
RESEARCH ARTICLE

Fecal and blood microbiota profiles and

presence of nonalcoholic fatty liver disease in

obese versus lean subjects

Yeojun Yun1¤, Han-Na Kim2, Eun-ju Lee1, Seungho Ryu3,4, Yoosoo Chang3,4,

Hocheol Shin5, Hyung-Lae Kim1☯*, Tae Hun Kim6, Kwon Yoo6, Hwi Young KimID
6☯*

1 Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul, Republic of Korea,

2 Medical Research Institute, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine,

Seoul, Republic of Korea, 3 Center for Cohort Studies, Total Healthcare Center, Kangbuk Samsung Hospital,

Sungkyunkwan University School of Medicine, Seoul, Republic of Korea, 4 Department of Occupational and

Environmental Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul,

Republic of Korea, 5 Department of Family Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University

School of Medicine, Seoul, Republic of Korea, 6 Department of Internal Medicine, College of Medicine, Ewha

Womans University, Seoul, Republic of Korea

☯ These authors contributed equally to this work.

¤ Current address: Gwanghwamun Medical Study Centre, Syntekabio Inc., Seoul, Republic of Korea

* hwiyoung@ewha.ac.kr (HLK); hyung@ewha.ac.kr (HYK)

Abstract

Pathophysiological background in different phenotypes of nonalcoholic fatty liver disease

(NAFLD) remains to be elucidated. The aim was to investigate the association between

fecal and blood microbiota profiles and the presence of NAFLD in obese versus lean sub-

jects. Demographic and clinical data were reviewed in 268 health checkup examinees,

whose fecal and blood samples were available for microbiota analysis. NAFLD was diag-

nosed with ultrasonography, and subjects with NAFLD were further categorized as obese

(body mass index (BMI)�25) or lean (BMI <25). Fecal and blood microbiota communities

were analyzed by sequencing of the V3-V4 domains of the 16S rRNA genes. Correlation

between microbiota taxa and NAFLD was assessed using zero-inflated Gaussian mixture

models, with adjustment of age, sex, and BMI, and Bonferroni correction. The NAFLD group

(n = 76) showed a distinct bacterial community with a lower biodiversity and a far distant

phylotype compared with the control group (n = 192). In the gut microbiota, the decrease in

Desulfovibrionaceae was associated with NAFLD in the lean NAFLD group (log2 coefficient

(coeff.) = -2.107, P = 1.60E-18), but not in the obese NAFLD group (log2 coeff. = 1.440, P =

1.36E-04). In the blood microbiota, Succinivibrionaceae showed opposite correlations in the

lean (log2 coeff. = -1.349, P = 5.34E-06) and obese NAFLD groups (log2 coeff. = 2.215, P =

0.003). Notably, Leuconostocaceae was associated with the obese NAFLD in the gut (log2

coeff. = -1.168, P = 0.041) and blood (log2 coeff. = -2.250, P = 1.28E-10). In conclusion,

fecal and blood microbiota profiles showed different patterns between subjects with obese

and lean NAFLD, which might be potential biomarkers to discriminate diverse phenotypes of

NAFLD.
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Introduction

Nonalcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver diseases.

[1] Patients with NAFLD have increased risk of developing cirrhosis or hepatocellular carci-

noma, as well as cardiovascular events, malignancies other than hepatocellular carcinoma, and

increased mortality.[2, 3] Obesity is a well-documented risk factor for the development of

NAFLD.[4] However, the relationship between obesity and NAFLD appears more compli-

cated, considering the absence of NAFLD in obese subjects without any metabolic abnormali-

ties and the presence of NAFLD in lean (body mass index (BMI) <25 kg/m2) individuals with

metabolic abnormalities such as insulin resistance.[5] Although the prevalence of lean NAFLD

shows ethnic preponderance, particularly Asians, it was also found in approximately 10% of

Western population.[6–8] However, the pathogenetic differences between phenotypes of

NAFLD remain to be elucidated.

The microbiota found in the human body comprise trillions of microorganisms, with the

majority colonizing the gut.[9] Gut microbiota appear to be one of the key regulators in the

pathogenesis of obesity, diabetes, and metabolic syndrome.[10–12] Recent studies have sug-

gested that gut microbiota are involved in the pathogenesis of NAFLD.[13] For example, gut-

derived endogenous alcohol was suggested to play a role in the pathogenesis of nonalcoholic

steatohepatitis.[14] In addition, shifts in the composition of gut microbiota seemed relevant in

NAFLD, such as decrease in some members of Firmicutes,[15] or abundance of Bacteroidetes

in nonalcoholic steatohepatitis and Ruminococcus in significant fibrosis.[16] However, these

studies mostly focused on obese subjects. Because BMI may be one of the major determinants

of compositional changes in gut microbiome,[17] microbial characteristics could be different

among NAFLD patients with different body habitus. A recent study has reported Firmicutes-

poor microbiota along with marked lower overall microbial richness in nonobese NAFLD

compared with nonobese control.[18] However, studies linking gut dysbiosis and phenotypic

variations of NAFLD in terms of body habitus are scarce.

A recent pilot study demonstrated that changes in blood microbiota are associated with

liver fibrosis in obese patients.[19] The liver has a unique vasculature; it receives the majority

of its blood supply from the intestine through the portal vein. Thus, disturbances in the intesti-

nal immune system could increase intestinal permeability and bacterial translocation, trigger-

ing various pathological sequences including obesity, metabolic and liver diseases.[20]

Recently, the predictive role of blood microbiota has been reported in metabolic diseases.[21,

22] Although studies on blood microbiota attract attention with anticipation of their use as

potential noninvasive biomarkers, data on the relationship between gut and blood microbiota

and the presence of NAFLD in subjects with different body habitus are insufficient. Thus, we

aimed to investigate fecal and blood microbiota profiles in obese versus lean subjects with or

without NAFLD.

Materials and methods

Study subjects

Health checkup examinees were screened for the eligibility for this study between June and

September 2014 at Kangbuk Samsung Hospital Total Healthcare Screening Centers in Seoul,

South Korea.[23] The affordable number of participants for analysis within the study budget

was less than 300. During the screening period, a total of 296 subjects were found to be eligible

showing no evidence of other liver diseases (i.e., positive serology for viral hepatitis B or C, sig-

nificant alcohol intake (daily alcohol consumption� 30 g [male] or 20 g [female]), other meta-

bolic or hereditary liver diseases, or use of medications such as amiodarone, tamoxifen,
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methotrexate, or corticosteroids). They gave written informed consents and agreed to provide

samples for blood and fecal microbiota analysis. Among these, 268 subjects were finally

enrolled in the present study by excluding 28 because of their previous use of antibiotics, pro-

biotics, or cholesterol-lowering medications (n = 22), and the presence of diabetes mellitus

(n = 6). Of these 268 participants, NAFLD was diagnosed in 76 subjects based on the presence

of ultrasonographic findings suggestive of fatty liver as described below. Because all study par-

ticipants had no evidence of liver diseases of other etiologies such as alcoholic or viral as

described earlier, incident cases with fatty liver were regarded as NAFLD. The control group

comprised 192 subjects without any evidence of NAFLD or other liver diseases.

This study was approved by the Institutional Review Board of Kangbuk Samsung Hospital

(KBSMC 2013-01-245-008, registered December 23, 2013). All study participants gave their

written informed consent to participate in the study. The present study was conducted accord-

ing to the ethical guidelines of the World Medical Association Declaration of Helsinki.

Clinical, laboratory, and radiologic assessments

Height and weight were measured by trained nurses with the participants wearing a light-

weight hospital gown without shoes. Briefly, height was measured to the nearest 0.1 cm using a

stadiometer with the participants standing barefoot. Weight was measured to the nearest 0.1

kg on a bioimpedance analyzer (InBody 3.0 and InBody 720, Biospace Co., Seoul, Korea). BMI

was calculated as weight in kilograms divided by height in meters squared. Study subjects were

categorized according to their BMI based on the criteria established for Asian populations:

underweight, BMI<18.5 kg/m2; normal weight, BMI 18.5–23 kg/m2; overweight, BMI 23–25

kg/m2; and obese, BMI�25 kg/m2.[24] Insulin resistance was assessed with the homeostasis

model assessment of insulin resistance equation, as follows: fasting blood insulin (μU/ml)×
fasting blood glucose (mmol/l)/22.5.[25] An ultrasonographic diagnosis of fatty liver was

defined as the presence of a diffuse increase in the echogenicity of the liver parenchyma com-

pared with the kidney or spleen.[26, 27] The intra- and inter-observer reliability for the diag-

nosis of fatty liver was adequately high (kappa statistics of 0.94 and 0.74, respectively).[28]

DNA extraction and sequence data generation

Fecal samples were immediately frozen after collection. Buffy coat consisting mainly of leuko-

cytes was used for blood samples. 16S rRNA genes were extracted and amplified from speci-

mens using the MO-BIO PowerSoil DNA Isolation Kit (MO-BIO Laboratories, Carlsbad, CA)

according to the manufacturer’s instructions. Amplification and sequencing were performed

in the same batch as previously described for analysis of bacterial communities. The genomic

DNA was amplified using fusion primers targeting 16S V3-V4 rRNA gene with indexing bar-

codes. All samples were pooled for sequencing on the Illumina Miseq platform according to

the manufacturer’s specifications.[29]

Sequence analysis

Quality filtering, chimera removal, and de novo operational taxonomic unit (OTU) clustering

were carried out using the UPARSE pipeline,[30] which identifies highly accurate OTU from

amplicon sequencing data. The reads were dereplicated, sorted, and clustered into candidate

OTU with removing chimeric OTU. Taxonomic assignment for OTU was annotated by RDP

reference (version 16) with an identity threshold of 97% using UTAX command in the UPARSE

pipeline. OTU table with taxonomic assignments was transformed to “biom” format for the

compatibility of QIIME software (version 1.9; http://qiime.org).[31] Finally, 5,668,793 reads/

227 OTUs with a mean of 21,152 (SD = 12,674) sequences per fecal sample and 9,786,870 reads/
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4,066 OTUs with a mean of 36,518 (SD = 24,966) sequences per blood sample were included for

the QIIME analysis. Alpha diversity was calculated using chao1 and phylogenetic diversity (PD)

by QIIME, which significant difference between case/control was calculated with 999 Monte

Carlo permutation and Bonferroni multiple correction. Beta diversity on Cumulative Sum Scal-

ing (CSS) normalized OTU tables by QIIME was performed using the weighted UniFrac dis-

tance metrics based on the phylogenetic distance comparison between communities showing

principal coordinate analysis plots.[32] Permutational ANOVA for distance matrix was calcu-

lated with 999 Monte Carlo permutation and Bonferroni multiple correction.

Statistical analysis

The zero-inflated Gaussian mixture (fitZIG) model of metagenomeSeq package version 1.14.2

[32] was used for correlation analysis between CSS normalized count data (as dependent vari-

ables) and control versus NAFLD (as independent categorical variables). Age, sex, and BMI

covariates were adjusted for regression analysis. Each taxa level that was abundant (>50 nor-

malized counts per sample) and prevalent (present in 10% of samples) in each analysis set was

applied to the zero-inflated Gaussian mixture model with Bonferroni multiple correction (an

adjusted P value <0.05 is significant). This analysis was performed using R software package

version 3.2.3 (R Foundation for Statistical Computing, Vienna, Austria).

Results

Clinical characteristics

Table 1 summarizes the baseline characteristics of the entire study subjects (n = 268). Subjects

with NAFLD (n = 76, 28.4%) showed significantly higher BMI, blood pressure, and metabolic

and liver-related laboratory values than those without NAFLD (i.e., control, n = 192).(all P-val-

ues<0.05) Among lean subjects (BMI<25 kg/m2, n = 195), subjects with NAFLD (i.e., “lean

NAFLD”; n = 27, 13.8%) also demonstrated significantly higher biometric and laboratory val-

ues, except for hemoglobin A1c and aspartate aminotransferase, than lean controls (Table 2).

On the contrary, obese subjects (n = 73) showed less distinctive baseline characteristics

between those with (i.e., “obese NAFLD”; n = 49, 67.1%) and without NAFLD, particularly

without significant difference in age, sex, blood pressure, lipid profiles, and renal function.

Microbial diversity of fecal and blood microbiota in the NAFLD group

Alpha diversity measures diversity within a community. Different metrics have been devised

to measure alpha diversity with emphasis on the different aspects of the community structure.

In Table 3, overall blood microbiota had higher richness (Chao1) but less PD than fecal micro-

biota. In fecal data, the NAFLD group showed slightly lower biodiversity than the control

group, but it was statistically significant only in fecal microbial PD of total NAFLD (Bonferroni

corrected P = 0.011). The biodiversity of the NAFLD group also showed lower tendencies than

that of the control group in blood microbiota as well.

Beta diversity measuring the variations in community membership across the different

groups was performed to prove the differentiation between groups using OTU abundance

with weighted Unifrac metrics, weighting species abundances with phylogenetic relationships

among taxa. In principal coordinate analysis plots of both fecal and blood microbiota, only

lean NAFLD showed a clustering of the NAFLD group (Fig 1). When it was examined for sta-

tistical significance of the distance metrics, permutational ANOVA of blood microbiota exhib-

ited no significant results. However, permutational ANOVA of fecal microbiota showed

highly significant difference between the NAFLD and control groups, except obese NAFLD
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(Table 4). Therefore, the highly significant difference between the NAFLD and control groups

is predominantly due to the difference in lean NAFLD (pseudo-F = 3.021, P = 0.001).

Taxonomic comparison in fecal microbiota

To obtain a featured change of microbial components, we used zero-inflated Gaussian mixture

based on the normalized count data of an OTU table. Table 5 shows a summary of significant

differential bacterial taxa (Bonferroni corrected P<0.05) with at least 2 times of coefficient

effect, adjusted by age, sex, and BMI. The results of total NAFLD (obese and lean NAFLD)

resembled those of lean NAFLD. The decrease in five Clostridia, which belong to Firmicutes,

was correlated with lean NAFLD. Two Ruminococcaceae (i.e., Fastidiosipila and Faecalibacter-
ium) showed same negative patterns in the lean and obese NAFLD as well as in total NAFLD.

In particular, Fastidiosipila was the only bacterium that showed the same pattern across the

three groups. This result indicates the unique bacterial feature for NAFLD regardless of the

presence or absence of obesity. However, Desulfovibrionaceae under Deltaproteobacteria

showed an opposite trend between lean (negative) and obese NAFLD (positive), which

resulted in negative correlation with total NAFLD. The decrease inWeissella and its family

Leuconostocaceae was associated with only the obese NAFLD group.

Taxonomic comparison in blood microbiota

In contrast to fecal data, blood microbiota of total NAFLD were more shared with obese

NAFLD pattern, but the obese NAFLD group showed more unique results (Table 6). Notably,

Table 1. Baseline characteristics of all study participants.

Variable All (n = 268) NAFLD (n = 76) Control (n = 192) P
Age (years) 43.6±8.2 45.3±8.2 42.9±8.2 0.030

Male gender 138 (51.5) 55 (72.4) 83 (43.2) <0.001

BMI 23.2±2.9 25.7±2.6 22.2±2.4 <0.001

Waist circumference (cm) 80.7±8.7 88.5±6.8 77.7±7.4 <0.001

Glucose (mg/dL) 91.6±7.7 96.0±8.8 89.9±6.5 <0.001

Triglyceride (mg/dL) 100.1±74.9 150.6±92.6 93.0±83.3 <0.001

Total cholesterol (mg/dL) 198.4±32.5 206.9±36.3 195.1±30.4 0.007

HDL cholesterol (mg/dL) 58.3±14.4 49.6±11.5 61.8±14.1 <0.001

LDL cholesterol (mg/dL) 118.5±31.5 128.9±36.4 114.4±28.4 0.001

Systolic blood pressure (mmHg) 106±12 112.0±9.8 103.9±12.0 <0.001

Diastolic blood pressure (mmHg) 69±9 72.6±8.4 66.9±8.8 <0.001

HOMA-IR 1.20±0.78 1.8±1.0 0.95±0.5 <0.001

Insulin (μU/ml) 5.17±3.1 7.49±3.82 4.25±2.08 <0.001

Hemoglobin A1c (%) 5.5±0.2 5.56±0.27 5.46±0.22 0.001

AST (IU/L) 20.0±6.2 22.1±7.3 19.1±5.5 0.002

ALT (IU/L) 18.5±11.6 24.5±12.9 20.9±17.9 <0.001

GGT (IU/L) 24.4±20.0 33.1±22.2 20.9±18.0 <0.001

BUN (mg/dL) 13.7±3.1 13.8±3.3 13.7±3.1 0.843

Creatinine (mg/dL) 0.86±0.18 0.94±0.17 0.82±0.18 <0.001

TyG index 8.4±0.6 8.75±0.53 8.27±0.51 <0.001

The values are expressed as the mean ± standard deviation or frequency (percentage). Abbreviations: NAFLD, nonalcoholic fatty liver disease; BMI, body mass index;

HDL, high density lipoprotein; LDL, low-density lipoprotein; HOMA-IR, homeostasis model assessment of insulin resistance; AST, aspartate aminotransferase; ALT,

alanine aminotransferase; GGT, gamma-glutamyl transferase; BUN, blood urea nitrogen; TyG, triglyceride-glucose.

https://doi.org/10.1371/journal.pone.0213692.t001
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the family Leuconostocaceae was negatively associated with obese NAFLD in blood and fecal

microbiota. However, the genus under Leuconostocaceae was Leuconostoc, notWeissella.

Associated bacteria including Deinococcus-Thermus and Deferribacteres phyla were much

more varied in the blood than in the feces. The decrease in Deferribacteriales incertae sedis

was highly associated with obese NAFLD, which was in contrast to lean NAFLD. Anaerobios-

pirillum and its family Succinivibrionaceae were negatively associated with lean NAFLD, but

Table 2. Demographic and clinical characteristics of subjects with NAFLD vs. control according to their body habitus.

Variable Lean NAFLD (n = 27) Lean control

(n = 168)

P Obese NAFLD (n = 49) Obese control

(n = 24)

P

Age (years) 46.7±8.3 42.6±8.2 0.013 44.6±8.1 45.5±9.6 0.666

Male gender 18 (66.7) 66 (39.3) 0.008 37 (75.5) 17 (70.8) 0.669

BMI 22.8±2.6 21.8±1.8 <0.001 27.3±1.6 26.2±1.1 0.001

Waist circumference (cm) 81.9±4.9 76.8±6.2 <0.001 92.0±4.7 87.7±4.1 <0.001

Glucose (mg/dL) 95.1±9.4 89.9±6.7 0.007 96.5±8.5 91.5±5.1 0.003

Triglyceride (mg/dL) 111.8±52.6 92.1±46.1 0.031 172.0±102.9 165.3±162.9 0.830

Total cholesterol (mg/dL) 205.6±34.1 194.2±30.3 0.068 207.6±37.8 202.4±33.4 0.564

HDL cholesterol (mg/dL) 54.1±12.9 62.2±13.1 0.001 47.2±9.9 52.3±14.8 0.134

LDL cholesterol (mg/dL) 130.0±28.6 114.1±28.7 0.005 128.2±40.3 121.3±28.2 0.454

Systolic blood pressure (mmHg) 108.3±10.1 103.3±11.3 0.020 114.0±9.1 111.2±13.8 0.370

Diastolic blood pressure (mmHg) 71.0±9.4 66.5±8.4 0.008 73.5±7.7 71.8±9.4 0.398

HOMA 1.42±0.89 0.95±0.5 0.009 2.02±1.01 1.13±0.46 <0.001

Insulin (μU/ml) 5.93±3.33 4.22±2.08 0.011 8.35±3.83 4.98±1.91 <0.001

Hemoglobin A1c (%) 5.51±0.27 5.45±0.22 0.155 5.59±0.26 5.54±0.22 0.422

AST (IU/L) 20.2±4.8 19.2±5.8 0.330 23.1±8.2 19.3±3.5 0.006

ALT (IU/L) 20.9±10.1 16.0±10.8 0.021 26.6±13.8 18.3±7.8 0.002

GGT (IU/L) 29.1±20.0 20.2±17.9 0.013 35.2±23.2 28.4±19.3 0.214

BUN (mg/dL) 14.6±2.7 13.6±3.1 0.154 13.4±3.5 14.1±2.7 0.360

Creatinine (mg/dL) 0.90±0.18 0.81±0.18 0.009 0.97±0.17 0.90±0.16 0.144

The values are expressed as the mean ± standard deviation or frequency (percentage). Abbreviations: NAFLD, nonalcoholic fatty liver disease; BMI, body mass index;

HDL, high density lipoprotein; LDL, low-density lipoprotein; HOMA-IR, homeostasis model assessment of insulin resistance; AST, aspartate aminotransferase; ALT,

alanine aminotransferase; GGT, gamma-glutamyl transferase; BUN, blood urea nitrogen; TyG, triglyceride-glucose.

https://doi.org/10.1371/journal.pone.0213692.t002

Table 3. Comparison of alpha diversity index between control and NAFLD groups using fecal and blood microbiota OTU table.

Chao1 PD

Total Fecal Blood Fecal Blood

Overall Control 113.5 ± 24.15 130.0 ± 88.05 18.88 ± 3.08 8.93 ± 6.18

NAFLD 107.0 ± 27.01 124.5 ± 92.76 17.92 ± 3.40 8.24 ± 5.84

P 0.097 0.618 0.011 0.400

BMI <25 Control 112.8 ± 23.98 129.3 ± 91.05 18.84 ± 3.03 8.92 ± 6.37

NAFLD 108.4 ± 26.67 128.3 ± 131.2 18.19 ± 3.15 8.66 ± 9.20

P 0.681 0.841 0.165 0.95

BMI�25 Control 114.09 ± 23.58 129.7 ± 64.16 19.28 ± 3.61 8.93 ± 5.49

NAFLD 106.2 ± 27.44 111.3 ± 55.14 17.78 ± 3.56 7.73 ± 2.56

P 1.0 0.098 1.0 0.201

Data are presented as mean ± SD. Abbreviations: NAFLD, nonalcoholic fatty liver disease; OTU, operational taxonomic unit; PD, phylogenetic diversity; BMI, body

mass index.

https://doi.org/10.1371/journal.pone.0213692.t003

Fecal and blood microbiota and NAFLD

PLOS ONE | https://doi.org/10.1371/journal.pone.0213692 March 14, 2019 6 / 15

https://doi.org/10.1371/journal.pone.0213692.t002
https://doi.org/10.1371/journal.pone.0213692.t003
https://doi.org/10.1371/journal.pone.0213692


Fecal and blood microbiota and NAFLD

PLOS ONE | https://doi.org/10.1371/journal.pone.0213692 March 14, 2019 7 / 15

https://doi.org/10.1371/journal.pone.0213692


very positively associated with obese NAFLD. The decrease in rhizobial Beijerinckiaceae and

archeal Methanosarcinaceae was highly correlated with obese NAFLD.

Discussion

The results of the present study demonstrated that lean subjects had different characteristics in

blood microbiota in terms of the presence of NAFLD. Furthermore, lean subjects with

NAFLD showed different features in blood and gut microbiota compared with obese subjects

with NAFLD. These data suggest that the distinctive features of blood microbiota might be

diagnostic for the presence of NAFLD in lean population, which may be used as a point-of-

care test for early detection of lean NAFLD.

The results suggested unique pattern of reduced PD in fecal and blood microbiota in lean

subjects with NAFLD. The beta diversity did not distinguish between subjects with NAFLD

and controls. By contrast, when the subjects were stratified based on their BMI, fecal micro-

biota discriminated subjects with NAFLD in the lean subgroup and in the overall subjects.

Interestingly, blood microbiota showed reduced richness in bacterial diversity in lean individ-

uals with NAFLD in contrast to lean controls or obese group. However, such diversity was not

distinct in fecal microbiota between subjects with or without NAFLD, or between subgroups

with or without obesity (Table 3). Lower PD in fecal microbiota in overall subjects with

NAFLD was in consistent with recent studies.[18, 33] We observed a markedly distinct micro-

bial community in fecal microbiota of subjects with lean NAFLD but not in blood. This dis-

crepancy in ecological diversity between blood and fecal microbiota might have resulted from

their genuine compositional difference due to the presence of intestinal barrier, filtering func-

tion of the liver, and the role of immune cells.[34] In addition, blood microbiota may have oral

source other than gut-derived bacteria.[35] Excluding the possibilities of confounding effects

of oral disease in the study participants might help clarify phylogenetic characteristics more

evidently.

The vast majority of human gut microbiota consist of three bacterial phyla, namely, Bacter-

oidetes, Actinobacteria, and Firmicutes.[36] Dysbiosis between beneficial and pathogenic bac-

teria may lead to obesity, insulin resistance, and NAFLD.[37] In particular, both Bacteroidetes

and Firmicutes (phylum) encode carbohydrate-digesting enzymes metabolizing complex car-

bohydrates to the short-chain fatty acids. A greater number of these enzymes are encoded by

Bacteroidetes than by Firmicutes.[38] Obese subjects have an increased Bacteroidetes/Firmi-

cutes ratio and higher short-chain fatty acids than lean subjects.[39] Previous studies on fecal

Fig 1. Beta-diversity of principal coordinate analysis plots of fecal and blood microbiota by weighted UniFrac based on the cumulative sum scaling

normalized count of operational taxonomic units. NOTE. Nonalcoholic fatty liver disease (black squares) and control (gray circles) groups from total (A

[fecal], D [blood]), lean (B [fecal], E [blood]), and obese (C [fecal], F [blood]) samples.

https://doi.org/10.1371/journal.pone.0213692.g001

Table 4. Beta diversity by PERMANOVA (permutaional multivariate analysis of variance) the weighted UniFrac

distance between control and NAFLD group.

PERMANOVA

Fecal Blood

pseudo-F P pseudo-F P
Total NAFLD (n = 76) 2.797 0.002 0.958 0.461

Lean NAFLD (n = 27) 3.021 0.001 0.798 0.752

Obese NAFLD (n = 49) 0.768 0.728 0.862 0.654

Abbreviation: NAFLD, nonalcoholic fatty liver disease.

https://doi.org/10.1371/journal.pone.0213692.t004
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microbiota reported a higher Bacteroidetes/Firmicutes ratio in NAFLD patients than in con-

trol.[14, 15] This finding is in line with our results on fecal microbiota showing many bacteria

which belong to Firmicutes were decreased in subjects with NAFLD regardless of body habitus

(Table 5). However, the level of lactobacilli (family Leuconostocaceae and Weisella) was lower

only in obese subjects with NAFLD. In addition, the quantities of Desulfovibrionaceae were

significantly different between obese NAFLD and lean NAFLD. These differences in the com-

position of gut microbiota suggest different characteristics in terms of gut dysbiosis, body hab-

itus, and phenotypes of NAFLD. Previous studies on the association between gut microbiota

and obesity and metabolic diseases reported controversial results on BMI and lactobacilli; a

negative[40] and a positive correlation[41, 42] were found between lactobacilli and BMI.

Based on the potential linkage among disturbances in the intestinal immune system, bacte-

rial translocation, and pathological consequences including obesity, metabolic and liver dis-

eases,[20] we aimed to investigate the potential role of blood microbiota in discriminating the

phenotypes of NAFLD. In our results, the negative correlation of the presence of NAFLD, par-

ticularly obese NAFLD, and lactobacilli Leuconostocaceae was also observed in blood micro-

biota, as well as in fecal microbiota. However, other bacteria showed mixed features, especially

in obese NAFLD; for example, reduced Actinomycetales and Deferribacteriales versus

increased Aeromonadales (Table 6). Among these organisms, distinctly different correlations

were observed in Deferribacteriales incertae sedis and Aeromonadales between lean NAFLD

Table 5. Significant taxa in fecal microbiota related with NAFLD groups by regression analysis.

taxa Total NAFLD Lean NAFLD Obese NAFLD

Proteobacteria/Gammaproteobacteria/Enterobacteriales/

Enterobacteriaceae -1.239 -1.507

Citrobacter -1.398 -1.602

Proteobacteria/Deltaproteobacteria/Desulfovibrionales/

Desulfovibrionaceae -1.407 -2.107 1.440

Biophila -1.831 -2.451

Firmicutes/Bacilli/Lactobacillales/

Leuconostocaceae -1.168

Weissella -1.245

Firmicutes/Clostridia/Clostridiales/

Ruminococcaceae/Fastidiosipila -1.790 -1.823 -2.001

Ruminococcaceae/Faecalibacterium -1.183 -1.637

Peptostreptococcaceae/Filifactor -1.518

Gracilibacteraceae/Gracilibacter -1.168

Lachnospiraceae/Roseburia -1.120 -0.996

Firmicutes/Negativicutes/Selenomonadales/

Acidaminococcaceae/Acidaminococcus -1.159 -1.706

Proteobacteria/Betaproteobacteria/Burkholderiales/

Sutterellaceae/Parasutterella -1.192 -1.118

Firmicutes/Erysipelotrichia/Erysipelotrichales/

Erysipelotrichaceae/Turicibacter -1.078 -1.381

Erysipelotrichaceae/Erysipelothrix -0.942 -1.306

Data are presented as coefficient values (log2 ratio) driven by zero-inflated Gaussian mixture model (fitZig) using metagenomeSeq package, adjusted by age, sex, and

BMI. Data with only significant coefficients (log2 ratio≳1) and results (p-value <0.05 corrected by Bonferroni multiple comparison correction) calculated from 90

genera, 41 families, and 11 phyla are shown. P-value 0.0005, 0.0013, and 0.0045 were applied for genus, family and phylum level respectively. Original p-value were

provided in S1 Table.

https://doi.org/10.1371/journal.pone.0213692.t005
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Table 6. Significant taxa in blood microbiota related with NAFLD groups by regression analysis.

taxa Total NAFLD Lean NAFLD Obese NAFLD

Deinococcus-Thermus/ -0.926 -1.605

Deinococci/Deinociccales/Deinococcaceae -1.118 -1.771

Deinococcus -1.172 -1.756

Firmicutes/Bacilli/Lactobacillales/

Leuconostocaceae -0.950 -2.250

Leuconostoc -0.880 -2.253

Firmicutes/Clostridia/Clostridiales/

Clostridiaceae/Clostridium sensu stricto -0.657 -1.562

Clostridiaceae/Clostridium IV -1.088

Actinobacteria/Actinobacteria/Actinomycetales/

Norcadioidaceae -1.267 -1.267

Norcadioidaceae/Norcadioides -1.194 -0.820

Micrococcaceae -1.247

Microbacteriaceae/Chryseoglobus -1.562

Proteobacteria/Alphaproteobacteria/Rhizobiales/

Beijerinckiaceae -1.009 -2.255

Beijerinckia -1.788

Sphingomonadales/

Erythrobacteraceae 1.015

Rhodobacteraceae 1.828

Deferribacteres/Deferribacteres/Deferribacteriales/

Deferribacteriales incertae sedis 0.607 1.515 -2.001

Caldithrix 0.600 1.688

Proteobacteria/Gammaproteobacteria/Aeromonadales/

Succinivibrionaceae -1.349 2.215

Anaerobiospirillum -0.989 2.259

Xanthomonadales/

Xanthomonadaceae -1.229

Lysobacter -1.189

Oceanospirillales/Alcanivoracaceae/Alcanivorax 1.104

Legionellales/Legionellaceae/Legionella -1.032

Verrucomicrobia/Verrucomicrobiae/Verrucomicrobiales/

Rubritaleaceae -1.398

Rubritalea -1.419

Euryarchaeota/Methanomicrobia/Methanosarcinales/

Methanosarcinaceae -2.182

Proteobacteria/Deltaproteobacteria/Desulfobacteriales/

Desulfobacteraceae -0.767 -1.431

Bacteroidetes/Flavobacteriia/Flavobacteriale/

Flavobacteriaceae/Maribacter -1.670

Actibacter -1.472

Aestuariicola 1.100

Bacteroidetes/Bacteroidia/Bacteroidales/

Porphyromonadaceae/Parabacteroides -1.699

Proteobacteria/Betaproteobacteria/Burkholderiales/

(Continued)
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and obese NAFLD. Previous studies demonstrated that some microbial metabolites, such as

lipopolysaccharide, are found in the plasma of obese subjects and correlated with the degree of

liver inflammation. This finding suggests the role of a mediator in the development and pro-

gression of NAFLD.[43, 44] Lean subjects with NAFLD might have different degrees of liver

injury from obese patients, as was shown in a recent study from Hong Kong.[45] In addition,

lean NAFLD is associated with decreased likelihood of having insulin resistance and hypercho-

lesterolemia compared with overweight or obese NAFLD in a Western study.[6] Taken

together, patients with lean NAFLD may have different pathogenetic mechanisms and clinical

characteristics other than BMI from obese NAFLD, which might be linked with different gut

and blood microbiota profiles in a complex manner. Direct evidences to the pathogenetic link

between blood microbiota and NAFLD phenotypes are scarce. However, increase in Proteo-

bacteria in the blood of the obese NAFLD group was observed, which shares similar gut micro-

biome characteristics of alcoholic liver diseases and cirrhosis.[46, 47] The opposite results of

the correlation between the abovementioned bacteria and phenotypes of NAFLD (i.e., lean

versus obese) might reflect the different degrees of bacterial translocation and resultant low-

grade inflammatory state as well as the degrees of insulin resistance and NAFLD between lean

and obese subjects.[22, 48, 49]

The results of the present study might serve as a microbiota signature to predict NAFLD

particularly in lean subjects, before progression of NAFLD to significant fibrosis or cirrhosis.

In addition, a point-of-care test based on our blood microbiota characteristics might be antici-

pated if these results are properly validated in the near future. On the contrary, this study has

several limitations when interpreting our results. First, clinical characteristics including risk

factors for NAFLD or disease severity of NAFLD of the study subjects who volunteered for

health checkup were deemed similar to those of the general population, compared to patients

with established NAFLD or nonalcoholic steatohepatitis. In addition, although the characteris-

tics of the study participants harbors concerns of selection bias, the prevalence of overall par-

ticipants or lean subgroup was similar to those in the literature.[1, 50–53] Second, lack of

histological data prevented further analysis on the relationship between gut and blood micro-

biota features and the severity of liver disease. Third, the small number of NAFLD subjects

(n = 49 [obese] and n = 27 [lean], respectively) could have contributed the absence of differ-

ence in alpha and phylogenetic diversity of the blood and fecal microbiota. Diagnosis of

NAFLD based on ultrasonographic findings might also have influenced on the number of

cases due to the limited sensitivity of ultrasound to detect hepatic steatosis.[54] Other diagnos-

tic technologies with higher sensitivity for hepatic steatosis such as magnetic resonance imag-

ing proton density fat fraction and controlled attenuation parameter using transient

elastography were not available as baseline health checkup data.[55] Finally, the results need to

be validated in other populations with different characteristics such as body habitus or dietary

habits. In addition, causative relationship between the distinctive features of microbiota and

NAFLD, instead of merely innocent bystander, warrants further investigation.

Table 6. (Continued)

taxa Total NAFLD Lean NAFLD Obese NAFLD

Comamonadaceae/Delftia 1.269

Data are presented as coefficient values (log2 ratio) driven by zero-inflated Gaussian mixture model (fitZig) using metagenomeSeq package. Data with only significant

coefficients (log2 ratio≳1) and results (p-value <0.05 adjusted by Bonferroni multiple comparison correction) calculated from 607 genera, 259 families, and 42 phyla

are shown. P-value 8.2�105, 1.9�104, and 0.0012 were applied for genus, family and phylum level respectively. Original p-value were provided in S2 Table.

https://doi.org/10.1371/journal.pone.0213692.t006
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In conclusion, our study revealed distinctive features of gut and blood microbiota in terms

of the presence of lean and obese NAFLD. The predictive role of the microbiota profiles

requires further validation in a larger cohort with histological data.
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justed and adjusted P-values are provided.
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