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Abstract

Change in the nutritional quality of phytoplankton is a key mechanism through which ocean

acidification can affect the function of marine ecosystems. Copepods play an important role

transferring energy from phytoplankton to higher trophic levels, including fatty acids (FA)—

essential macronutrients synthesized by primary producers that can limit zooplankton and

fisheries production. We investigated the direct effects of pCO2 on phytoplankton and cope-

pods in the laboratory, as well as the trophic transfer of effects of pCO2 on food quality. The

marine cryptophyte Rhodomonas salina was cultured at 400, 800, and 1200 μatm pCO2 and

fed to adult Acartia hudsonica acclimated to the same pCO2 levels. We examined changes

in phytoplankton growth rate, cell size, carbon content, and FA content, and copepod FA

content, grazing, respiration, egg production, hatching, and naupliar development. This sin-

gle-factor experiment was repeated at 12˚C and at 17˚C. At 17˚C, the FA content of R. salina

responded non-linearly to elevated pCO2 with the greatest FA content at intermediate lev-

els, which was mirrored in A. hudsonica; however, differences in ingestion rate indicate that

copepods accumulated FA less efficiently at elevated pCO2. A. hudsonica nauplii developed

faster at elevated pCO2 at 12˚C in the absence of strong food quality effects, but not at 17˚C

when food quality varied among treatments. Our results demonstrate that changes to the

nutritional quality of phytoplankton are not directly translated to their grazers, and that stud-

ies that include trophic links are key to unraveling how ocean acidification will drive changes

in marine food webs.

Introduction

Increasing CO2 concentrations in the atmosphere and ocean due to anthropogenic carbon

emissions are causing widespread changes in ocean chemistry that reduce seawater pH and the

availability of carbonate ions, a process called ocean acidification (OA). Average surface ocean
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pH has declined from 8.2 to 8.1 since the industrial revolution, and is expected to decline an

additional 0.3–0.4 pH units by 2100 [1]. Across a wide range of marine organisms, reduced pH

is generally associated with declines in growth, survival, and reproduction with high variability

among and within groups [2,3]. Marine species can also be affected by reduced pH through

indirect effects, which require the presence of another species to affect the species of interest

[4]. Indirect effects such as altered species interactions [5] and changes in habitat-forming

organisms [6] will likely drive many of the ecosystem changes caused by OA.

One important species interaction is the transfer of energy and nutrients from one trophic

level to the next [5]. The phytoplankton-copepod link is a critical trophic link in pelagic eco-

systems because copepods are the most abundant mesozooplankton and are an important

food source for fish larvae. High pCO2 affects the growth rate and elemental composition of

marine phytoplankton in species-specific ways [7] and therefore can alter the quantity and

quality of prey available for zooplankton through changes in total production, morphology,

macronutrient, and micronutrient composition. Elevated pCO2 generally increases the C:N

and C:P ratios of phytoplankton [8,9] and can also affect their fatty acid content [7]. Fatty

acids (FA), and in particular polyunsaturated fatty acids (PUFA), are important macronutri-

ents that are predominantly synthesized by primary producers and are necessary for support-

ing the growth, survival, and reproduction of aquatic organisms [10]. Laboratory studies on

individual phytoplankton species have primarily shown negative effects of increased pCO2 on

PUFAs [11–16] or no significant changes in FA [7,17,18]. Mesocosm studies on natural com-

munities have observed a wide range of responses including declines in PUFAs with increased

pCO2 [19], no effect on FA [20] or increased PUFAs [21,22]. Phytoplankton stoichiometry

and FA content are also affected by temperature and the interaction between pCO2 and tem-

perature [12,13,17], making the effect of OA on food quality difficult to predict.

Many OA studies have found that copepods are generally robust to pH levels predicted for

the end of the century [23–27], although some species, life stages [28,29], and populations

[30,31] are more sensitive. There is also growing evidence of sub-lethal effects such as changes

in respiration, ingestion, and reproductive output, that could have important implications for

copepod populations [30,32–34]. Changes in the biochemistry of their prey may also influence

copepods because their egg production and hatching are dependent on dietary PUFA, particu-

larly eicosapentaenoic acid (EPA; 20:5ω3) and docosahezaenoic acid (DHA; 22:6ω3) [35],

which they cannot produce themselves at ecologically significant rates [36,37].

Initial studies that investigated the effects of OA on phytoplankton-copepod linkages con-

cluded that copepod responses corresponded to pCO2-induced changes in phytoplankton

food quality. The copepod Acartia tonsa had decreased development rates, growth rates, and

egg production when phytoplankton food quality declined with elevated pCO2 [15,38,39], but

Acartia grani were not affected by high pCO2 when there was no change in phytoplankton

food quality [18]. However, recent mesocosm studies have shown more complex responses.

The FA content of copepods declined with increased pCO2 in mesocosms that had reduced

phytoplankton FA at elevated pCO2 [20] and when there was no change in the phytoplankton

community’s FA [40]. In another mesocosm, PUFA content of the phytoplankton community

increased under elevated pCO2, copepod grazing declined, and copepod FA content was not

affected [22]. In a crossed temperature x CO2 study, higher temperature was a much stronger

driver than CO2, causing altered fatty acid composition and declines in copepod abundance,

although changes in the phytoplankton were not measured [41]. These studies show that the

effect on copepods depends on the phytoplankton responses, but that there are also other com-

plicating factors that modulate copepod responses. Carefully controlled laboratory studies are

an important tool to illuminate the mechanisms that underlie these community responses.

Effects of elevated CO2 on the phytoplankton-copepod trophic link

PLOS ONE | https://doi.org/10.1371/journal.pone.0213931 March 14, 2019 2 / 19

collection and analysis, decision to publish, or

preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0213931


There are a variety of ways increased pCO2 can affect the phytoplankton-copepod link

including direct effects on copepod metabolic costs or behavior, and on phytoplankton abun-

dance or cell size, which can influence copepod grazing. The balance between quality and

quantity of prey ingested and the metabolic costs of the copepods will ultimately determine the

growth and reproductive output of the copepods. In this study, we investigated the effects of

pCO2 on copepod populations mediated by changes in their prey quality using the copepod

Acartia hudsonica and the cryptophyte Rhodomonas salina as a model system. A. hudsonica is

a temperate-boreal coastal calanoid copepod found in the northwest Atlantic, with its conge-

ners found throughout the world’s oceans. The effects of elevated pCO2 on this species have

not been investigated, but other Acartia species show varied responses including increased egg

production and faster naupliar development [42], decreased egg production [43], and no

changes in survival, body size, egg production, hatching, or development rate [26,44]. We

acclimated phytoplankton and copepods to different pCO2 levels and characterized a wide

range of responses in each. We hypothesized that OA-mediated changes in phytoplankton FA

would drive changes in copepod reproductive output, and that this indirect pathway would be

the primary mechanism through which OA would affect the copepods.

Methods

This study consisted of two separate experiments in which adult Acartia hudsonica were main-

tained at three target pCO2 levels, 400, 800, 1200 μatm (pH 7.99, 7.75, 7.61), and were fed Rho-
domonas salina cultured at those same pCO2 levels. We characterized the physiology and

biochemistry of R. salina and A. hudsonica and assessed the reproductive output and larval

development of A. hudsonica at each pCO2 level before and after acclimation to the treatments.

In the first experiment (Exp 12C), the temperature was 12˚C; in the second (Exp 17C), it was

17˚C; experiments were run sequentially, not concurrently.

Atmospheric carbon control simulator (ACCS)

Experiments were conducted at the Shannon Point Marine Center (SPMC) in Anacortes,

Washington. Control of the carbonate chemistry of all cultures and experiments was achieved

using an atmospheric carbon control simulator (ACCS) that has been described in detail [45].

In short, the ACCS combines CO2-free air with pure CO2 using mass flow controllers to

achieve the treatment levels; these air-CO2 mixtures are then used to bubble reservoirs of 0.2-

μm filtered, UV-exposed natural seawater (salinity 28–32) to equilibrate the seawater to target

pCO2 conditions, and distributed to sealed atmospheric simulation chambers where cultures

and experimental vessels are maintained. Gas exchange helps maintain target pCO2 conditions

in these chambers. The pCO2 of inflowing air-CO2 mixtures and outflowing headspace gasses

are verified with a Li-COR Li-820 CO2 sensor. Equilibration reservoirs were held at experi-

mental temperature in an incubator and atmospheric simulation chambers in a temperature-

controlled cold room. Only a single cold room was available so conducting a full temperature

x CO2 factorial experiment was not possible: the two experiments were run sequentially and

are treated herein as separate experiments.

The carbonate chemistry of equilibrated seawater and cultures was verified with discrete

total inorganic carbon (CT) and spectrophotometric pH measurements taken in triplicate. R.

salina cultures and equilibrated seawater used for water changes were sampled daily, A. hudso-
nica cultures were sampled every 1–3 days, and larval development containers were sampled

when females were removed and at the end of development tests (described below). CT was

measured using an Apollo SciTech analyzer (AS-C3); spectrophotometric pH (total scale) was

measured using an Agilent 8453A UV-VIS diode array spectrophotometer and the m-cresol

Effects of elevated CO2 on the phytoplankton-copepod trophic link
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blue method [46]. Full carbonate system parameters were calculated using CO2sys [47] using

the constants of Mehrbach et al. [48] refit by Dickson and Millero [49] and the total pH scale.

Full details on carbonate chemistry methods have been previously described [45].

Phytoplankton culturing

Rhodomonas salina culture was obtained from Biologische Anstalt Helgoland, Alfred Wegener

Institute for Polar and Marine Research (M. Boersma). Phytoplankton culturing for this study

required a balance between producing enough biomass daily to feed large numbers of cope-

pods and maintaining carbonate chemistry conditions during phytoplankton growth. This

tradeoff guided decisions regarding the growth conditions and required preliminary testing of

the carbonate system control. Stock cultures of R. salina were maintained at experimental tem-

peratures in f/2 enriched seawater following Guillard and Ryther [50]. All seawater for phyto-

plankton culturing was 0.2-μm sterile filtered, and autoclaved prior to being adjusted to target

pCO2 levels in the equilibration reservoirs. New phytoplankton cultures were inoculated every

day in a f/10 growth medium (nutrient concentrations adjusted from Guillard and Ryther

1962) to ensure constant food quality for the copepods and harvested after a four-day growth

period on a 14:10 hr L:D cycle. As testing had revealed differences in the growth rates between

the two experimental temperatures, initial cell densities were adjusted to 10000 cells ml-1 for

Exp 12C and 2500 cells ml-1 for Exp 17C; the same initial densities were used for all pCO2

treatments. The freshly inoculated cultures were maintained in atmospheric simulation cham-

bers and constantly bubbled with air-CO2 mixtures of the target pCO2 level. Culture densities

and cell sizes were determined daily with a Coulter counter (Beckman Coulter Z2) on five rep-

licate samples, and carbon, nitrogen, and FA content of R. salina were measured every few

days (described below). Specific growth rate μ (d-1) was calculated from the daily cell counts

according to the equation: μ = (ln(D1)-ln(D0)/T, where D0 is the starting cell density, D1 the

final density, and T is the growth time (d).

Copepod culturing and pCO2 acclimation

A. hudsonica were obtained from the University of Connecticut (M. Finiguerra, originated

from the lab of H.G. Dam). At SPMC, cultures were maintained in water baths at 13–15˚C and

ambient CO2, and fed at surplus from the stock culture of R. salina. Mature male and female

copepods were sorted from the culture over two days prior to the start of experiments. A subset

of females were used to test initial egg production, hatching success, and naupliar development

(described below); the rest of the adults were distributed into 500-mL jars of pCO2-equili-

brated seawater at a density of 45 individuals per jar, then held in the atmospheric simulation

chambers for an acclimation period. During the acclimation period, jars were given a 75%

water change daily and fed pCO2-acclimated R. salina every 12 hours to maintain a cell con-

centration above the saturation feeding density of 3000 cells/mL (~0.2 μgC/mL [51]) while

allowing for an estimated maximum ingestion rate of 6000 cells/female/hr.

Both experiments had a similar structure that began with a pCO2 acclimation period start-

ing on day 1; in Exp 12C the acclimation period was six days whereas in Exp 17C, it was

reduced to four days due to higher metabolic turnover at higher temperature. Acartia sp. are

small-bodied, low lipid-storage copepods that have been shown to rapidly respond to food

over a period of a few hours [52–54]. In Exp 12C, a subset of females was added to jars of

males on day 3 at a ratio of 1 female:2 males to ensure the females would be fertilized for

egg production, hatching, and development experiments. In Exp 17C, a subset of females was

incubated with males for the entire acclimation period at a ratio of 1 female:2 males. At the

end of each acclimation period, females that had been incubating with males were used for egg

Effects of elevated CO2 on the phytoplankton-copepod trophic link
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production and subsequent hatching and naupliar development tests. In Exp 12C, two repli-

cate egg production, hatching, and naupliar development trials were run before and after the

acclimation period; however, due to logistical constraints, the 800 μatm pCO2 target treatment

was only included in one trial. Respiration and ingestion rate tests took place over two days

(days 6 and 7 in Exp 12C and days 4 and 5 in Exp 17C) and consisted of two replicate respira-

tion tests and two separate ingestion rate tests using acclimated and non-acclimated prey

(described below). Remaining females were put in food-free water for 24 hrs before being fro-

zen for FA analyses. Females were not reused in any tests except those that were used in inges-

tion rate tests were also included in elemental and FA analyses.

Reproductive output and naupliar development

In all egg production, hatching, and naupliar development tests, females were incubated indi-

vidually inside mesh-bottom egg production chambers suspended within 250-ml containers of

treatment pCO2-equilibrated seawater held inside the atmospheric simulation chambers. After

24 h, the females were removed, measured for prosome length (head and thoracic segments),

and the containers of undisturbed eggs were placed back into the atmospheric simulation

chambers to develop. The duration of the tests differed between Exp 12C and Exp 17C because

of faster development rates at the higher temperature: in Exp 12C, eggs and nauplii were

allowed to develop for 8 days after spawning and in Exp 17C they developed for 5 days.

After hatching, nauplii were fed R. salina once per day at 25% of the density given adults

(described above). During tests of the direct effects of pCO2 on A. hudsonica naupliar develop-

ment, the nauplii were fed stock R. salina that had not been pCO2 acclimated; during tests at

the end of the acclimation period, nauplii were fed R. salina that had been cultured at the cor-

responding target pCO2 treatment. Nauplii were fed starting on day 4 in Exp 12C and day 2 in

Exp 17C so that food would be available when they reached the Nauplius II stage, the first feed-

ing stage. At the conclusion of the naupliar development tests, 10% of the jars were checked

for naupliar survival and all were preserved in 5% buffered formalin/seawater solution for

counting and staging. Hatching success was calculated from the number of hatched nauplii

and unhatched eggs found in each container at the end of the experiment; naupliar develop-

ment was calculated by the proportion of hatched nauplii that reached the Nauplius IV stage

(N IV) at the end of the experiment. The number of females included in each trial varied from

20 to 60 females per treatment.

Respiration rate

The effects of pCO2 concentration on the respiration rate of adult female A. hudsonica was

measured in two replicate trials for each experiment with oxygen microsensors. 2-ml vials

filled with pCO2-equilibrated seawater from the corresponding pCO2 treatment and contain-

ing 7 females each were monitored with PreSens Oxygen Sensor Spots (Fibox 4 with PST3 sen-

sor spots, PreSens Precision sensing, Germany) under dim light every 15 minutes for 4.4–5.4

hrs. Each respiration test consisted of five replicate vials containing females and five equili-

brated seawater blanks per treatment. Copepods were transferred from the acclimation jars

into filtered sterilized seawater before they were added to the respiration vials to reduce the

transfer of microbes with them; the same volume of this seawater that was added with the

copepods was also added to each blank. After each test, female prosome lengths were measured

and respiration rate was standardized to dry weight, calculated from prosome length following

the equation of Durbin et al. [55]. During Exp 12C, temperature during respiration rate mea-

surements was 13.5 ˚C; during Exp 17C, measurements were made at 16.9 ˚C.

Effects of elevated CO2 on the phytoplankton-copepod trophic link
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Ingestion rate

Ingestion rate of A. hudsonica can be affected directly through pCO2 effects on the copepods as

well as indirectly as a response to pCO2 effects on the phytoplankton. To separate these two

processes, the effect of pCO2 acclimation on female A. hudsonica ingestion rate was tested on

copepods grazing R. salina that had been cultured under ambient (400 μatm) pCO2 regardless

of the copepod pCO2 acclimation treatment, and again on R. salina cultured at the same accli-

mation pCO2 level as the copepods. These two tests were each conducted once per experiment

using 250-ml bottles containing 15 females per bottle, with four replicates and two control bot-

tles without copepods per treatment. Initial R. salina concentrations were ~300 μg C L-1 (calcu-

lated assuming 75 pg C/cell). Bottles were covered in foil and incubated for 24 hours, after

which female copepods were measured; cell concentrations were measured before and after

the incubation with a Coulter counter (Beckman Coulter Z2) after being preserved in 5% acid

Lugol’s solution. Cell counts were corrected for growth in the control bottles and ingestion

rates were calculated according to Frost [56] and standardized to measured prosome length.

Elemental and fatty acid composition

R. salina elemental (C, N) and fatty acid composition were evaluated at several time points

throughout the experiments; in Exp 12C, 14 elemental samples and 8–9 fatty acid samples

were taken per treatment and in Exp 17C, 7–10 elemental and 3–4 fatty acid samples were

taken per treatment. A. hudsonica elemental composition was only measured in Exp 17C; fatty

acid composition was evaluated on 3–5 samples per treatment at the end of each experiment.

For stoichiometric analysis of carbon and nitrogen content, approximately 4 x 106 phytoplank-

ton cells were filtered onto a pre-combusted GF/F filter and encapsulated in tin foil; A. hudso-
nica females that had been starved for 24 hrs were collected in tin capsules (30 copepods per

sample). Samples were dried in a drying oven at 60˚C for 24 hrs and stored in a desiccator

until they were analyzed at the UC Davis Stable Isotope Facility on a PDZ Europa ANCA-GSL

elemental analyzer. Phytoplankton samples for FA analysis were filtered as for elemental analy-

sis and stored in Eppendorf tubes layered with N gas and frozen at -80˚C until further analysis;

copepods for FA analysis were counted into glass test tubes, rinsed with DI water, layered with

N gas and frozen at -80˚C. Lipids were extracted from the samples using a modification of the

methods described by Folch et al. [57] and Bligh and Dyer [58] and the FAs were measured as

fatty acid methyl esters (FAMEs); detailed methods are described by Malzahn et al. [59]. Sam-

ples for FA analyses were extracted in dichloromethane:methanol (2:1 vol:vol) in an ultra-

sound bath on ice for 10 minutes and then at -80˚C for 24 hours. After centrifugation, the

water-soluble fractions were removed by washing with 0.88% KCl buffer. The aqueous phase

was discarded and the organic remainder evaporated using N gas. Esterification was achieved

by addition of methanolic-sulphuric acid and incubation at 70˚C for 75 min. The FAMEs were

washed from the methanolic-sulphuric acid using n-hexane. Evaporation of the excess n-hex-

ane yielded the final FAMEs, which were analyzed using a Gas Chromatograph Mass Spec-

trometer (GC/MS; Varian CP3800 GC with Saturn 2000 Ion Trap MS) equipped with a HP-88

column (0.25mm ID, 30m length, 0.2μm film; Agilent Technologies) at Western Washington

University. FAs were identified using a NIST 08 MS library and quantified using a known

amount of C19:0 added to each sample at the first extraction step.

Fatty acid accumulation

We calculated the ratio of A. hudsonica total FA content to total ingested FA and compared

across pCO2 treatments. Total ingested FA was calculated by multiplying the average R. salina
total FA concentration by the average A. hudsonica ingestion rate for each treatment and a FA

Effects of elevated CO2 on the phytoplankton-copepod trophic link
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accumulation efficiency was calculated by dividing the average A. hudsonica total FA concen-

tration by the total ingested FA.

Statistical analyses

Phytoplankton cell size, carbon and nitrogen content, and C:N ratio were analyzed using linear

mixed effects models using sampling date as a random factor with post-hoc least-squares

means comparisons among treatments using the R packages lme4 and emmeans. Phytoplank-

ton growth rate, copepod carbon and nitrogen carbon content, phytoplankton and copepod

fatty acid content, and copepod respiration and ingestion rate were tested for differences

among pCO2 levels within each experiment using an ANOVA and post-hoc Tukey HSD tests.

A. hudsonica egg production was tested with negative binomial models (glmber.nb) to account

for the overdispersion of the data due to females that did not spawn eggs. Female prosome

length was considered as a covariate in the models with treatment as a fixed factor and experi-

mental trial as a random factor. The proportion of eggs that hatched and the proportion of

hatched nauplii that developed to the N IV stage were tested using mixed effects logistic regres-

sions on a logit scale with the lme4 R package. Experimental trial and individual female brood

were included as random effects.

Results

Chemistry

Chemistry conditions were generally constant over time within each experiment as well as

between the two experiments, and pCO2 treatments were distinct from each other in both

experiments (Table 1). In general, measured pH was slightly higher and calculated pCO2 was

lower than target levels in algal cultures whereas pH was lower and pCO2 was higher than tar-

get levels in copepod-acclimation and naupliar-development jars.

Phytoplankton

Elevated pCO2 affected R. salina physiology broadly through generally increased growth rate,

cell size, and carbon content. Growth rate in Exp 17C was 4 and 8% higher when cultured at

800 and 1200 μatm, respectively (p<0.0001; Tukey 400–800 p = 0.013, 400–1200 p<0.0001,

800–1200 p = 0.008), but differences in growth rate in Exp 12C were not statistically significant

(p = 0.25). R. salina cell size was 15 and 14% larger at 800 and 1200 μatm, respectively, than at

400 μatm in Exp 12C and 18 and 16% larger in Exp 17C (Table 2, S2 Table). Carbon content of

R. salina was variable over time and sampling date was a significant random factor in the best

model for both experiments (S1 Table). Carbon content was 8 and 5% higher when cultured at

800 and 1200 μatm, respectively, in Exp 12C, and 9 and 8% higher than at 400 μatm in Exp

17C (Table 2, S2 Table). C:N molar ratios also increased by 4 and 2% at 800 and 1200 μatm

compared to 400 μatm in Exp 12C, and by 8 and 5% in Exp 17C (Table 2), with sampling date

again a significant random factor (S1 Table).

R. salina FAs responded to increased pCO2 differently between the two experiments with

few observed effects in Exp 12C and strong non-linear effects in Exp 17C (Fig 1, S1 Fig). In

Exp 12C, there were significant shifts in the proportions of several FA classes but no significant

differences in the per cell FA content of R. salina among pCO2 treatments (S3 and S4 Tables).

At elevated pCO2 the ratio of ω6:ω3 increased, the proportion of MUFA relative to total FA

increased, and the proportion of PUFA decreased. In Exp 17C, a wide range of FAs were

greatest in cultures acclimated to 800 μatm pCO2 (Fig 1, S3 Table). These differences were

Effects of elevated CO2 on the phytoplankton-copepod trophic link
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significant for total FA, saturated, unsaturated, PUFA, and EPA, but there were no differences

in the proportions of each FA type (S3 and S4 Tables).

Copepods

Biochemistry. There were no significant differences in carbon content (p = 0.90), nitro-

gen content (p = 0.89), or C:N (p = 0.28) of A. hudsonica females raised at different pCO2 levels

Table 1. Water chemistry summary. Average conditions in each experiment grouped by target pCO2 treatment, ± 1 standard deviation of (n) measurements. Measure-

ments were taken from pre-equilibrated water, algal cultures, adult copepod acclimation jars, and naupliar development rate jars. Salinity, total inorganic carbon (CT), and

pH were measured; pCO2 and total alkalinity (AT) were calculated.

Exp 12C Target pCO2 Salinity CT (μmol/kg) pH (total) pCO2 (μatm) AT (μmol/kg)

Equilibrated water 400 28.7 ± 1.9 (9) 1873 ± 9 (9) 7.99 ± 0.01 (9) 420 ± 8 (9) 2005 ± 8 (9)

800 28.4 ± 1.5 (9) 1954 ± 14 (9) 7.75 ± 0.02 (9) 776 ± 33 (9) 2012 ± 13 (9)

1200 29.0 ± 1.5 (13) 1979 ± 19 (13) 7.61 ± 0.02 (13) 1100 ± 52 (13) 2000 ± 17 (13)

Algal cultures 400 30.8 ± 1.2 (23) 1992 ± 18 (23) 8.12 ± 0.05 (23) 327 ± 38 (23) 2194 ± 28 (23)

800 30.9 ± 1 (23) 2095 ± 16 (23) 7.82 ± 0.03 (23) 693 ± 38 (23) 2186 ± 22 (23)

1200 31.0 ± 1.1 (23) 2142 ± 24 (23) 7.68 ± 0.04 (23) 994 ± 88 (23) 2190 ± 29 (23)

Acclimation jars 400 30.9 ± 0.8 (8) 1946 ± 18 (8) 7.92 ± 0.03 (8) 516 ± 39 (8) 2064 ± 18 (8)

800 30.8 ± 0.8 (11) 2016 ± 11 (11) 7.71 ± 0.03 (11) 877 ± 59 (11) 2070 ± 14 (11)

1200 30.8 ± 0.8 (9) 2038 ± 12 (9) 7.58 ± 0.01 (9) 1193 ± 20 (9) 2057 ± 15 (9)

Development jars 400 30.6 ± 0.5 (9) 1938 ± 14 (9) 7.93 ± 0.02 (9) 501 ± 18 (9) 2069 ± 34 (9)

800 30.7 ± 0.5 (9) 2020 ± 48 (9) 7.71 ± 0.02 (9) 884 ± 69 (9) 2081 ± 56 (9)

1200 30.8 ± 0.7 (9) 2044 ± 58 (9) 7.58 ± 0.02 (9) 1215 ± 119 (9) 2069 ± 64 (9)

Exp 17C

Equilibrated water 400 31.3 ± 0.9 (12) 1919 ± 13 (12) 7.99 ± 0.01 (12) 435 ± 11 (12) 2096 ± 18 (12)

800 31.3 ± 0.8 (12) 2008 ± 7 (12) 7.75 ± 0.02 (12) 818 ± 39 (12) 2096 ± 8 (12)

1200 31.3 ± 0.9 (12) 2051 ± 8 (12) 7.60 ± 0.01 (12) 1185 ± 42 (12) 2094 ± 10 (12)

Algal cultures 400 31.9 ± 0.5 (18) 1979 ± 17 (21) 8.11 ± 0.02 (18) 318 ± 40 (21) 2229 ± 13 (18)

800 31.7 ± 0.5 (18) 2081 ± 29 (21) 7.88 ± 0.06 (18) 623 ± 91 (21) 2224 ± 15 (18)

1200 31.9 ± 0.5 (18) 2158 ± 15 (21) 7.70 ± 0.03 (18) 972 ± 74 (21) 2237 ± 9 (18)

Acclimation jars 400 31.1 ± 0.7 (12) 1956 ± 10 (15) 7.96 ± 0.01 (12) 458 ± 45 (15) 2123 ± 10 (12)

800 31.5 ± 0.5 (12) 2034 ± 25 (15) 7.75 ± 0.03 (12) 819 ± 58 (15) 2129 ± 33 (12)

1200 31.5 ± 0.5 (12) 2077 ± 20 (15) 7.60 ± 0.02 (12) 1137 ± 108 (15) 2131 ± 13 (12)

Development jars 400 31.0 ± 0 (9) 1969 ± 34 (15) 7.98 ± 0.03 (9) 447 ± 70 (15) 2138 ± 33 (9)

800 31.3 ± 0.5 (9) 2039 ± 32 (15) 7.81 ± 0.05 (9) 748 ± 74 (15) 2142 ± 43 (9)

1200 31.3 ± 0.5 (9) 2080 ± 33 (15) 7.65 ± 0.06 (9) 1029 ± 120 (15) 2136 ± 35 (9)

https://doi.org/10.1371/journal.pone.0213931.t001

Table 2. Phytoplankton growth rate, cell volume, carbon content, and C:N ratio. Average values grouped by target pCO2 treatment, with the standard deviation of (n)

measurements. Cell volume was measured via Coulter counter in five replicate samples from each days’ feeding cultures, growth rate was calculated from the average cell

count of those five replicates; C:N samples were taken opportunistically over the course of the experiment (sampled on 7 days in Exp 12C; 4 days Exp 17C).

Target pCO2 Growth Rate (d-1) Cell Vol (μm3) Carbon Content (pg/ cell) C:N

Exp 12C 400 0.60 ± 0.05 (11) 235 ± 10 (35)a 84 ± 13 (14)a 5.85 ± 0.46 (14)a

800 0.62 ± 0.04 (10) 271 ± 13 (35)b 91 ± 14 (14)b 6.10 ± 0.37 (14)b

1200 0.64 ± 0.05 (11) 268 ± 12 (35)b 88 ± 19 (14)ab 5.99 ± 0.50 (14)b

Exp 17C 400 0.96 ± 0.02 (9)a 245 ± 14 (40)a 75 ± 5 (9)a 6.04 ± 0.27 (9)a

800 1.00 ± 0.03 (9)b 288 ± 11 (40)b 82 ± 4 (7)b 6.52 ± 0.39 (7)b

1200 1.04 ± 0.03 (9)c 285 ± 16 (40)b 81 ± 7 (10)b 6.37 ± 0.64 (10)ab

Superscript letters indicate statistically significant differences among pCO2 treatments according to ANOVA and post hoc Tukey test (growth rate) or least-squares

means comparisons (cell volume, carbon content, and C:N ratio).

https://doi.org/10.1371/journal.pone.0213931.t002

Effects of elevated CO2 on the phytoplankton-copepod trophic link

PLOS ONE | https://doi.org/10.1371/journal.pone.0213931 March 14, 2019 8 / 19

https://doi.org/10.1371/journal.pone.0213931.t001
https://doi.org/10.1371/journal.pone.0213931.t002
https://doi.org/10.1371/journal.pone.0213931


in Exp 17C (Table 3). These data are not available from Exp 12C. A. hudsonica in Exp 12C did

not show large differences in FA content with pCO2 (Fig 1, S3 Table), but the ratio of ω6:ω3

increased with elevated pCO2, and the proportion of PUFA declined with elevated pCO2 (S1

Fig, S4 Table). Likewise, in Exp 17C, there were no significant differences in A. hudsonica FA

content with pCO2 (Fig 1, S3 Table), but copepods acclimated to 800 μatm pCO2 had signifi-

cantly higher proportions of MUFA and lower proportions of PUFA (S1 Fig, S4 Table).

Ingestion rate. There were no differences among copepod pCO2 acclimation treatments

when the copepods grazed R. salina that had been cultured under ambient (400 μatm) pCO2

regardless of the copepod pCO2 acclimation treatment (Fig 2a and 2c; Exp 12C p = 0.811; Exp

17C p = 0.105). In Exp 12C, copepod ingestion rate was also not affected when females grazed

R. salina acclimated to the same pCO2 level as the copepods (Fig 2b; p = 0.539). In Exp 17C,

A. hudsonica females had significantly higher ingestion rates in the 800 and 1200 μatm pCO2

treatments compared to the 400 μatm treatment when grazing R. salina cultured under those

same pCO2 treatments (Fig 2d; p = 0.005).

Fig 1. Fatty acid content of R. salina (A, B; pg/cell) and A. hudsonica (C, D; ng/female) during Exp 12C and Exp 17C. Error bars

show ± 1 standard deviation; letters indicate where significant differences among pCO2 treatments were detected by Tukey post hoc

tests.

https://doi.org/10.1371/journal.pone.0213931.g001

Table 3. Carbon content, nitrogen content, and C:N of female A. hudsonica in Exp 17C. Mean and standard deviation of (n) samples containing 30 females each. C

and N were not measured in Exp 12C.

Target pCO2 Carbon Content

(μg C/copepod)

Nitrogen Content

(μg N/copepod)

C:N

400 3.29 ± 0.22 (5) 0.78 ± 0.03 (5) 4.92 ± 0.17 (5)

800 3.41 ± 0.93 (4) 0.82 ± 0.2 (4) 4.83 ± 0.15 (4)

1200 3.21 ± 0.21 (3) 0.80 ± 0.06 (3) 4.71 ± 0.19 (3)

https://doi.org/10.1371/journal.pone.0213931.t003
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Respiration rate. There were no clear effects of pCO2 on female A. hudsonica respiration

rate in either experiment (Fig 3). Respiration rate was similar among treatments in both trials

of Exp 12C (Trial 1 p = 0.06, Trial 2 p = 0.79) and Exp 17C (Trial 1 p = 0.70, Trial 2 p = 0.24).

Reproductive output and naupliar development. Egg production and hatching success

were both highly variable among females within treatments and among experimental trials.

We did not detect effects of pCO2 on hatching before or after the acclimation periods in either

experiment (Table 4, S5 Table). Egg production was only significantly different in Exp 12C

pre-acclimation tests, when fewer eggs were produced in the 800 μatm pCO2 target treatment

(Table 4, S6 Table). Due to logistical constraints, the 800 μatm pCO2 target treatment was only

Fig 2. Ingestion rate of A. hudsonica females on R. salina acclimated to 400 μatm pCO2 (A, C) and on R. salina acclimated to

the same target pCO2 as the copepods (B, D) in Exp 12C (A, B) and Exp 17C (C, D). Error bars show ± 1 standard deviation of

four replicates; asterisk indicates where a treatment was significantly different from the other two pCO2 treatments.

https://doi.org/10.1371/journal.pone.0213931.g002

Fig 3. Respiration rate of adult female A. hudsonica after the pCO2 acclimation period. The average of five replicates per treatment

are plotted for two trials during Exp 12C (A) and Exp 17C (B); error bars show ± 1 standard deviation.

https://doi.org/10.1371/journal.pone.0213931.g003
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included in one of the trials (both pre- and post-acclimation) of Exp 12C, which had lower egg

production and hatching success across all treatments. This was accounted for in the statistical

models; however, the values at 800 μatm given in Table 4 are not directly comparable to those

in the 400 and 1200 μatm pCO2 target treatments, which include measurements from both

trials.

Higher proportions of nauplii reached the N IV stage in the 1200 μatm pCO2 treatment

compared to 400 μatm in Exp 12C (Fig 4A, S5 Table). In Exp 17C, there were no significant

differences in final naupliar proportions among pCO2 acclimation treatments (Fig 4B, S5

Table). There were no differences in naupliar development with pCO2 level in pre-acclimation

Table 4. Average egg production (eggs/mm female prosome length), proportion hatched, and proportion Nauplius IV (N IV) of individual females’ broods in tests

pre- and post-acclimation in Exp 12C and Exp 17C. Average responses of broods in each experiment grouped by target pCO2 treatment, with the standard deviation of

(n) measurements (number of females, broods, and broods with hatching for egg production, hatching, and development, respectively).

Target pCO2 Egg Production (eggs/ mm PL) Prop Hatch Prop N IV Stage

12˚C Pre 400 3.4 ± 4.2 (52)a 0.46 ± 0.41 (32) 0 ± 0 (18)

800 0.4 ± 0.8 (32)b 0.21 ± 0.39 (7) 0 ± 0 (2)

1200 2.3 ± 3.8 (52)a 0.42 ± 0.42 (26) 0.01 ± 0.02 (15)

12˚C Post 400 13.8 ± 8.0 (49) 0.50 ± 0.47 (54) 0.20 ± 0.29 (34)a

800 10.7 ± 5.7 (22) 0.18 ± 0.34 (24) 0.21 ± 0.38 (8)ab

1200 14.2 ± 7.4 (56) 0.59 ± 0.46 (60) 0.38 ± 0.31 (40)b

17˚C Pre 400 10.6 ± 7.9 (48) 0.79 ± 0.30 (45) 0.02 ± 0.05 (42)

800 7.6 ± 6.0 (44) 0.87 ± 0.19 (44) 0.01 ± 0.04 (43)

1200 9.8 ± 8.8 (47) 0.80 ± 0.28 (39) 0 ± 0.01 (37)

17˚C Post 400 18.3 ± 12.3 (85) 0.22 ± 0.31 (85) 0.30 ± 0.33 (46)

800 15.6 ± 11.1 (68) 0.20 ± 0.30 (72) 0.27 ± 0.35 (38)

1200 17.2 ± 12.9 (83) 0.20 ± 0.31 (80) 0.33 ± 0.38 (36)

Superscript letters indicate where significant differences among pCO2 treatments were detected by Tukey post hoc tests. Note: in Exp 12C, the 800 μatm pCO2 target

treatment was only included in one of two trials so those values are not directly comparable to those in the 400 and 1200 μatm pCO2 target treatments, which include

measurements from both trials.

https://doi.org/10.1371/journal.pone.0213931.t004

Fig 4. Final proportions (all broods combined) of naupliar stages. Nauplius I (N I), Nauplius II (N II), Nauplius III (N III), and

Nauplius IV (N IV) following development tests of eggs spawned from pCO2-acclimated A. hudsonica females in Exp 12C (A) and

Exp 17C (B).

https://doi.org/10.1371/journal.pone.0213931.g004
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tests (testing the short-term direct effects of pCO2 only) in either experiment. Naupliar mortal-

ity was low (0–2%) in all development tests except for one trial after the acclimation period in

Exp 12C that had 15% mortality.

Fatty acid accumulation. Differences in total FA content of R. salina among pCO2 treat-

ments, combined with different ingestion rates, led to even great differences in the total FA

ingested by copepods among pCO2 treatments. In both experiments, more FA was ingested at

elevated pCO2 and FA accumulation efficiency decreased with increasing pCO2 level (Table 5).

Discussion

This study set out to determine how copepods are affected by pCO2-driven changes in phyto-

plankton food quality. We hypothesized that changes to the trophic pathway would be the pri-

mary mechanism by which OA affected copepod reproductive output, but contrary to our

expectations, we found that copepod responses were the result of both direct pCO2 effects and

indirect food quality effects. The responses of phytoplankton FA to elevated pCO2 differed

between the two experiments, while the FA patterns of A. hudsonica generally followed those

of their prey. However, pCO2 also affected naupliar development independent of food quality

and elevated pCO2 caused a shift in how copepods accumulated FA. Our results indicate that

both direct and indirect effects of elevated pCO2 will ultimately determine the outcome for

copepod populations.

Phytoplankton are affected by pCO2 in species-specific ways that can alter the quantity and

quality of food available for grazers [7–9]. We attribute differences in the effect of pCO2 on R.

salina fatty acids between experiments to the different temperatures. Although methodological

constraints precluded a single temperature by pCO2 factorial experiment here, other studies

that have directly addressed temperature and pCO2 as multiple stressors have shown both indi-

vidual and interactive effects on phytoplankton stoichiometry and FA content [12,13,17,40].

Phytoplankton fatty acids are also affected by other growth conditions such as nutrient supply

ratios [17], phytoplankton growth phase [22], and growth rate [60]; although in general, taxo-

nomic differences among groups far outweigh growth conditions in determining phytoplank-

ton FA profiles [61]. Unraveling the responses of phytoplankton to pCO2 has been a research

focus because their differential responses are assumed to be the primary drivers of pCO2

impacts on the phytoplankton-copepod linkage.

Phytoplankton food quality is an important driver of copepod population dynamics, but is

difficult to define and can be characterized in many ways (e.g., macronutrient, lipid, protein,

carbohydrate, fatty acid, amino acid, or cholesterol content), with different compounds likely

limiting grazer production at different times and under different growth conditions [62]. Ele-

mental stoichiometry is often used as a first approximation of food quality, but can change

Table 5. Total fatty acids (FA) ingested by A. hudsonica and FA accumulation efficiency ratios. Total FA ingested

was calculated from R. salina total FA concentrations and A. hudsonica ingestion rates. FAA is the ratio of A. hudsonica
total FA to total FA ingested.

Target pCO2

(μatm)

Total FA ingested

(pg/day)

FA Accumulation Efficiency

Exp 12C 400 195,276 3.91

800 229,265 2.95

1200 286,245 2.42

Exp 17C 400 138,758 4.42

800 449,237 1.73

1200 430,889 1.28

https://doi.org/10.1371/journal.pone.0213931.t005

Effects of elevated CO2 on the phytoplankton-copepod trophic link

PLOS ONE | https://doi.org/10.1371/journal.pone.0213931 March 14, 2019 12 / 19

https://doi.org/10.1371/journal.pone.0213931.t005
https://doi.org/10.1371/journal.pone.0213931


independently of FA depending on multiple environmental drivers [17], and should not be

considered in isolation when evaluating possible effects on grazers. FAs are consistently

reported as important indications of energy transfer to higher trophic levels and better deter-

minants of egg production than C:N in the laboratory [63] and field [64,65]. Many studies

interpret pCO2 effects on phytoplankton as changes in food quality without testing the effect

on consumers, so characterizing the relative importance of different measures of food quality

is essential for understanding the overall effect of pCO2 on grazers.

The response of copepods to our pCO2 acclimation treatments may have been decoupled

from responses to changes in phytoplankton food quality due to unmeasured direct effects of

pCO2 on their metabolism and physiology, such as decreased digestion efficiency [66] or

increased protein synthesis and ion transport [67]. OA increases maintenance metabolic costs

for some copepods [68] but this effect may vary between sexes. Respiration rate of male Acartia
tonsa increases under elevated pCO2 but is not affected in females [39]. We did not observe an

effect of pCO2 on copepod respiration rate; however, shifts in energy allocation under elevated

pCO2 could change how copepods respond to different nutritional components of their diet.

This hypothesis is supported by the decline we observed in FA accumulation efficiency with

increased pCO2. A stable metabolic rate in response to changing pCO2 concentrations does

not mean that pCO2 has no direct impact on an organism, as OA can cause substantial shifts

in energy allocation [67]; these shifts can maintain performance in the short term but may

have long-term consequences for the population and can modulate the influence of changing

food quality.

Copepods at elevated pCO2 in both experiments accumulated FA less efficiently than those

at ambient pCO2, which has important implications for the transfer of FA to higher trophic

levels. Although this decline in FA accumulation efficiency indicates metabolic shifts in A.

hudsonica, we would have expected to see the same response in both ingestion rate tests in

Exp17C if direct effects on the copepods were driving the responses. It is important to note

that the low ingestion rates at 400 μatm were only observed in the first ingestion rate trial,

despite them feeding on the same food source (400 μatm R. salina) in each. Copepod ingestion

rate can be influenced by many prey characteristics including cell size [56] and food quality

[69]. We observed increased cell size at elevated pCO2 in both experiments but increased FA

only at 17˚C, so it is possible that different FA content drove the observed differences in inges-

tion although the ability of copepods to detect and respond to nutritional changes in their prey

is not universal or well understood [70].

The most unexpected result in this study was that nauplii developed faster, as indicated by

higher proportions of late stage nauplii, at elevated pCO2 in the 12˚C experiment relative to

ambient pCO2, despite a small decline in food quality. Development rate is a complex measure

that integrates many physiological processes that could decouple naupliar development rate

from food quality. One potential mechanism is maternal provisioning. Exposure of female

copepods to elevated pCO2 conditions can improve the performance of their offspring reared

in those conditions [71] and non-linear effects of pCO2 on reproductive output suggest that

under pH stress copepods may reallocate energy from somatic growth towards reproduction

[34]. The first naupliar stage of A. hudsonica is non-feeding and therefore depends entirely on

endogenous energy reserves provided by the mother, a process we were unable to measure due

to the low biomass of their eggs. Although unexpected, it is also possible that the faster naupliar

development rate at elevated pCO2 was a direct effect of the pCO2 treatment. A study of Acar-
tia bifilosa found the distribution of naupliar stages was older when cultured at reduced pH

after 3 days post-spawning, although there were no differences after 4 days [42]. Increased

growth rate at low pH has also been observed in sea star larvae and juveniles [72]. Unfortu-

nately, our tests on the effect of pCO2 on naupliar development prior to the acclimation period
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failed to capture a distribution of stages (very few nauplii reached the N IV stage), making it

difficult to evaluate whether pCO2 in isolation caused the change in development rate. We can-

not identify the mechanism driving increased development rate, but our results indicate that

there are important uncharacterized effects of pCO2 that modulate the influence of food qual-

ity on copepod development.

The non-linear changes in phytoplankton FA content that we observed in the 17˚C experi-

ment may help explain variable results among previous studies: if only two pCO2 treatments

are compared, the observed effect of pCO2 (positive, negative, or none) will depend on which

part of the organism’s response curve the chosen treatments lie on. Non-linear responses to

pCO2 are likely common and have been observed, e.g., in calcification rates of diverse taxa

[73], phytoplankton DMSP concentration [74], phytoplankton carbon content and growth

rate [75]. Approximately half of the published studies investigating the effects of pCO2 on phy-

toplankton FA to date have used only two pCO2 treatments and therefore could not have

detected non-linear responses. Because of these considerations, more than two pCO2 treat-

ments should be used, and other growth conditions should be chosen carefully either for envi-

ronmental realism or to elucidate the interactions among different factors.

Conclusions

We found that phytoplankton biochemical responses to increased pCO2 differed between our

two experimental temperatures and that copepod responses were a result of both direct pCO2

effects and indirect food quality effects. At 12˚C there was little change in food quality but

naupliar development was faster at high pCO2, while at 17˚C phytoplankton food quality

increased at moderate pCO2 but did not translate to benefits for the copepods, demonstrating

that organism responses ultimately arise from a combination of both direct and nutritional

effects of pCO2. This hypothesis is also supported by the decline in the ratio of copepod FA

stores to ingested FA with elevated pCO2. This study shows the importance of testing food

quality effects on grazers and cautions against a simple extrapolation of phytoplankton bio-

chemistry to higher trophic levels. Carefully designed experimental systems are needed to

properly separate direct effects on grazers from the influence of food quality, which has impor-

tant implications for design and interpretation of many OA experiments.
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