
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premature convergence problem due to loss of diversity in solution search. Experiments of

optimal experimental design are performed by the MATLAB software on a PC with Intel i5-

3320M and 8GB RAM. After four replicates, the average computation time of 3000 iterations

for HS-OED algorithm is 428 seconds. While average computational time of GA and PSO-

based OED for 3000 iterations are 3137 and 7378 seconds. In addition, the average best fitness

value of HS-OED is computed as 0.0332, which is significantly lower than 0.207 and 0.1873

obtained by GA and PSO-based OED respectively. In this case, HS-OED algorithm provides a

feasible and efficient solution to improve optimization ability.

To evaluate the performance of these optimal identification methods, the proposed

HS-OED algorithm is further compared with other two methods denoted by PSO-OED and

GA-OED in accuracy evaluation. After parameter estimation, estimation accuracy is analyzed

based on the value of Crámer-Rao lower bound(CRLB). In estimation analysis, the CRLB val-

ues of kinetic parameters ki(i = 1,. . .,5) are compared in Table 4.

Fig 11. Fitness trajectories of harmony search denoted by HS-OED and two heuristic optimization approaches in

the inner iteration loop of OED. The HS-OED algorithm has reduced computational time than GA and PSO

algorithm, and obtaining lower output errors in estimating parameter vectors.

https://doi.org/10.1371/journal.pone.0213977.g011

Table 4. Comparison of lower bounds in estimating kinetic parameters ki obtained by HS-OED algorithm and GA,PSO-based OED methods. These indexes are

obtained in numerical simulation.

Methods k1 k2 k3 k4 k5

PSO-OED 270.4 1.283 32.7 3.848 0.250

GA-OED 17.2 0.208 4.337 0.667 0.319

HS-OED 4.62 0.086 1.432 0.375 0.197

https://doi.org/10.1371/journal.pone.0213977.t004
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Those parameters with higher CRLB values are considered to have higher degree of uncer-

tainty during modeling. Accuracy indexes computed by HS-OED algorithm are significantly

lower than that of other two OED methods. And GA-OED has provided more superior perfor-

mance than PSO-OED.Using experimentally measured step response data, the CRLB for esti-

mated parameters k1, k2 are computed as 1.486 and 0.185, which are higher than that of kon,

koff in the unbuffered system. For the buffered system, the CRLB for production rates of k3, k4

are computed as 1.432 and 0.375. The kinetic parameter kg has the highest CRLB value of

2.2767, indicating that it has the highest level of uncertainty. With the purpose of illustrating

the advantage of optimal input u�, the values of CRLB for five parameters under u = 5μM,

10μM, 20μM and u� are compared in Fig 12.

The number of measured time points nm is another crucial factor that influence the model-

ing quality. After reaching a specific threshold, the improvement of model accuracy brought

by increased nm become limited. Meanwhile, the variance of parameter estimation decline

to decrease and stays a level that is beyond that of CRLB. The optimal identification method

tries to control the experimental cost without loss of much modeling quality. After simulation

experiments and comparison, the penalty coefficient λ in cost function is tuned for specific

gene networks to achieve a tradeoff. To find the suitable number of measurements, the experi-

ments apply nm as the independent variable and calculate the value of cost function that has

two penalty terms. Trajectories of cost function are recorded with the increasing iterations,

shown in Fig 13.

Fig 12. Crámer-Rao lower bound(CRLB) of kinetic parameters k1, k2, k3, k4 and k5 of the buffered system.

Compared with three input levels i.e. u = 5μM, 10μM, 20μM, the optimal input u� is able to reduce the values of CRLB

for specific parameters.

https://doi.org/10.1371/journal.pone.0213977.g012
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The step is set as 10 and the penalty coefficient λ for measurement cost is suggested as 0.8.

It is observed from Fig 13 that five trajectories of cost function meet together at the point

which correspond to nm = 50 measured time points. This mean that the sample size nm = 50

can be regarded as a suitable number of measured time points for buffered system. Consider-

ing the limited number of time points single experiment, several perturbation experiments

under different conditions can be performed to collect enough number of measurements.

As visualizing the trajectories of cost function provide limited information about optimal

identification, the three-dimensional surface depicts a broader view of this process, shown in

Fig 14.

The measurement cost is reflected by the number of observed data points nm which is pro-

portional to resources spent in experiments. The optimal identification method increases the

number of measured time points at a step of 10. In order to reach the same normalized accu-

racy level, which can be denoted by CRLB/nm, the necessary number of measured points in

buffered system is approximately 67% higher than that in unbuffered system. since nm and np
equal to 50 and 23 in two systems. For buffered gene circuit, the value of penalty term that rep-

resents the measurement cost (nm − np)/nm equal to 0.54, which multiplies a penalty coefficient

λ. The proposed optimal identification is effective to pursue a balance between two factors in

deterministic modeling of gene circuits.

Experimental outcomes with two synthetic gene circuits indicate the parameter refinement

is able to improve the model quality as well as to reduce the uncertainty. Different with

Fig 13. Cost trajectories of five periodic inputs for buffered system. Five trajectories of cost function converge to the

point N = 50, indicating the amount of measurements meet the requirement of modeling.

https://doi.org/10.1371/journal.pone.0213977.g013
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traditional single optimality criteria, the propose optimal identification suggest not to increase

the measured points of output when the profit of increasing measurements is not significant.

Computational burden of this nested iteration framework is still huge, especially for complex

synthetic gene networks. Incorporating biological prior knowledge in the constraints condi-

tions will be beneficial to reduce the viable region.

4 Conclusion

In order to guide the modular construction of synthetic gene networks, a novel optimal

identification method that provides accurate predictive models at a low experimental cost is

proposed. For synthetic gene networks, optimal experiment design(OED) is feasible and

effective to design an appropriate input level through maximizing information content

related optimal criteria. In this case, this paper proposes a harmony search-based OED

(HS-OED) approach and designs a two-stage optimization. Optimal input signals and

parameter vectors are computed by this two-stage optimization framework. The first contri-

bution of this paper is to apply harmony search strategy instead of brute screening search to

improve the accuracy and efficiency in searching optimal inputs. Secondly, the designed cost

function can be used to select an appropriate number of data points collected for computa-

tional modeling of gene circuits. Simulation and experimental analysis indicate the proposed

HS-OED method can obtain accurate model parameters than established heuristic algo-

rithms based OED method, with enhanced estimation accuracy. Furthermore, the amount of

measured data points are reduced to offer a low-cost identification solution for synthetic

gene networks.

Fig 14. The three-dimensional surface of designed cost function under five square inputs. The optimal

identification algorithm picks nm = 50 as the suitable number of measured time points.

https://doi.org/10.1371/journal.pone.0213977.g014
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Appendix

In the parameter estimation experiments, kinetic parameters of two synthetic gene networks

are computed based on the mechanistic mathematical models. The ODE model for unbuffered

system consists of 3 equations, shown as follows.

_Xm ¼ km
ðDOXÞn1

Kdox þ ðDOXÞ
n1
� dMXm � konXmðpT � CmÞ þ koff Cm þ dcCm

_Cm ¼ konXmðpT � CmÞ � koff Cm � dcCm

_̂Gm ¼ ksgfp þ kg
ðXmÞ

n2

Kgfp þ ðXmÞ
n2
� dGĜm

where Xm and Ĝm denote abundance of SKN7m and reporter protein GFP respectively, n1, n2

are Hill coefficients. The ODE system for buffered system consists of 10 equations and 23

kinetic parameters. Assume Z denotes STAT5-HKRR fusion, W, X represent YPD1 and SKN7,

Ĝ is the reporter protein GFP. Thus the ODE system for buffered genetic system can be

described as follows:

_Z ¼ km
ðDOXÞn1

Kdox þ ðDOXÞ
n1
� dZZ � k2W

�Z þ k1Z
�ðWT � W�Þ � kpZ þ k0pZ

�

_Z� ¼ � k1Z�ðWT � W�Þ þ k2W�Z þ kpZ � k0pZ
� � dZZ�

_WT ¼ kw � dWWT

_W � ¼ k1Z�ðWT � W�Þ � k2W�Z � k3ðXT � X� � X�� � C� � C��ÞW�

þ k4X�ðWT � W�Þ � dWW� � k3X�W� þ k4X��ðWT � W�Þ � k7W�

_XT ¼ kx � dXXT

_X� ¼ k3ðXT � X� � X�� � C� � C��ÞW� � k4X�ðWT � W�Þ � dXX�

� k3X�W� þ k4X��ðWT � W�Þ � k5X� þ k6X�� þ r1

_X�� ¼ k3X�W� � k4X��ðWT � W�Þ � k6X�� � dXX�� þ r2

_C� ¼ konX�ðpT � C� � C��Þ � koff C� � dCC�

_C�� ¼ konX��ðpT � C� � C��Þ � koff C�� � dCC��

_̂G ¼ ksgfp þ kg
ðX��Þn2

Kgfp þ ðX��Þ
n2
� dGĜ

where G represents the expression level of reporter protein GFP, parameters km, kg are maxi-

mum activated protein production rates, Kdox, Kgfp are respective Kd for Hill equations, kw, kx
are production rates for YPD1 and SKN7 respectively. Kinetic parameters ki(i = 1, 2, 3, 4) are

constrained to 1-50 [μM]−1. Based on prior knowledge, the conditions k1� k3, k2� k4 are

used as constraints during computational modeling. Retroactivity between modules are

denoted by r1, r2 which will attenuate the response behaviors of synthetic gene networks.
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