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Abstract

Background

The postmortem microbiome can provide valuable information to a death investigation and

to the human health of the once living. Microbiome sequencing produces, in general, large

multi-dimensional datasets that can be difficult to analyze and interpret. Machine learning

methods can be useful in overcoming this analytical challenge. However, different methods

employ distinct strategies to handle complex datasets. It is unclear whether one method is

more appropriate than others for modeling postmortem microbiomes and their ability to pre-

dict attributes of interest in death investigations, which require understanding of how the

microbial communities change after death and may represent those of the once living host.

Methods and findings

Postmortem microbiomes were collected by swabbing five anatomical areas during routine

death investigation, sequenced and analyzed from 188 death cases. Three machine learn-

ing methods (boosted algorithms, random forests, and neural networks) were compared

with respect to their abilities to predict case attributes: postmortem interval (PMI), location of

death, and manner of death. Accuracy depended on the method used, the numbers of ana-

tomical areas analyzed, and the predicted attribute of death.

Conclusions

All algorithms performed well but with distinct features to their performance. Xgboost often

produced the most accurate predictions but may also be more prone to overfitting. Random
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forest was the most stable across predictions that included more anatomic areas. Analysis

of postmortem microbiota from more than three anatomic areas appears to yield limited

returns on accuracy, with the eyes and rectum providing the most useful information corre-

lating with circumstances of death in most cases for this dataset.

Introduction

The microbiome is comprised of all the microbes within a host, space, or community that rep-

resent complex consortia of many species [1]. The composition and role of microbial consortia

that endogenously and exogenously comprise the human microbiome has been extensively

studied for human health [2,3]. These communities are known to be variable within an indi-

vidual, as distinct consortia reside on or in different parts of the body (e.g., the gut, skin, eyes,

mouth) in a way that represents a dynamic ecosystem [4]. Additionally, the clinical importance

of the human microbiome is influenced by the host environment, presence or absence of dis-

ease, development, and lifestyle markers, such as prescribed or illicit chemical substances and

nutrition [2,3]. Little is known, however, about microbial biodiversity dynamics in human

populations after death [5] until our recent discovery that the postmortem microbiota (i.e.,

bacteria and archeae) was consistent until 48 h after death, when the communities were found

to significantly change in composition [6]. This study showed data with potential application

in forensic science, but also demonstrated that there were microbial signatures associated with

health status of the once living hosts, but only within a two-day postmortem interval. These

data may be valuable resources for understanding the antemortem health from individuals

where antemortem samples are difficult to obtain. Additionally, these samples may have pre-

dictive value for health states within populations. Despite this potential to use the postmortem

microbiota, refinement of computation analyses and predictive data modeling will be neces-

sary to understand the full value of this information.

Eventually, all hosts cease living and the natural processes of decomposition will take over.

The body provides some of the most critical information for estimating a time since death,

manner of death or event location of death based on the biological and chemical changes that

occur during decomposition [7]. There are many biological and chemical changes after death,

such as rigor mortis and algor mortis, although there are compartments, such as the vitreous

humor, that may take longer to be affected by the changes due to decomposition. As with most

biological markers there are potential confounding factors, such as clothing, body mass and

environment, which affect the ability to make postmortem diagnostic and forensic assess-

ments, e.g., diagnosis of disease or how much time has elapsed since death. In particular, a

paucity of data exists about the succession of microflora residing within the human ecosystem,

their associations with decomposition, and the potential widespread use in clinical and foren-

sic applications as a minimally invasive autopsy technique. Part of understanding the postmor-

tem microbiome for potential use in forensic investigation is determining how these microbial

communities vary among anatomical areas and how they change after death. Given the well-

documented importance of the microbiome to the living host, the use of the postmortem

microbiome, if it resembles the live host microbiome, also holds promise for a robust and

widespread method of public health surveillance, which we have recently shown [6].

While studies of the microbiota for use during death investigation have undergone a rapid

increase in the past five years as reviewed in Pechal et al [6]; these studies have often resulted

from small-scale data (n< 55 cases) collected at anthropological research facilities, which
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occur in distinct, well documented conditions not encumbered by the variability and challeng-

ing circumstances involved with routine case work. For a more informed understanding of

how postmortem microbiomes can be used in death investigations it will be important to eval-

uate these methods in the context of actual cases. To the best of our knowledge, our collabora-

tive study was the only available that employed a large-scale cross-sectional survey of

postmortem microbiomes (n = 188 cases) and showed significant differences in postmortem

microbiota among anatomic locations and changes over time since death [6]. Thus, there is

potential for the use of native postmortem microbial communities, easily collected with mini-

mal training, to serve as a valuable adjunct to the autopsy process or to collect information

when it is not practical to perform an autopsy.

Molecular autopsies have primarily been used as a diagnostic tool in cases with unremark-

able pathological findings to identify gene mutations that may have resulted in a sudden or

unexplained death. Advances in technologies have demonstrated that high-throughput geno-

mic technologies could also be used to characterize and analyze microbiota associated with the

once living and, afterward, the cause or manner of death [5,6,8,9]. Resulting datasets from

high-throughput sequencing of microbial communities often represent complex datasets that

are not amenable to analysis with non-machine learning methods. By and large, the analysis of

postmortem microbial data has been limited to two major types of machine learning meth-

ods–random forests and gradient boosting [6,10–12], though it is not clear if these are the best

algorithms for analyzing the data or if there is a best machine learning approach for making

predictions from postmortem microbiomes.

This computational challenge is not restricted to forensic microbiology. In an evaluation of

hyperspectral imaging for remote sensing in ecology research, random forests and boosted

methods performed similarly well (~70% accurate) and outperformed neural network (~64%

accurate) [13]. A similar pattern was observed with “electronic tongue” analyses, which was

attributed to the ability of random forests to better handle unbalanced data and small sample

sizes compared to neural network [14]. However, boosted methods can sometimes outperform

random forests [15]. This difference in performance comes with the tradeoff of being less gen-

eralizable as the methods can be prone to overfitting due to the weighting strategy used in

their development [16]. In an investigative context this feature could detract from its useful-

ness in application and may also guide decisions regarding the use of smaller local databases or

larger regional / national databases. It is also unclear whether certain types of samples (e.g.,

microbial communities from different parts of the body) are more informative than others for

postmortem predictions or provide different value to different methods. Thus, it is an open

question if certain types of methods and samples are most effective for postmortem estima-

tions and to evaluate the use of microbial communities in medical diagnoses.

One challenge that is distinct to forensic investigations and for the future of forensic micro-

biology is the need for an understanding of error in predictions. In the United States of Amer-

ica, the presentation of scientific evidence in the courtroom is generally bound by the Daubert

standard [17], which in part requires knowledge of error in any scientific opinion provided to

a court. Additionally, in 2009 the National Research Council [18] issued a report highlighting

the need to improve basic research in forensic science. With respect to the challenge of making

predictions with machine learning methods, these perspectives are particularly important.

These methods are essential to assessing large and multi-dimensional datasets. However, the

complexity of these algorithms means that they are effectively “black boxes” where information

goes into the black box, something happens in the black box, and a prediction comes out of

the black box. In such an instance, it is possible for non-intuitive results to occur. The most

obvious of these problems is overfitting of a model, where a methods develops an excellent pre-

dictor from one dataset, which by all indications should perform well with new data, but that
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model is too specific to the features of its parent dataset and fails to effectively predict in a gen-

eralizable fashion. There is nothing inherently wrong with such an approach, as multi-dimen-

sional datasets generally defy solutions that are intuitive to human understanding. However,

from legal and practical perspectives, this feature means that a careful evaluation of the quali-

ties of methods employed is required in order to ensure the quality of postmortem information

provided to a death investigation.

Machine learning methods using microbial signatures to predict time, manner, location of

death and associations with medical conditions in the living have remained limited. Identifica-

tion of robust microbial based biomarkers using supervised learning algorithms could yield a

fruitful and underutilized molecular autopsy approach during routine death investigation and

for future clinical diagnostic uses. However, there are a variety of algorithms that could be

implemented with microbial datasets and it remains unclear if there is an advantage to using

one over the others in datasets that represent the typical size and structure encountered in

postmortem microbiology.

Here, we aimed to evaluate machine learning methods performance of microbial commu-

nity analyses developed from a large-scale survey of postmortem samples during routine case-

work. This analytical evaluation is a first step toward developing guidelines for the use of

microbial databases in death investigations, and for potential utility in medical diagnostics.

We approached the problem from a computer science perspective, using one of the few data-

sets that can provide sufficient power for evaluating machine learning methods for this pur-

pose. Our goal is to begin the process of determining best practices for conducting machine

learning-based predictions with microbial datasets for medical and forensic purposes. We

assess the outcomes of three machine learning methods–random forests, neural network, and

boosted algorithms [19–21]; to understand their relative performances when making predic-

tions of our target death investigation interests using microbial sequence information derived

from one to five swabs taken to represent microbial communities from different anatomical

areas. The goal of this endeavor is to develop an understanding for how many samples must be

taken to provide useful investigative predictions, which anatomical areas may provide the

most information for these purposes, how useful such predictions will be, determine if differ-

ent algorithms identify similar or different informative variables, and which algorithms are

most likely to perform best for these purposes.

Materials and methods

Two major datasets were used for this research. The first dataset contains all the meta-informa-

tion of the samples derived from previously published research on the postmortem micro-

biome, henceforth referred to as “metadata” [6]. The metadata include the sample area (where

on the body a microbial sample was collected), sex, race, age, death location (in a hospital,

indoors, outdoors), estimated postmortem interval (reported in temporal blocks), manner of

death (suicide, homicide, etc.), season of death, body mass index (BMI), and weight status

(obese, etc.). Samples were obtained during routine death investigation at the Wayne County

Medical Examiner’s Office (Detroit, Michigan), as previously described in [6]. Briefly, this was

done by swabbing anatomic regions of interest with DNA-Free sterile cotton-tipped applica-

tors (Puritan). The region of interest was physically rubbed while rotating for 3–5 seconds,

then the tip of the applicator was placed into a sterile microcentrifuge tube (VWR) filled with

200 μL of 100% molecular grade ethanol (Fisher Scientific). These were stored at -20˚C for fur-

ther processing. Genomic DNA was isolated with the PureLink Genomic DNA Mini kit.

The other dataset is the microbial taxonomic information obtained through targeted high-

throughput 16S rRNA gene amplicon sequencing (Illumina MiSeq), which is described in
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detail in Pechal et al. [6] and can be found archived through the European Bioinformatics

Institute European Nucleotide Archive (www.ebi.ac.uk/ena) under accession number:

PRJEB22642. We cleaned the two datasets separately and then merged them into one dataset

(n = 188 cases, S1 Data, S2 Data), such that each row contains both metadata and microbial

taxon data (phylum, class, order, family, genus, species, operational taxonomic unit) for each

sample. We built models using three machine learning methods (xgboost, random forest, and

neural network) [19–21], with each method applied to predict attributes of the case: the post-

mortem interval, manner of death, and location of death.

Among the three methods, both “xgboost” and “random forest” are tree-based algorithms.

Tree-based methods use splitting rules for classification or regression. Usually a single tree

does not provide competitive accuracy, but combining multiple trees into one consensus pre-

diction can help improve performance, and reduce variance [22]. Random forest methods

resample a random portion of all predictors and get one tree for each iteration and combine

them together. “xgboost”, short for “Extreme Gradient Boosting”, uses a boosted trees algo-

rithm. It grows sequentially to a single tree by fitting on residuals. Instead of sampling original

data, it fits modified data (residuals) after each split in the tree, effectively weighing subsequent

splits in the tree by their ability to provide information independent of information provided

by previous splits in the tree [23]. Both of these methods are frequently used in machine learn-

ing applications. Xgboost is gaining more attention since it has shown good performance in

many data science competitions. In the biological disciplines, random forest is more frequently

used, but without a clear reason. Another common type of machine learning algorithm

employed to solve problems with multi-dimensional datasets is “neural network”. A neural

network is a multi-stage regression or classification process. Each layer extracts linear combi-

nations of the previous layer’s inputs as derived features. This makes it a very powerful nonlin-

ear model [24]. However, the potential number of parameters that must be learned by the

algorithms can make them unsuitable for small datasets. It has very good performance in fields

like graphics and big data analysis.

Details of implementation

Among each prediction (the postmortem interval, manner of death, and location of death), we

first tried to optimize the parameters for each machine learning method. We implemented the

parameter optimization in the way of grid search and measured the performance through

5-fold cross validation. After some research, we manually determined a subset of parameter

space for each machine learning method. Then the total data were randomly and evenly sepa-

rated into 5 shares. Then we iteratively trained the model on 4 folds while using the remaining

fold as the test set. Then the average of 5 test accuracies was calculated and compared to that of

other parameter set. The parameter set having the highest average accuracy was chosen as the

set of optimal parameter. The tuned parameters for each prediction and each learning method

was displayed in S1 Table. This type of cross validation, is considered to eliminate or limit the

over fitting issue noted above. The averaged accuracy, confusion matrix, and evaluation statis-

tics obtained based on cross validation method can also be used as a good metrics to compare

across different machine learning methods performance as to the current dataset. We further

trained the model on the whole dataset with the tuned parameters to get the important features

for each prediction and report comparisons based on these tuned models. For the xgboost

method, we used the “0.4.3” version of the “xgboost” package in R [21]. The objective function

used for a training model is “multi:softprob”, which is better for datasets with multiple classes.

Accordingly, the number of classes is set to “4” as we have four classes of predictions for each

question of interest (postmortem interval: < 24 h, 25–48 h, 49–72 h,> 73 h; event location:
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hospital, indoors, outdoors, vehicular; and manner of death: accident, homicide, natural, sui-

cide). We used the evaluation metric of “mlogloss”. The models with all swabs used the optimal

parameter set, but for the combinations of different anatomic areas, the training iterations

were adjusted according to the number of anatomic areas in each model. We implemented the

random forest method with “4.6.12” version of the “randomForest” R package [19]. For the

neural network method, we implemented it with “7.3.12” version of the “nnet” R package [25].

The neural network method also requires converting the target predictor variable to be a fac-

tor. Data and code for implementation of each algorithm can be found in S1 Data and S2 Data,

respectively.

The following performance metrics within a class for each machine learning methods was

initially evaluated with models that included all anatomic areas: sensitivity, specificity, positive

predictive value, negative predictive value, prevalence, detection rate, detection prevalence,

and balanced accuracy. However, one challenge in analyzing casework with bacterial informa-

tion is understanding which anatomical area(s) will be most informative for death investiga-

tion. We addressed this challenge by evaluating the performances of all three machine learning

methods when predicting the attributes of the cases using the postmortem microbiota from

different number of anatomic areas; models were built using a greedy algorithm that added

anatomic areas that adds most to the previous model accuracy, one by one, for each predictor

variable (i.e., postmortem interval, event location, and manner of death). Next, to identify

important microbial features (e.g., genus or family taxon) or metadata features (e.g., age, race,

sex) resulting from each machine learning method, we selected several of the top features from

each method (number of features varied based on method) to plot these potential microbial

biomarkers for each predictor attribute (postmortem interval: < 24 h, 25–48 h, 49–72 h, > 73

h; event location: hospital, indoors, outdoors, vehicular; and manner of death: accident, homi-

cide, natural, suicide). Finally, due to the zero-heavy nature of high-throughput sequencing,

we compared ratios of non-zero microbial taxa to all microbial taxa. Paired Wilcox sum

ranked tests (false discovery rate adjusted p-values) were used to statistically evaluate the top

features across the predictor attributes with the “0.9-69-3” version of the “RVAideMemoire” R

package [26].

Human subjects/study population

Institutional Review Board (IRB) review is not required for research on deceased individuals.

Health Insurance Portability and Accountability Act of 1996 (HIPAA) is not a consideration

after death in the medicolegal context and so there are no privacy issues associated with micro-

bial sampling of bodies during investigation and autopsy. Additionally, human tissue was not

intentionally sampled or removed. Microbiological sampling is an established procedure for

the diagnosis of pathologies.

Results

Among all the cases, 44.1% were female and 55.9% were male. The age of the cases ranged

from 18–88 years, with a mean of 43.9 and a median of 43.0. For the estimated postmortem

interval, 45.7% of the cases had a postmortem interval less than 24h, 41.0% of the cases had a

postmortem interval of 25-48h. The postmortem interval of 49-72h and greater than 73h occu-

pied 7.4% and 5.9% of the data respectively. For the event of location, 12.8% were in a hospital,

68.6% were indoors, 12.8% were outdoors, and 5.9% were vehicular. As for the manner of

death, 37.8% had an accident, 19.7% were a homicide, 30.3% were natural, and 12.2% were

suicide.
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Performance comparison among three prediction methods

To compare the performance of the different machine learning methods, we selected three

important attributes during death investigation—postmortem interval, manner of death, and

death event location–to predict using the postmortem microbiota. The accuracy achieved by

each method varied from 70.6–87.6% (Tables 1 and 2); the xgboost method consistently

resulted in the highest accuracy (74.5%– 87.6%) across all predictor variables, with neural net-

work (70.7–83.0%) and random forest (73.6–86.3%) performing comparably. All prediction

algorithms exhibited statistically significant models for all prediction types (p-values < 2.0e-

16). Based on additional evaluation statistics (Table 3), such as sensitivity, specificity, preva-

lence, we found that xgboost or random forest tend to perform more favorably than neural

network. The positive prediction value using xgboost ranged from 0.73–0.86 for the postmor-

tem interval classes (< 24 h, 25–48 h, 49–72 h,> 73 h); 0.73–1.0 for event location classes (hos-

pital, indoors, outdoors, vehicular); and 0.78–0.93 for manner of death classes (accident,

homicide, natural, suicide). Random forest ranged from 0.71–0.94, 0.83–1.0, and 0.75–0.96 in

the same comparisons, respectively. In most cases, neural networks underperformed the posi-

tive predict values of the other two algorithms, but often by only a few percent (e.g. within 3%

for two of the three prediction types in Table 2). While many metrics were comparable across

algorithms, there were observable differences in sensitivity, specificity, detection rate, detection

prevalence, and balanced accuracy depending on the algorithm and prediction class. The over-

all picture arising from these comparisons in this database would suggest that xgboost is some-

times more effective than random forest, but is often very comparable, and in some instances

will underperform (e.g. PMI estimates with 2 or 3 sample areas included). In most cases neural

networks underperform, but there are specific instances where this algorithm exhibited the

most balanced accuracy (Table 3, manner of death–vehicular deaths). Likewise, random forest

was often comparable to xgboost, but could underperform both competing algorithms in spe-

cific instances (Table 3, PMI > 48 hours).

Table 1. Confusion matrices for prediction of postmortem interval, event location, and manner of death with the microbiota from all anatomic locations (ears,

eyes, nose, mouth, and rectum) using three machine learning methods: xgboost, random forest, and neural network. The results for the three methods are put within

the same table in the order of xgboost/ random forest/ neural network.

Predictor Variable prediction/

observation

< 24 h 25–48 h 49–72 h > 73 h

Postmortem Interval Estimate < 24 h 296/ 300/ 285 78/ 63/ 71 19/ 28/ 22 07/ 06/ 05

25–48 h 79/ 76/ 78 271/288/268 11/ 18/ 20 11/ 26/ 15

49–72 h 04/ 03/ 13 02/ 02/ 08 34/ 20/ 20 00/ 01/ 03

> 73 h 01/ 01/ 04 02/ 00/ 06 02/ 00/ 04 30/ 15/ 25

prediction/

observation

Hospital Indoors Outdoors Vehicle

Event Location Hospital 75/ 65/ 69 03/ 00/ 19 05/ 00/ 07 03/ 00/ 07

Indoors 31/ 42/ 30 580/ 586/ 544 25/ 39/ 22 14/ 19/ 09

Outdoors 05/ 05/ 05 05/ 03/ 22 75/ 67/ 72 11/ 06/ 06

Vehicle 01/ 00/ 08 01/ 00/ 04 01/ 00/ 05 12/ 13/ 18

prediction/

observation

Accident Homicide Natural Suicide

Manner of Death Accident 282/296/266 12/ 11/ 26 29/ 18/ 51 27/ 38/ 27

Homicide 07/ 03/ 17 142/ 141/ 120 04/ 03/ 11 00/ 00/ 12

Natural 42/ 37 /42 03/ 09/ 09 211/ 221/169 14/ 26/ 20

Suicide 06/ 01 / 12 05/ 01/ 07 01/ 03 / 14 62/ 39/ 44

https://doi.org/10.1371/journal.pone.0213829.t001
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The top 100 most informative features were compared across methods to identify poten-

tially important shared indicators (Fig 1, S2–S4 Tables). Overall, 40, 29, and 39 features were

shared among all three methods (S5 Table) for postmortem interval estimate (Fig 1A), event

location (Fig 1B), and manner of death (Fig 1C), respectively. Xgboost and random forest

shared the greatest number of additional common features (22 for postmortem interval and 22

for manner of death), while neural network and random forest shared the least number of

additional common features (4 for postmortem interval, 7 for event location, and 4 for manner

of death). Analyzing the top ten important features for each method (there were eleven non-

microbial metadata provided to the model), we found that all models only listed 1–3 microbes

in the top ten features, with the rest of the top features being metadata (S2–S4 Tables).

Predicting model performance based on anatomic area

In the results described above, we ran full models that comprised five anatomic areas: ears,

eyes, nose, mouth, and rectum. However, it is important to identify which anatomic area(s)

provided the microbial community with the best predictive accuracy (Fig 2, Table 4). Using a

greedy algorithm, we found that when predicting the postmortem interval (Fig 2A), the highest

accuracy (77.5%) was achieved for xgboost when all five anatomic areas were used in the

model; random forest had the highest accuracy (62–74.5%) with one to three anatomic areas

(eye, mouth, nose); and neural network had the highest accuracy (73.5%) when a four ana-

tomic area (eyes, mouth, ears, nose) model was implemented. For event location predictions

(Fig 2B), the microbiota from all five anatomic areas were more accurate using xgboost (88.8%

accuracy). For random forest, models with non-oral swabs provided generally the same (72.5–

74.6%), but adding the oral swab increased accuracy in the full model to 84.5%. The method

accuracy for predicting manner of death (Fig 2C) followed the trend that addition of a swab

generally always improved predictions. Eyes were the most informative single swabs for all

models predicting manner of death. Xgboost and neural networks increased accuracy with

each swab (58.8–86.3 and 54.5–75.0%, respectively), whereas random forest again provided

generally the same accuracy with 1–4 swabs (63.6–67%), with a stark increase to 83.9% when

the oral swabs were included in the full model. In two cases (xgboost/PMI and neural net-

work/Event location), the rectum provided high accuracy (comparable to a full model) as the

sole source of microbiome information.

Important features

Based on metadata features (S1 Fig), the typical case for postmortem interval classes greater

than 73 h postmortem tended to be older (> 55 years), male, and died of natural causes. Addi-

tionally, an increased number of cases occurred during the autumn and winter for those with

Table 2. Accuracy and p-value obtained from 5-fold cross validation for three machine learning methods (xgboost, random forest and neural network) for the pre-

diction of postmortem interval, event location and manner of death using the microbiota from all anatomic locations (ears, eyes, nose, mouth, and rectum).

Predictor Variable Performance Metric xgboost random forest neural network

Postmortem Interval Accuracy 0.745 0.736 0.706

p-value < 2.0e-16 < 2.0e-16 < 2.0e-16

Event Location Accuracy 0.876 0.863 0.830

p-value < 2.0e-16 < 2.0e-16 < 2.0e-16

Manner of Death Accuracy 0.823 0.823 0.707

p-value < 2.2e-16 < 2.0e-16 < 2.0e-16

https://doi.org/10.1371/journal.pone.0213829.t002
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an estimated postmortem interval greater than two days. The number of underweight (body

mass index) cases peaked in cases with estimated postmortem intervals of 49–72 h.

Among the important microbial taxa identified for postmortem interval prediction (S2 Fig;

S6 Table), we found Veillonella dispar sp. and Proteus sp. counts were higher in cases with a

postmortem interval greater than 73 h, while Moraxellaceae had a higher count in cases with

estimated postmortem intervals of 49–72 h, Streptococcus sp. count was higher within a 48 h

postmortem interval. For event location prediction (S3 Fig; S6 Table), we found that Xantho-

monadaceae was more prevalent in cases associated with hospital deaths. Suicide cases tended

to have higher Actinomyces sp. counts than homicides, natural or accidental deaths (S4 Fig; S6

Table).

Table 3. Evaluation statistics for three methods (xgboost, random forest and neural network) for prediction of the postmortem interval, event location, and manner

of death. The results for the three methods are put within the same table in the order of xgboost/ random forest/ neural network.

Predictor Variable Performance Metric < 24 h 25–48 h 49–72 h > 73 h

Postmortem Interval Sensitivity1 0.78/0.79/0.75 0.77/0.82/0.76 0.52/0.30/0.30 0.63/0.31/0.52

Specificity2 0.78/0.79/0.79 0.80/0.76/0.77 0.99/0.99/0.97 0.99/1.00/0.98

Pos Pred Value3 0.74/0.76/0.74 0.73/0.71/0.70 0.85/0.77/0.45 0.86/0.94/0.64

Neg Pred Value4 0.81/0.82/0.80 0.83/0.85/0.82 0.96/0.94/0.94 0.98/0.96/0.97

Prevalence5 0.45/0.45/0.45 0.42/0.42/0.42 0.08/0.08/0.08 0.06/0.06/0.06

Detection Rate6 0.35/0.35/0.34 0.32/0.34/0.32 0.04/0.02/0.02 0.04/0.02/0.03

Detection Prevalence7 0.47/0.47/0.45 0.44/0.48/0.45 0.05/0.03/0.05 0.04/0.02/0.04

Balanced Accuracy8 0.78/0.79/0.77 0.78/0.79/0.77 0.75/0.65/0.64 0.81/0.66/0.75

Event Location Hospital Indoors Outdoors Vehicular

Sensitivity 0.67/0.58/0.62 0.98/0.99/0.92 0.71/0.63/0.68 0.30/0.33/0.45

Specificity 0.99/1.00/0.96 0.73/0.61/0.76 0.97/0.98/0.96 1.00/1.00/0.98

Pos Pred Value 0.87/0.97/0.68 0.89/0.85/0.90 0.78/0.83/0.69 0.80/1.00/0.51

Neg Pred Value 0.95/0.94/0.94 0.95/0.98/0.81 0.96/0.95/0.95 0.97/0.97/0.97

Prevalence 0.13/0.13/0.13 0.70/0.70/0.70 0.13/0.13/0.13 0.05/0.05/0.05

Detection Rate 0.09/0.08/0.08 0.68/0.69/0.64 0.09/0.08/0.09 0.01/0.02/0.02

Detection Prevalence 0.10/0.08/0.12 0.77/0.81/0.71 0.11/0.10/0.12 0.02/0.02/0.04

Balanced Accuracy 0.83/0.79/0.79 0.86/0.80/0.84 0.84/0.81/0.82 0.65/0.66/0.71

Manner of Death Accident Homicide Natural Suicide

Sensitivity 0.84/0.88/0.79 0.88/0.87/0.74 0.86/0.90/0.69 0.60/0.38/0.43

Specificity 0.87/0.87/0.80 0.98/0.99/0.94 0.90/0.88/0.88 0.98/0.99/0.96

Pos Pred Value 0.81/0.82/0.72 0.93/0.96/0.75 0.78/0.75/0.70 0.84/0.89/0.57

Neg Pred Value 0.89/0.92/0.85 0.97/0.97/0.94 0.94/0.96/0.87 0.95/0.92/0.92

Prevalence 0.40/0.40/0.40 0.19/0.19/0.19 0.29/0.29/0.29 0.12/0.12/0.12

Detection Rate 0.33/0.35/0.31 0.17/0.17/0.14 0.25/0.26/0.20 0.07/0.05/0.05

Detection Prevalence 0.41/0.43/0.44 0.18/0.17/0.19 0.32/0.35/0.28 0.09/0.05/0.09

Balanced Accuracy 0.85/0.87/0.79 0.93/0.93/0.84 0.88/0.89/0.79 0.79/0.69/0.69

1 Sensitivity: the proportion of positives that are correctly identified.
2 Specificity: the proportion of negatives that are correctly identified.
3 Pos Pred Value: proportions of positive results that are true positive.
4 Neg Pred Value: proportions of negative results that are true negative.
5 Prevalence: the proportion of a population who have a specific characteristic in a given time period.
6 Detection rate: the proportion of individuals with a particular condition who test positive for that condition when measured by some method.
7 Detection Prevalence: the proportion of the predicted events.
8 Balanced Accuracy: the average of the proportion of correct classifications within a class.

https://doi.org/10.1371/journal.pone.0213829.t003
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Discussion

There is no best algorithm for making predictions with postmortem microbial data from this

set of 188 death investigations with multiple samples per case. Inter-model accuracy depends

on number and location of the microbial community on the body, in addition to, the type of

predictor variables and question being asked. Different models use different features to make

their predictions, with 29–40 of their top 100 features overlapping among all methods. It is not

surprising that metadata categories are important predictors. For example, older, males that

died of natural causes (e.g., cardiovascular disease) represent a common case with postmortem

intervals after two days. However, from this dataset there are important bacterial predictors

and the bacterial taxa in the shared list of most important features are promising for future

investigation as predictors of forensic interest. One interesting observation in this analysis is

Fig 1. Common features among machine learning methods to predict case attributes. Venn diagram for shared features among top 100 features for

predicting postmortem interval, event location, manner of death across three models xgboost (xg), random forest (rf), and neural network (nn). Identities of

the features found by all methods can be found in S2–S5 Tables.

https://doi.org/10.1371/journal.pone.0213829.g001
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how the importance of metadata differs across prediction variables (postmortem interval,

event location, manner of death) and by machine learning method. Microbiota information

appeared most useful in estimating postmortem interval. All models listed microbial features

in their top ten features, though these ranked between the 6th and 10th most important and the

first five features being metadata. The relative importance of these pieces of information,

which will be particular to the demographics of any population, may be important to future

dissection of the need for local versus global databases for such an endeavor.

In this analysis, xgboost generated the highest accuracy when incorporating information

from all anatomical areas. The algorithm had high positive prediction values that generally

increased with the number of anatomic area (microbial communities) included in the model.

However, random forest sometimes performed better with lower numbers of anatomical areas

in the model with higher sensitivity for less frequent classes (e.g., hospital cases, suicides, or

Fig 2. Method prediction accuracy based on number of anatomical areas. Prediction with all combinations of swabs for postmortem interval, event location and

manner of death. Results for the most accurate model (highest accuracy) for a given number of samples from different subareas (anatomic areas). xgboost = blue dashed

line; random forest = orange short dashed line; and neural network = gray solid line.

https://doi.org/10.1371/journal.pone.0213829.g002

Table 4. Machine learning method accuracy from each model with a combination of subareas for the attribution predictor. The order of subareas (1 through 5)

reflects the sequential addition and the respective accuracy when included in the model through the use of a greedy algorithm. “Subarea” is the microbiota from a

specific anatomic area. The model with the highest accuracy within each method for each predictor variable is indicated with an asterisk (�).

Predictor Variable Machine Learning Method Subarea 1

(accuracy)

Subarea 2 (accuracy) Subarea 3 (accuracy) Subarea 4 (accuracy) Subarea 5 (accuracy)

Postmortem Interval

Estimate

xgboost rectum

(0.61)

mouth

(0.46)

nose

(0.46)

eyes

(0.68)

ears�

(0.78)

random forest eyes

(0.62)

mouth

(0.68)

nose�

(0.75)

ears

(0.63)

rectum

(0.74)

neural network mouth

(0.52)

eyes

(0.58)

nose

(0.67)

ears�

(0.74)

rectum

(0.73)

Event Location xgboost rectum

(0.73)

ears

(0.78)

mouth

(0.80)

nose

(0.86)

eyes�

(0.89)

random forest eyes

(0.74)

nose

(0.73)

rectum

(0.74)

ears

(0.75)

mouth�

(0.85)

neural network rectum�

(0.83)

ears

(0.76)

eyes

(0.75)

nose

(0.77)

mouth�

(0.83)

Manner of Death xgboost eyes

(0.59)

mouth

(0.72)

nose

(0.73)

rectum

(0.77)

ears�

(0.86)

random forest eyes

(0.64)

ears

(0.66)

nose

(0.67)

rectum

(0.66)

mouth�

(0.84)

neural network eyes

(0.55)

ears

(0.63)

nose

(0.66)

mouth

(0.70)

rectum�

(0.75)

https://doi.org/10.1371/journal.pone.0213829.t004
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estimated postmortem intervals of two to three days after death), hence it may be a method

less sensitive to changes in additional anatomic area inclusion after the eyes, mouth, and nose.

Differences between the performance outcomes of these two methods may be due to overfit-

ting, which can be addressed in the future with validation studies using these or similar data as

the reference database.

One observation noted here, which is supported by previous studies [6,9], is that most

informative bacterial features are not represented in all samples and show distinct but weak

trends on a taxon-to-taxon basis. For example, Proteus sp. exhibited higher occurrences in

cases with estimated decomposition of more than two days. Members within the Proteus genus

are characterized by a swarming behavior [27] and have been identified in longitudinal studies

performed on human bodies decomposing at anthropological research facilities [28]. The

microbial community signatures (measured here as individual taxon abundances in a sample)

shift during the transition of less than to more than two days after death [6], with an increased

number of unique taxa associated with communities within first two days after death. It has

also been demonstrated that as decomposition progresses, postmortem microbial community

richness and diversity significantly decreases after a postmortem interval of 48 hours or greater

[6]. These previous observations in combination with the results from this machine learning

analysis suggest that community information may be more useful than individual taxa. How-

ever, it remains possible that a combination of several weak predictors may still be equally or

more informative of specific conditions, such as homicides or indoor deaths. Taxon targeted

analyses may also be limited by the high incidence of absent taxa in any particular case, indi-

cating the need to identify a variety of medical and forensic indicator biomarkers in order to

ensure that at least one of them is found during investigation. Increased samples size and

expansion of geographic location may help to inform if this observation is true across larger

populations.

One critical finding in this analysis is the information provided by adding communities

from multiple anatomical areas to the machine learning methods. The details of a particular

case may not always allow for collection of swabs from all anatomical areas, highlighting the

need for flexibility. This analysis provides some information about the expected quality of

models when limited information (or budget for analysis) is available. For two prediction

types, PMI and manner of death, adding sample locations usually increased accuracy models.

For prediction of death location, improvements to accuracy were not as pronounced, though it

is worth noting that this type of prediction was the most accurate overall. Curiously, sample

location did not appear in the top 100 features of all but the neural network predicting the

location of death, where it ranked 62nd (S2–S4 Tables). This lack of importance attributed to

the variable suggests many microbial taxa provide similar information across sample sites. Yet,

increasing the numbers of samples to make predictions generally increased (or did not harm)

prediction accuracy and the most accurate predictions occurred with all swab locations

included in the models. These results may indicate that the additional data from multiple swab

sites on remains is more informative than the locations of the swabs. When making predic-

tions with different anatomic area communities, the body sites that were more informative

depended on the question being asked in this study: What is the time of death? Where was the

location of death? or What was the manner of death? Indeed, in most cases analyzing more

than three or four anatomical communities returned limited additional information. These

observations make sense, as rectum and ear communities clustered separately and very dis-

tinctly in Pechal et al. [6], with oral and other communities clustering more widely and with

greater overlap. Thus it makes sense that a few communities would be expected to provide the

most generalizable information about a death. Providing one additional anatomical micro-

biota does seem to be informative, but two or three additional communities may not justify
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the cost of their inclusion. When evaluating this issue, the concerns with overfitting noted

above must be considered in future research. Regardless of the microbiota from each anatomic

area or machine learning method, this analysis provides some baseline information regarding

the probable probative value of a particular type of sample to an investigation and in develop-

ing reference databases.

In the future, it may be possible to develop machine learning guided molecular autopsies

taking advantage of either a local database curated by medical examiner’s offices, from regional

databases or from one developed at a national level. Decisions regarding the cost-benefit analy-

sis of such an endeavor will depend on the size of databases required to implement the predic-

tions, the ability to collect microbiota from different anatomic areas, which will likely vary by

budget across jurisdictions and by availability in specific cases, the desired prediction accuracy

(or other metrics), and what investigators want to predict or estimate (e.g., postmortem inter-

val vs. manner of death vs. undiagnosed medical conditions). A critical feature of such a system

would include the machine learning method (or methods) implemented to make predictions

and their performances in specific cases, which has been preliminarily addressed here. Addi-

tionally, the model performance comparisons shown here are also directly relevant to the

development of future medical diagnostic platforms that evaluate human health conditions

using postmortem microbiomes. While in its infancy, the potential for this new form of medi-

cal-laboratory method and its immediate diagnostic utility, as well as potential for public

health surveillance, is gaining support with additional studies focused on the postmortem

microbiome.
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