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Abstract

Genomic selection can be considered as an effective tool for developing breeding programs

in American mink. However, the genetic gains for economically important traits can be influ-

enced by the accuracy of genomic predictions. The objective of this study was to investigate

the prediction accuracies of traditional best linear unbiased prediction (BLUP), multi-step

genomic BLUP (GBLUP) and single-step GBLUP (ssGBLUP) methods in American mink

using simulated data with different levels of heritability, marker density, training set (TS)

sizes and selection designs based on either phenotypic performance or estimated breeding

values (EBVs). Under EBV selection design, the accuracy of BLUP predictions was

increased by 38% and 44% for h2 = 0.10, 27% and 29% for h2 = 0.20, and 5.8% and 6% for

h2 = 0.50 using GBLUP and ssGBLUP methods, respectively. Under phenotypic selection

design, the accuracies of prediction by ssGBLUP method were 11.8% and 15.4% higher

than those obtained by GBLUP for heritability of 0.10 and 0.20, respectively. However, the

efficiency of ssGBLUP and GBLUP was not influenced by selection design at higher level of

heritability (h2 = 0.50). Furthermore, higher selection intensity increased the bias of predic-

tions in both pedigree-based and genomic evaluations. Regardless of selection design, TS

sizes for GBLUP and ssGBLUP methods should be at least 3000 to achieve more accuracy

than using BLUP for heritability of 0.50 and marker density of 10k and 50k. Overall, more

accurate predictions were obtained using ssGBLUP method particularly for lowly heritable

traits and low density of markers. Our results indicated that TS sizes should be optimized in

accordance with heritability level, marker density, selection design and prediction method

for genomic selection in American mink. The results provided an initial framework for

designing genomic selection in mink breeding programs.

Introduction

Availability of cost-effective and high-throughput genotyping technologies has facilitated the

use of genomic selection as a useful tool to select animals for breeding in livestock species.
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Genomic evaluations improve the genetic gains for economically important traits through

reducing generation intervals and enhancing the accuracy of selection. Furthermore, selection

based on genome-wide information can be particularly effective for traits that are expensive or

hard to measure and have low heritability [1]. Prediction accuracy of genomic estimated

breeding values (GEBVs) is an important factor influencing the efficiency of genomic selection

in livestock species [2]. Accuracy of prediction can be affected by several factors including

extent of linkage disequilibrium [3], heritability of studied traits [4], marker density [5], effec-

tive population size [6], distribution of quantitative trait loci (QTL) effects [7, 8], number of

animals in the training population [2] and statistical methods of prediction [9–11].

The traditional best linear unbiased prediction (BLUP) method is based on pedigree infor-

mation and phenotypic performance of animals [12]. On the other hand, direct genomic val-

ues (DGVs) are predicted based on the effects of single nucleotide polymorphism (SNP)

markers across the whole genome under the assumption of linkage disequilibrium (LD)

between QTL alleles and SNP markers at some loci [4]. Several multi-step and single-step

blending approaches have been used to combine the phenotypic and genomic information. In

multi-step genomic BLUP (GBLUP) methods, pseudo-phenotypes are obtained for genotyped

animals using BLUP procedures at the first step, and subsequently these pseudo-phenotypes

are used to solve prediction equations [13]. However, single-step GBLUP (ssGBLUP) blends

marker-based and pedigree-based relationship matrices and makes it possible to include all

genotyped and non-genotyped animals in the genetic evaluations simultaneously [14, 15].

Mink has been considered as one of the most desirable sources of pelt in the fur industry.

Improvement of pelt size, fur quality, disease resistance and reproductive performance are

defined as the main breeding objectives in mink production [16]. The use of modern selection

methods is potentially useful to improve genetic gains and consequently economic output of

mink farming. Despite the development of genomic selection programs in other domestic ani-

mals, this approach has not been developed in mink breeding programs. A simulation study

using economic values of important traits in mink production indicated that genomic selec-

tion can increase the economic benefits of mink farming [17]. Recently, sequencing of the

mink genome [18] has provided new opportunities for implementing genomic selection in the

mink industry. Accordingly, Villumsen et al. [19] studied the accuracy of genomic predictions

for fur quality traits on 2103 mink using genotyping by sequencing. However, technical aspects

of designing genomic selection have not been investigated for American mink. Therefore, the

main objectives of the present study were 1) to investigate the effects of different levels of heri-

tability, marker density and selection designs on the accuracy of genomic predictions using

simulated data for American mink, 2) to evaluate the accuracies of predictions using various

approaches including BLUP, multi-step GBLUP and ssGBLUP in the simulated populations,

and 3) to determine the optimum sizes of the training set (TS) for genomic selection of Ameri-

can mink. The results provide useful information for designing genomic selection programs in

the mink industry.

Materials and methods

Simulation

Population structure. Populations were simulated using QMSim software [20] with 10k,

50k and 700k biallelic markers distributed across 14 autosomal chromosomes. At the first step,

a historical population was simulated for 1000 generations with a constant size of 1000 and

then the population size gradually decreased to 100 during the subsequent 50 generations to

generate initial LD. This refers to typical reduction of effective population size (Ne) in livestock

populations due to domestication [21]. The Ne in American mink was reported to be in the
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range of 17.5–70.8 [22], which was chosen as the targeted Ne in the simulation process. The

same number of males and females were randomly mated at each generation in the first step.

At the second step, 50 females and 50 males were randomly selected from the last historical

generation to expand the size of population. The population size was enlarged during 30 gen-

erations based on random mating with an average of five kits per dam in each generation. At

the final step, 260 males and 1250 females were randomly selected from the last generation of

expanded population to simulate ten recent generations. Five kits per dam were simulated in

each generation with a proportion of 50% male kits. Selection designs were based on either

phenotypic performances or BLUP evaluations with a replacement rate of 50% for dams and

80% for sires in each generation. The chosen parameters in this step mimicked the average

parameters obtained in real mink production system [16]. The breeding values were predicted

using Henderson’s mixed linear model [12]. Considering the phenotypic variance of 1, traits

with heritability of 0.10, 0.20 and 0.50 were simulated. Training sets including 1000, 2000,

3000, 4000 and 5000 animals were randomly selected from generations 7, 8 and 9. Small sizes

of training sets were considered because the breeding programs have not been developed in

the mink industry to the extent of other farm animals, and the cost of genotyping and develop-

ment of SNP panels may be the major restrictions. Scenarios were defined based on different

levels of heritability, marker density, selection design, TS size and prediction method. Each

scenario was repeated 10 times. Pattern of LD was evaluated using r2 statistic. Pair-wise r2 was

computed for all SNPs located in inter-marker distances from 0 up to 1 Mb. In addition, pedi-

gree-based inbreeding, inbreeding based on excess homozygosity, heterozygosity levels and

effective population size were calculated for each scenario using SNP1101 software [23].

Genome structure. The genome was consisted of 14 autosomal chromosomes with total

length of 1192 cM mimicking the structure of mink genome reported by Anistoroaei et al.

[24]. Phenotypes and genotypes were simulated with 5000 QTLs across the whole genome.

Segregating QTLs were consisted of two, three or four alleles with MAF > 0.01 and distributed

randomly across the genome. A gamma distribution (parameter shape = 0.40) was used to

sample the additive genetic effects of QTLs [25]. The rates of missing marker genotypes and

genotyping error were 0.05 and 0.005, respectively. Recurrent mutation rate was assumed to

be 10−5 for both QTL and markers loci. Recurrent mutations are usually very rare between

SNPs and do not contribute significantly to the reduction of LD between markers [26]. It was

assumed that the genetic variance was completely explained by the additive effects of QTLs.

Animal phenotypes were obtained by adding the QTL effects to a residual term sampled from

a normal distribution.

Genetic evaluations

BLUP. The following basic animal model was used to estimate breeding values using pedi-

gree and phenotype information:

y ¼ 1μþ Zaþ e;

where y is the vector of phenotypic performances, μ is the overall mean, Z is the incidence

matrix relating phenotypes to additive genetic effects, a is the vector of additive genetic effects

and e is the vector of random residuals. It was assumed that random effects are independent

and normally distributed:

a � Nð0;As2

aÞ; and e � Nð0; Is2

aÞ;

where A is the numerator relationship matrix, I is the identity matrix, s2
a is the direct additive

genetic variance, and s2
e is the residual variance.
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GBLUP. The DGVs were estimated for all genotyped individuals using the following

equation:

y ¼ 1μþ Zg þ e;

where y is the vector of phenotypes, μ is the overall mean, Z is the incidence matrix relating

phenotypes to DGVs, g is the vector of DGV� Nð0;Gσ2
gÞ and e is the vector of random resid-

uals� Nð0; Iσ2
eÞ, where σ2

g is the genetic variance explained by markers, G is the genomic rela-

tionship matrix, I is the identity matrix and σ2
e is the residual variance. The G matrix was

computed according to VanRaden method [27] as follow:

G ¼
ðM � PÞðM � PÞ0

2
Pn

j pjð1 � pjÞ
;

where M is the matrix of marker genotypes for each individual and P is a matrix of 2pj where

pj is the frequency of the second allele p at locus j. The GBLUP analyses were performed using

GS3 software [28].

ssGBLUP. The ssGBLUP method was implemented to combine information from geno-

typed and non-genotyped animals using the inversed of H matrix (H-1) blending the pedigree-

based additive relationship matrix (A) with genomic relationship matrix (G) as follow [15, 29]:

H� 1 ¼ A� 1 þ
0 0

0 G� 1 � A� 1

22

" #

;

where A� 122 is the sub-matrix of inversed A for genotyped individuals. Genomic relationship

matrix (G) was built using the same approach described above for GBLUP analyses [27]. The

ssGBLUP was performed using the same model implemented in BLUP analysis by replacing

the A-1 matrix with H-1 matrix. The ssGBLUP predictions were computed based on default

options in BLUPF90 software [30].

Evaluation of predictions

Effects of all segregating markers were estimated for training sets composed of 1000, 2000,

3000, 4000 and 5000 individuals. The prediction set included 500 individuals randomly

selected from the 10th generation of each scenario. Accuracy of prediction was calculated as

the Pearson’s correlation between true breeding values (TBVs) and estimated breeding values

(EBVs) obtained from different genetic evaluation methods. The regression coefficient of TBV

on EBV was used to evaluate the bias (inflation or deflation) of predictions [31]. The mean of

accuracy and bias were calculated using 10 replicates of the same scenario.

Results and discussion

Genomic statistics

Table 1 presents the average of pedigree-based inbreeding, genomic inbreeding rates based on

loss of homozygosity, observed heterozygosity and Ne in the recent four generations of differ-

ent scenarios. Compared to phenotypic selection scenarios, reduction in heterozygosity and

Ne were greater under EBV selection scenarios. Genomic inbreeding rates were in the range of

-0.045 (±0.001) to -0.048 (±0.001) for different populations. These results were in accordance

with genomic inbreeding rates (-0.150 to 0.005) reported by Thirstrup et al. [32] using 194

SNPs in 14 mink populations. In addition, the average of heterozygosities (0.343 to 0.359) in

Genomic selection in American mink
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the present study was close to the observed heterozygosity (0.250 to 0.340) obtained by

Thirstrup et al. [32] in feral and farm American mink.

Table 2 presents the average LD of all SNP pairs for inter-marker distances from 0 to 1 Mb

using bins of 0.1 Mb in EBV selection scenarios. The highest levels of LD were observed for

markers distance of 0–0.1 Mb and ranged between 0.228 and 0.243. As expected, the average r2

decayed with increase in physical distances between markers and reached to 0.118–0.130 for

0.9–1 Mb distance. To our knowledge, genome-wide pattern of LD decay has not been

reported for farmed American mink and it would be worth further investigation. However,

Zalewski et al. [22] estimated the Ne range of 17.5–70.8 using LD method for feral American

mink on the Swedish coast which was in accordance with our simulated Ne (47 to 72). On the

other hand, lower effective sizes (7.2–34.8) were estimated for American mink populations in

Spain based on LD method [33]. This discrepancy can be due to culling programs established

in the Spanish regions to eradicate the invasive populations of American mink. Thirstrup et al.

[32] obtained low genetic diversities, ranging between 0.250 and 0.340, using 194 SNPs in both

farm and feral populations which were consistent with a low effective population size in Amer-

ican mink. This low Ne in American mink might be due to line selection in farmed mink and

founder effects of farm mink escaping into feral populations [26]. Furthermore, gene flow

between feral populations could be restricted due to territorial breeding [34].

Accuracy of predictions

Selection design based on EBVs. Accuracy of prediction was evaluated based on the cor-

relation between TBV and EBV. Fig 1 presents the trends of prediction accuracies as the func-

tion of TS sizes for populations which were under EBV selection in the recent generations.

Prediction accuracy of BLUP method was in the range of 0.307 to 0.355 for h2 = 0.10, 0.417 to

0.441 for h2 = 0.20 and 0.620 to 0.662 for h2 = 0.50. Compared to BLUP, the prediction accu-

racy of GBLUP and ssGBLUP was increased by 38% and 44% for h2 = 0.10, 27% and 29% for

h2 = 0.20, and 5.8% and 6% for h2 = 0.50, respectively. In accordance with our results, higher

Table 1. Genomic statistics (±SD) for simulated populations under phenotypic and EBV selection designs including average of pedigree-based inbreeding (FPED),

genomic inbreeding (FHOM), observed heterozygosity (Ho) and effective population size (Ne).

Selection design

Phenotypic selection EBV selection

Heritability Marker density FPED
1 FHOM

2 Ho3 Ne4 FPED FHOM Ho Ne
0.10 10k 0.003±0.001 -0.046±0.002 0.355±0.015 71±9 0.035±0.002 -0.045±0.001 0.343±0.020 47±6

50k 0.003±0.001 -0.046±0.001 0.359±0.014 72±5 0.027±0.003 -0.046±0.002 0.345±0.019 51±4

700k 0.003±0.001 -0.048±0.001 0.358±0.013 72±4 0.023±0.002 -0.047±0.001 0.350±0.018 52±4

0.20 10k 0.003±0.001 -0.047±0.002 0.355±0.014 70±9 0.017±0.002 -0.046±0.001 0.345±0.018 53±6

50k 0.004±0.002 -0.047±0.001 0.355±0.014 71±4 0.017±0.002 -0.046±0.001 0.348±0.018 52±5

700k 0.004±0.001 -0.048±0.002 0.357±0.014 68±4 0.015±0.002 -0.046±0.002 0.349±0.019 54±4

0.50 10k 0.005±0.001 -0.047±0.001 0.349±0.016 61±6 0.009±0.001 -0.047±0.002 0.350±0.017 54±4

50k 0.005±0.001 -0.046±0.002 0.350±0.015 62±6 0.010±0.002 -0.045±0.001 0.347±0.018 53±6

700k 0.005±0.001 -0.048±0.001 0.352±0.015 64±5 0.009±0.001 -0.047±0.001 0.349±0.017 55±4

Overall 0.004±0.001 -0.047±0.001 0.354±0.003 68±4 0.018±0.008 -0.046±0.001 0.347±0.002 52±2

1Pedigree-based inbreeding
2Genomic inbreeding based on loss of homozygosity
3Observed heterozygosity
4Effective population size.

https://doi.org/10.1371/journal.pone.0213873.t001
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average accuracies were reported for ssGBLUP and GBLUP methods compared to traditional

pedigree-based method in genomic evaluations of dairy cattle [10], pig [35], beef cattle [36,

37], broiler chicken [38] and rainbow trout aquaculture [39]. Additionally, genomic methods

provided more accurate predictions than traditional BLUP using simulated data in cattle [40,

41] and pig [42].

The prediction accuracy (±SD) of GBLUP (0.357±0.067) and ssGBLUP (0.368±0.059) for

h2 = 0.10 and marker density of 700k was higher than that was obtained from BLUP (0.322

±0.036) in 1000 TS scenario (Fig 1). However, the optimum sizes of TS in genomic methods

should be at least 2000 in other scenarios with low-to-moderate heritable traits (h2 = 0.10 and

h2 = 0.20) to obtain more accurate predictions than BLUP. Furthermore, number of animals

in TS should be at least 3000 for scenarios with high heritability of 0.50 and marker densities

of 10k and 50k to achieve more accuracy than BLUP evaluation. These results indicated that

Table 2. Average linkage disequilibrium (r2) for inter-marker distances from 0 up to 1 Mb1.

h2

Distance range (Mb)

Marker density

10k 50k 700k

Pairs r2±SD Pairs r2±SD Pairs r2±SD

0.10 0.000–0.100 6363 0.240±0.253 12778 0.241±0.254 13126 0.243±0.261

0.100–0.200 6391 0.210±0.235 13165 0.212±0.231 13146 0.215±0.236

0.200–0.300 6361 0.185±0.214 13299 0.190±0.211 13053 0.191±0.212

0.300–0.400 6249 0.170±0.201 13116 0.173±0.192 13018 0.175±0.197

0.400–0.500 6270 0.157±0.187 13105 0.159±0.186 13037 0.162±0.183

0.500–0.600 6225 0.152±0.177 13029 0.154±0.181 13002 0.157±0.175

0.600–0.700 6256 0.143±0.172 13065 0.146±0.176 12977 0.148±0.173

0.700–0.800 6229 0.134±0.162 13010 0.136±0.164 13043 0.140±0.166

0.800–0.900 6130 0.130±0.152 13012 0.132±0.150 13003 0.135±0.157

0.900–1.000 6174 0.123±0.151 12983 0.124±0.157 12810 0.130±0.148

0.20 0.000–0.100 6131 0.236±0.261 13273 0.238 ±0.253 13235 0.239±0.256

0.100–0.200 6164 0.205±0.230 13204 0.206±0.231 13148 0.208±0.231

0.200–0.300 6141 0.185±0.213 13153 0.186±0.210 13115 0.187±0.208

0.300–0.400 6003 0.169±0.195 13036 0.171±0.190 13179 0.172±0.193

0.400–0.500 6066 0.157±0.185 13140 0.159±0.184 12959 0.160±0.181

0.500–0.600 6047 0.147±0.174 13091 0.149±0.175 13104 0.152±0.173

0.600–0.700 6018 0.138±0.164 13070 0.143±0.161 13023 0.145±0.163

0.700–0.800 6058 0.132±0.163 13038 0.134±0.160 12997 0.135±0.162

0.800–0.900 6007 0.128±0.151 13074 0.130±0.157 12968 0.131±0.153

0.900–1.000 6006 0.121±0.154 13033 0.122±0.148 12825 0.123±0.158

0.50 0.000–0.100 6113 0.228±0.254 13177 0.234±0.254 13187 0.235±0.261

0.100–0.200 6012 0.199±0.223 13027 0.203±0.232 13113 0.204±0.221

0.200–0.300 5982 0.179±0.203 13019 0.185±0.214 13076 0.185±0.203

0.300–0.400 5976 0.168±0.185 12969 0.168±0.191 13005 0.169±0.195

0.400–0.500 5923 0.149±0.179 12992 0.156±0.185 13107 0.157±0.183

0.500–0.600 5972 0.146±0.167 12905 0.147±0.173 12983 0.149±0.172

0.600–0.700 5911 0.137±0.153 12985 0.140±0.168 12919 0.144±0.163

0.700–0.800 5910 0.129±0.152 12879 0.134±0.162 12842 0.135±0.163

0.800–0.900 5927 0.124±0.146 12854 0.123±0.152 12745 0.130±0.158

0.900–1.000 5877 0.118±0.149 12786 0.120±0.153 12836 0.121±0.147

1The average (±SD) was obtained from ten repeats of recent generation in EBV selection design scenarios.

https://doi.org/10.1371/journal.pone.0213873.t002
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TS sizes should be optimized in accordance with heritability, marker density and prediction

method of genomic evaluations in American mink.

Accuracy of genomic methods was increased with enhancement in heritability levels,

marker densities and TS sizes. The lowest prediction accuracy (±SD) of GBLUP (0.314±0.079)

and ssGBLUP (0.298±0.084) was observed in 1000 TS scenario with 10k marker density and

0.10 heritability. On the other hand, the highest accuracy (±SD) of GBLUP (0.787±0.016) and

ssGBLUP (0.780±0.038) was obtained in TS size of 5000 with h2 = 0.50 and marker density of

700k. Increasing effects of heritability, marker density and number of genotyped animals on

the prediction accuracy has been previously confirmed in other studies on domestic animals

using simulated [3] and real genomic data [43–47]. Villumsen et al. [19] used 28,336 SNP

markers to evaluate the genomic merits of 639 to 752 American mink for fur quality character-

istics. Considering their TS sizes, their accuracies of GBLUP predictions for body weight (h2 =

0.532, accuracy = 0.490), pelt length (h2 = 0.457, accuracy = 0.480), pelt density (h2 = 0.222,

accuracy = 0.299) and under wool density (h2 = 0.163, accuracy = 0.393) were comparable

with those obtained in the present study for TS size of 1000 using 10k (h2 = 0.20, accu-

racy = 0.389±0.048 and h2 = 0.50, accuracy = 0.527±0.065) and 50k marker density (h2 = 0.20,

accuracy = 0.382±0.036 and h2 = 0.50, accuracy = 0.536±0.032). However, the predictive

Fig 1. Prediction accuracies obtained from BLUP, GBLUP and ssGBLUP methods in EBV selection design for different levels of heritability: a) h2 = 0.10, b) h2 =

0.20 and c) h2 = 0.50. Accuracies were presented as a function of training set (TS) sizes for different densities of markers (10k, 50k and 700k).

https://doi.org/10.1371/journal.pone.0213873.g001
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abilities of silky appearance of pelt (h2 = 0.297, accuracy = 0.820) and overall general impres-

sion (h2 = 0.303, accuracy = 0.685) were higher than the predicted accuracies in the present

study. Furthermore, the prediction accuracies of pelt silkiness (h2 = 0.181, accuracy = 0.138)

and pelt quality (h2 = 0.327, accuracy = 0.227) were lower than those obtained in our simulated

data. This inconsistency can be due to the differences in the genetic architecture of these traits,

number of markers, reliability of phenotypic measurements, statistical models and TS sizes in

these studies.

Compared to marker density of 10k, the prediction accuracies of GBLUP and ssGBLUP

were increased by 1.5% and 3.2% using 50k marker density and 6.4% and 5.7% using 700k

marker density, respectively. Enhancement of marker density could improve the accuracy of

genomic predictions due to increased extent of LD between markers and QTLs across the

genome [3, 48]. In addition, the use of larger marker densities can reduce the sampling errors

in the elements of genomic relationship matrix [6]. However, increasing marker density above

50k has provided limited improvement in the accuracy of genomic predictions in some cases

e.g. dairy and beef cattle [49–52], which is in consistent with our results. Proper estimation of

relationships among individuals accounting for Mendelian sampling can be the main factor of

genetic improvement caused by genomic evaluation [6, 53, 54].

Overall, the prediction accuracies of ssGBLUP were 4.4%, 1.6% and 0.28% higher than

those obtained using GBLUP method for heritability of 0.10, 0.20 and 0.50, respectively. These

results indicated that ssGBLUP method can be more efficient particularly for lowly heritable

traits and low marker density. The average reliabilities of predictions obtained from ssGBLUP

were 1.8% higher than GBLUP for 16 various traits in Nordic Holstein cattle [55], which is in

agreement with our results. Silva et al. [37] also obtained higher average accuracies for feed

efficiency traits in Nelore cattle using ssGBLUP method (0.220 to 0.490) compared to GBLUP

method (0.060 to 0.490). Furthermore, experiences with ssGBLUP in pigs indicate that

ssGBLUP generally provide more accurate predictions than multi-step methods [35, 56]. In

comparison with GBLUP, higher advantages were obtained for lowly heritable traits using

ssGBLUP method in genomic evaluation of broiler chicken [38] and simulated pig data [57],

which were in agreement with our results. More benefits of ssGBLUP can be due to simulta-

neous integration of both genomic and pedigree information preventing double counting of

records and relationships in genomic predictions [36, 58]. Furthermore, ssGBLUP simplifies

the computations and accounts for bias of preselection [58].

Selection design based on phenotypes. The prediction accuracies obtained from BLUP,

GBLUP and ssGBLUP methods for different scenarios under phenotypic selection are pre-

sented in Fig 2. Accuracy of BLUP predictions was in the range of 0.347 to 0.401 for h2 = 0.10,

0.463 to 0.503 for h2 = 0.20 and 0.657 to 0.700 for h2 = 0.50. On average, the prediction accura-

cies of BLUP under phenotypic selection were 11.6%, 11.3% and 5.6% higher than those pre-

dicted under EBV selection design for h2 = 0.10, h2 = 0.2 and h2 = 0.50, respectively. For

heritability of 0.50, the average accuracy of GBLUP method under phenotypic selection ranged

from 0.570 to 0.792, which was 2.65% higher than those estimated under EBV selection. How-

ever, predictions of GBLUP method under phenotypic selection were 13.24% and 11.82% less

accurate than those obtained under EBV selection for heritability of 0.10 and 0.20, respectively.

Gowane et al. [59] reported lower accurate predictions of EBVs and GEBVs in assortative mat-

ing scenarios based on EBV (0.120 to 0.860) compared with random mating scenarios (0.210

to 0.860) in a simulation study. The lower accuracy of predictions under EBV selection designs

can be induced by the reduction in genetic variation due to selection, so-called the Bulmer

effect, declining the correlation between TBV and EBV in the selected individuals [60, 61].

However, GBLUP predictions were less affected by the Bulmer effect particularly at low levels

of heritability due to weaker effects of selection on lowly heritable traits [59, 62].
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Although TS size of GBLUP method in h2 = 0.10 with 10k and 50k marker densities should

be>2000 to obtain more accuracy than BLUP method, the TS size of 2000 in ssGBLUP

method provided higher accuracies than BLUP in the same scenarios (Fig 2). In addition, the

prediction accuracies of ssGBLUP method in 2000 TS size were higher than those predicted by

BLUP for heritability of 0.20 and marker density of 50k and 700k. However, the optimum size

of TS for h2 = 0.50 should be at least 3000 to achieve more accuracy than BLUP evaluations.

The results of the present study can be used as an initial framework to design and implement

genomic evaluation in American mink. However, the population structure and genetic archi-

tecture of traits should also be considered to optimize the TS sizes for development of genomic

evaluation system in the mink industry [63]. For example, using genomic information had no

advantages on the accuracy of predictions for a trait with heritability of 0.40 in a simulated full

sib population of boars within a sib-testing program [64].

Overall, the increased accuracy of predictions using ssGBLUP in comparison with GBLUP

were 13.5%, 7.9% and 5.4% for marker densities of 10k, 50k and 700k, respectively. In addition,

the accuracies of prediction by ssGBLUP method were 11.8% and 15.4% higher than those

obtained by GBLUP method for heritability of 0.10 and 0.20, respectively. However, this differ-

ence was reduced to -0.47% for h2 = 0.50. These results indicated that the differences in the

Fig 2. Prediction accuracies of BLUP, GBLUP and ssGBLUP methods under phenotypic selection design for different levels of heritability: a) h2 = 0.10, b) h2 =

0.20 and c) h2 = 0.50. Accuracies were presented as a function of training set (TS) sizes for different marker density (10k, 50k and 700k).

https://doi.org/10.1371/journal.pone.0213873.g002
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predictive ability of ssGBLUP and GBLUP were reduced with increased marker density and

heritability. Compared to EBV selection design, the difference between the accuracy of

ssGBLUP and GBLUP were increased by 7.4% and 13.45% under phenotypic selection for her-

itability of 0.10 and 0.20, respectively. However, the efficiency of ssGBLUP and GBLUP was

not influenced by selection design for higher heritability (h2 = 0.50). These results revealed

that ssGBLUP approach can be more efficient for improvement of lowly heritable traits such

as reproduction and health traits in mink breeding programs. Therefore, considering the fact

that the current selection of animals in the mink industry is mainly based on their phenotypic

performances, the use of ssGBLUP method can have more advantages for mink breeding

programs.

Bias of predictions

The bias of predictions (inflation or deflation) was measured by the regression coefficient of

TBV on EBV. Table 3 presents the bias of predictions obtained from BLUP, GBLUP and

ssGBLUP for different levels of heritability and marker density under EBV selection design.

The regression coefficient should be close to 1 to obtain more optimal prediction. As expected,

the bias of predictions was improved with increase in heritability, marker density and TS sizes.

On average, the regression coefficients of BLUP predictions (±SD) for heritability of 0.10

(0.695±0.028) and 0.20 (0.737±0.026) were increased to 0.779±0.058 and 0.806±0.0.059 by

GBLUP, and to 0.818±0.043 and 0.841±0.047 by ssGBLUP method, respectively. However,

lower differences between biases of prediction methods were observed for heritability of 0.50

(on average, 0.822±0.015, 0.853±0.051 and 0.865±0.055 for BLUP, GBLUP and ssGBLUP,

respectively). On average, inflation in GBLUP and ssGBLUP methods with 10k markers were

declined by 4.16% and 3.26% using 50k, and 6.62% and 3.71% using 700k marker density,

respectively. In accordance with the present results, less biased predictions were reported for

the single-step approach compared with multi-step GBLUP and pedigree-based methods

using simulated [65] and real data [55, 62, 66]. Guarini et al. [66] observed lower biases of

Table 3. Regression coefficients (±SD) of true breeding values on estimated breeding values obtained from BLUP, GBLUP and ssGBLUP methods under EBV selec-

tion designs.

h2 Training set size Marker density

10k 50k 700k

BLUP GBLUP ssGBLUP BLUP GBLUP ssGBLUP BLUP GBLUP ssGBLUP

0.10 1000 0.640±0.162 0.607±0.209 0.764±0.193 0.652±0.148 0.761±0.195 0.773±0.201 0.667±0.132 0.724±0.168 0.778±0.206

2000 0.668±0.115 0.759±0.087 0.794±0.096 0.692±0.123 0.785±0.084 0.789±0.089 0.686±0.128 0.786±0.107 0.814±0.063

3000 0.696±0.076 0.757±0.082 0.796±0.080 0.704±0.087 0.804±0.072 0.811±0.069 0.706±0.094 0.819±0.055 0.845±0.052

4000 0.703±0.067 0.778±0.071 0.803±0.068 0.723±0.077 0.805±0.057 0.825±0.044 0.709±0.089 0.833±0.042 0.862±0.048

5000 0.721±0.065 0.789±0.035 0.820±0.036 0.738±0.066 0.834±0.034 0.884±0.042 0.729±0.052 0.844±0.038 0.919±0.032

0.20 1000 0.707±0.105 0.702±0.124 0.749±0.103 0.718±0.114 0.725±0.117 0.782±0.116 0.733±0.098 0.748±0.116 0.805±0.093

2000 0.716±0.097 0.770±0.070 0.788±0.091 0.696±0.071 0.798±0.067 0.818±0.086 0.704±0.066 0.836±0.097 0.826±0.084

3000 0.722±0.068 0.840±0.068 0.818±0.066 0.731±0.059 0.822±0.066 0.843±0.076 0.728±0.063 0.838±0.045 0.887±0.063

4000 0.758±0.066 0.846±0.055 0.854±0.058 0.763±0.054 0.843±0.040 0.880±0.057 0.750±0.051 0.875±0.038 0.890±0.052

5000 0.789±0.046 0.872±0.037 0.893±0.029 0.767±0.042 0.883±0.033 0.893±0.039 0.774±0.046 0.901±0.029 0.898±0.045

0.50 1000 0.795±0.061 0.753±0.119 0.756±0.067 0.810±0.082 0.761±0.091 0.786±0.079 0.809±0.074 0.861±0.087 0.819±0.081

2000 0.820±0.047 0.804±0.050 0.814±0.048 0.807±0.052 0.809±0.070 0.805±0.048 0.813±0.049 0.871±0.057 0.859±0.045

3000 0.814±0.039 0.847±0.047 0.886±0.045 0.822±0.043 0.851±0.064 0.890±0.038 0.829±0.045 0.903±0.048 0.904±0.036

4000 0.827±0.036 0.865±0.032 0.892±0.041 0.829±0.040 0.872±0.058 0.897±0.037 0.837±0.041 0.909±0.033 0.917±0.028

5000 0.831±0.034 0.874±0.026 0.923±0.018 0.842±0.037 0.890±0.033 0.907±0.024 0.852±0.033 0.925±0.025 0.933±0.026

https://doi.org/10.1371/journal.pone.0213873.t003
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predictions for ssGBLUP (0.710 to 1.040) compared to multi-step GBLUP (0.630 to 1.310) for

lowly heritable traits in Canadian Holstein cattle that were in consistent with our results.

The regression coefficients of prediction methods were higher in phenotypic selection

designs compared to EBV selection designs (Table 4). In comparison with EBV selection, the

bias of BLUP predictions under phenotypic selection was decreased by 25.32%, 14.84% and

4.69% for heritability of 0.10, 0.20 and 0.50, respectively. Similarly, the regression coefficients

of GBLUP and ssGBLUP were increased by 16.62% and 13.67% for h2 = 0.10, 4.04% and 6.26%

for h2 = 0.20, and 1.67% and 3.24% for h2 = 0.50, respectively. In accordance with our results,

Vitezica et al. [65] obtained higher biases for genomic predictions under EBV selection (0.660

to 0.990) compared to those obtained under phenotypic selection (0.940 to 1.020) in a simula-

tion study. In addition, Gowane et al. [59] reported higher biases of prediction in the EBV

selection scenarios compared to random selection scenarios in a simulation study of accuracy

and bias of genomic predictions. Ideally, very large base population of unrelated and unse-

lected individuals is assumed in the BLUP models [12]. Under this assumption, the relation-

ship matrix can account for the effects of selection, non-random mating and genetic drift in

the population [67]. Therefore, the increased inflation of predictions in the present study

could be due to violating the assumption of infinite size of base population in the simulated

populations. Wrong definition of base population can increase the uncertainty of relationships

and the variance of EBVs in the populations [65]. However, the bias of ssGBLUP predictions

can be minimized by appropriate scaling of A-1 and G-1 and incorporating inbreeding coeffi-

cients in the genomic models [62, 65].

Conclusions

In this study, we investigated the potential advantages of genomic selection in mink breeding

programs using simulated data with different levels of marker density, heritability, selection

designs and TS sizes. Our results indicated that use of lower marker density (10k) can also be

useful to improve genetic merit in mink farming. However, TS sizes should be optimized

Table 4. Regression coefficients (±SD) of true breeding values on estimated breeding values obtained from BLUP, GBLUP and ssGBLUP methods under phenotypic

selection designs.

h2 Training set size Marker density

10k 50k 700k

BLUP GBLUP ssGBLUP BLUP GBLUP ssGBLUP BLUP GBLUP ssGBLUP

0.10 1000 0.833±0.168 0.759±0.231 0.827±0.174 0.899±0.140 0.833±0.195 0.865±0.147 0.897±0.172 0.870±0.226 1.040±0.174

2000 0.825±0.163 0.803±0.186 0.842±0.147 0.901±0.136 0.896±0.144 0.914±0.122 0.850±0.148 1.100±0.144 1.040±0.153

3000 0.828±0.117 0.844±0.190 0.857±0.140 0.903±0.098 0.929±0.123 0.928±0.105 0.876±0.121 1.050±0.094 1.020±0.102

4000 0.834±0.107 0.846±0.085 0.883±0.092 0.912±0.082 0.923±0.082 0.932±0.086 0.864±0.092 0.942±0.115 0.940±0.093

5000 0.841±0.092 0.881±0.076 0.927±0.072 0.921±0.062 0.932±0.049 0.950±0.077 0.877±0.72 1.010±0.094 0.963±0.073

0.20 1000 0.833±0.155 0.794±0.187 0.875±0.125 0.828±0.109 0.811±0.133 0.860±0.179 0.831±0.127 0.840±0.157 0.865±0.129

2000 0.857±0.123 0.802±0.154 0.842±0.116 0.842±0.082 0.828±0.102 0.862±0.100 0.840±0.093 0.834±0.095 0.870±0.082

3000 0.837±0.099 0.848±0.103 0.866±0.089 0.845±0.075 0.866±0.097 0.903±0.073 0.832±0.090 0.857±0.071 0.902±0.078

4000 0.861±0.091 0.889±0.059 0.912±0.056 0.854±0.069 0.884±0.087 0.915±0.066 0.850±0.078 0.868±0.065 0.920±0.050

5000 0.858±0.079 0.862±0.058 0.951±0.048 0.856±0.045 0.897±0.062 0.912±0.060 0.860±0.503 0.880±0.048 0.940±0.045

0.50 1000 0.864±0.062 0.775±0.060 0.803±0.054 0.809±0.065 0.785±0.079 0.806±0.058 0.886±0.096 0.873±0.098 0.857±0.068

2000 0.863±0.049 0.817±0.057 0.814±0.033 0.818±0.057 0.840±0.059 0.820±0.047 0.873±0.077 0.907±0.067 0.877±0.070

3000 0.866±0.034 0.842±0.049 0.885±0.027 0.829±0.054 0.843±0.040 0.890±0.041 0.894±0.070 0.904±0.039 1.010±0.053

4000 0.873±0.029 0.864±0.046 0.896±0.023 0.840±0.045 0.880±0.038 0.893±0.047 0.887±0.058 0.933±0.042 1.010±0.051

5000 0.884±0.023 0.897±0.038 0.903±0.016 0.833±0.041 0.911±0.032 0.919±0.025 0.895±0.060 0.935±0.031 1.030±0.051

https://doi.org/10.1371/journal.pone.0213873.t004
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based on the selection designs, levels of heritability, population structure and genetic architec-

ture of traits. In general, ssGBLUP method could provide more accurate predictions particu-

larly for lowly heritable traits with a low density of markers. Our results indicated that higher

selection intensity can increase the bias of predictions in both pedigree-based and genome-

based evaluations. Overall, less biased and more accurate predictions were obtained using

ssGBLUP method due to incorporating information of both genotyped and non-genotyped

animals in the genetic evaluations. Genomic selection can be used as an effective strategy for

improving the genetic merits of animals in mink breeding. Identification of genomic varia-

tions using sequencing technologies, development of commercial SNP panels and adaptation

of statistical approaches to apply in mink breeding are the main steps to develop genomic

selection programs in the mink industry. The results of this research can be helpful in design-

ing initial frameworks of genomic selection in American mink.
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