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7 Moore Center for Science, Conservation International, Arlington, Virginia, United States of America,
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Abstract

Carnivores have long been used as model organisms to examine mechanisms that allow

coexistence among ecologically similar species. Interactions between carnivores, including

competition and predation, comprise important processes regulating local community struc-

ture and diversity. We use data from an intensive camera-trapping monitoring program

across eight Neotropical forest sites to describe the patterns of spatiotemporal organization

of a guild of five sympatric cat species: jaguar (Panthera onca), puma (Puma concolor), oce-

lot (Leopardus pardalis), jaguarundi (Herpailurus yagouaroundi) and margay (Leopardus

wiedii). For the three largest cat species, we developed multi-stage occupancy models

accounting for habitat characteristics (landscape complexity and prey availability) and mod-

els accounting for species interactions (occupancy estimates of potential competitor cat

species). Patterns of habitat-use were best explained by prey availability, rather than habitat

structure or species interactions, with no evidence of negative associations of jaguar on

puma and ocelot occupancy or puma on ocelot occupancy. We further explore temporal

activity patterns and overlap of all five felid species. We observed a moderate temporal

overlap between jaguar, puma and ocelot, with differences in their activity peaks, whereas

higher temporal partitioning was observed between jaguarundi and both ocelot and margay.

Lastly, we conducted temporal overlap analysis and calculated species activity levels across

study sites to explore if shifts in daily activity within species can be explained by varying lev-

els of local competition pressure. Activity patterns of ocelots, jaguarundis and margays were

similarly bimodal across sites, but pumas exhibited irregular activity patterns, most likely as

PLOS ONE | https://doi.org/10.1371/journal.pone.0213671 March 12, 2019 1 / 23

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Santos F, Carbone C, Wearn OR,

Rowcliffe JM, Espinosa S, Lima MGM, et al. (2019)

Prey availability and temporal partitioning modulate

felid coexistence in Neotropical forests. PLoS ONE

14(3): e0213671. https://doi.org/10.1371/journal.

pone.0213671

Editor: Mark S. Boyce, University of Alberta,

CANADA

Received: October 18, 2018

Accepted: February 26, 2019

Published: March 12, 2019

Copyright: © 2019 Santos et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All data were

provided by the Tropical Ecology Assessment and

Monitoring (TEAM) Network, a collaboration

between Conservation International, the

Smithsonian Institute and the Wildlife Conservation

Society. All raw data are available on the TEAM

website www.teamnetwork.org.

Funding: This study was funded by Tropical

Ecology Assessment and Monitoring (TEAM)

Network, a collaboration between Conservation

International, the Smithsonian Institution, and the

http://orcid.org/0000-0002-1886-446X
http://orcid.org/0000-0001-8258-3534
http://orcid.org/0000-0002-7416-7167
http://orcid.org/0000-0002-2203-7598
https://doi.org/10.1371/journal.pone.0213671
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0213671&domain=pdf&date_stamp=2019-03-12
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0213671&domain=pdf&date_stamp=2019-03-12
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0213671&domain=pdf&date_stamp=2019-03-12
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0213671&domain=pdf&date_stamp=2019-03-12
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0213671&domain=pdf&date_stamp=2019-03-12
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0213671&domain=pdf&date_stamp=2019-03-12
https://doi.org/10.1371/journal.pone.0213671
https://doi.org/10.1371/journal.pone.0213671
http://creativecommons.org/licenses/by/4.0/
http://www.teamnetwork.org


a response to jaguar activity. Activity levels were similar among sites and observed differ-

ences were unrelated to competition or intraguild killing risk. Our study reveals apparent

spatial and temporal partitioning for most of the species pairs analyzed, with prey abun-

dance being more important than species interactions in governing the local occurrence and

spatial distribution of Neotropical forest felids.

Introduction

Species interactions comprise one of the most important processes maintaining the structure

of local biological diversity, including how species with similar ecological requirements can

coexist [1]. Among various existing interspecific ecological relationships, competitive and pre-

dation interactions, and their reciprocal effects, have the potential to affect diversity patterns

equally, each of which could either limit or promote coexistence [2].

Following the competitive exclusion principle, if two or more species locally compete for

the same limiting resource, then interspecific competition may exclude a particular species

from the community, suggesting an upper boundary in the number of species that can be

accommodated within a niche space [3,4]. However, competing species can coexist when

diverging in their niche space, partitioning one or more niche axes: space, time and food

resources [5]. Although, whether the ultimate outcome is either coexistence or exclusion is pri-

marily determined by whether partitioning of the dominant interactions occurs—be that com-

petition or predation [2].

In mammalian communities, carnivore species are a model group to study mechanisms of

coexistence, because they occupy higher trophic levels and exhibit greater similarity in mor-

phology and ecological requirements [6–9]. Niche differentiation has been well documented

as a mechanism allowing coexistence between sympatric carnivores, for which responses to

competition have been attributed to their prey size spectrum [10–12], habitat preferences [13–

15] and daily activity rhythms [6,16–18]. Competition between carnivores and their spatial dis-

tribution may be determined by not only predation on non-carnivore prey, but also the per-

ceived or real risk of intraguild killing. Much evidence is available on interspecific killing

involving different pairs of coexisting carnivore species [19–22], especially felids, which may

have sweeping effects on carnivore community structure. Carnivores’ body size and morpho-

logical similarity have a strong influence on interspecific competition and killing, and it is

expected that interspecific interactions should be higher when species pairs are closer in size

[23].

Carnivore population density scales to prey productivity [24,25], but the high expansion of

human activities, conducting to habitat loss, landscape modification, poaching and human-

carnivore conflicts, are leading carnivores populations to decline worldwide [26–28]. As a con-

sequence of altered anthropogenic landscapes, reductions in both carnivores and prey abun-

dance may have an impact on carnivores’ mechanisms of resource selection, temporal activity

patterns, and space use [6,26,27,29].

Despite the key role of trophic interactions in carnivore species coexistence, understanding

how much competition and risk of intraguild killing influence large carnivore assemblages

remains a challenge. This is mainly due to the difficulty in obtaining data across broad spatial

scales required to study these ecological processes, as well as sufficient records of species that

frequently occur at low densities and/or exhibit elusive behavior. Most studies discuss species

interactions at local scales (e.g.,[11,15,30]), but how predators change their behavior as they
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move through heterogeneous landscapes remains largely unexplored. Conducting multi-site

comparisons of spatial distributions and activity budgets of co-existing wild cats will be impor-

tant to improve understanding of mechanisms of coexistence.

In this study, we combine data from long-term camera trap monitoring at eight protected

forest sites across the Neotropics. Up to six cat species could be found within each study site

[31–33]: jaguar (Panthera onca), puma (Puma concolor), ocelot (Leopardus pardalis), jagua-

rundi (Herpailurus yagouaroundi), margay (Leopardus wiedii) and oncilla (Leopardus tigrinus).
These species spanning a wide range in bodies sizes, with jaguar and puma being the large

predators (31–158 kg and 29–120 kg, respectively) and ocelot, jaguarundi, margay and

oncilla figuring as smaller cat species (8–15 kg, 4.5–9 kg, 3–9 kg, and 1.5-3kg, respectively)

[13,34–38].

We investigated patterns of niche differentiation between five of the six cat species (exclud-

ing oncilla due to limited records) occurring at our Neotropical forest sites (Fig 1), focusing on

mechanisms of coexistence at sites under varying levels of integrity. Our study areas are under

different landscape contexts (i.e. fragmented or intact forests), and contain different species

compositions and abundances of felids and their prey base [31,33]. We used the following

approaches: (1) occupancy modelling, as a measure of habitat use, to identify which character-

istics (landscape complexity and prey availability) influence habitat use of jaguar, puma and

ocelot; (2) occupancy modelling incorporating occupancy estimates of potential competitive

cat species to explore spatial co-occurrence among the same three largest Neotropical cats; (3)

modelling of temporal activity patterns of the five species (jaguar, puma, ocelot, jaguarundi

and margay) to assess and quantify overlaps in temporal activity between felids pairs that are

more closely matched in size; (4) modelling of temporal activity patterns within Neotropical

cat species to compare temporal activity patterns and activity levels across study sites with dif-

fering felid assemblages and potential levels of competition.

Fig 1. Target Neotropical cat species and summary hypotheses. From large to smaller species: A–Jaguar, B–Puma; C–Ocelot, D–Jaguarundi, and E–Margay. Spatial

partitioning hypothesis (including jaguar, puma and ocelot): 1) prey availability would be more important in determining felid habitat use than landscape covariates; 2)

based on body weight ratios, jaguar exert negative effects on puma and ocelot, and puma exerts negative effects on ocelot. Temporal partitioning hypothesis (including

all five species): higher temporal segregation between species pairs experiencing higher chances of competition. Black arrows indicate strong relationship and grey

arrows indicate weaker relationship. Photos by: CAX (A, C and E), COU (B) and YAN (D).

https://doi.org/10.1371/journal.pone.0213671.g001
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Competition and interspecific killing are predicted according to body weight relationships.

Food competition should be higher when the larger species was less than twice the size of the

smaller one [23], while the intensity of interspecific killing should reach a maximum when the

larger species is 2.0–5.4 times as large as the smaller one [21]. Based on that, pumas and jaguars

are more likely to compete for food as they have similar body sizes and their distribution are

modulated by similar prey [6,11]. The same relationship is expected among ocelot, jaguarundi

and margay [6,8]. In addition, jaguars and pumas should exert a strong killing pressure on the

ocelot and, in turn, ocelots on the two smaller species, jaguarundi and margay [6].

We hypothesized that there would be spatial segregation among the three largest cats, with

large-bodied prey availability being a key factor for jaguar and puma, and small-bodied prey

availability for ocelot; but we expected that puma, being a subordinate competitor of jaguar,

will vary in its selection of optimal habitat as an avoidance response to jaguar [39]. We there-

fore hypothesized negative effects of jaguar on puma and ocelot occupancy, negative effects of

puma on ocelot, and neutral effects of either puma or ocelot on jaguar occupancy. Regarding

temporal interactions, we hypothesized, all else being equal, higher temporal segregation

between species pairs experiencing higher chances of competition and intraguild killing (i.e.,

jaguar-puma and puma-ocelot higher than jaguar-ocelot; and ocelot-jaguarundi and jagua-

rundi-margay higher than ocelot-margay). Lastly, we are interested if differences within spe-

cies across sites would be explained by competition pressure, and we hypothesized that there

would be temporal shifts, on both activity patterns and activity levels, within the same species

between study sites due to low or high occurrence of large predators.

Methods

Study sites

We used data from eight Neotropical forest sites distributed across six countries in Central

and South America (Table 1; Fig 2). Data are part of the Tropical Ecology Assessment and

Monitoring (TEAM) Network, a global standardized monitoring program for terrestrial verte-

brates based on camera-trapping.

Our study sites consist of intact protected forest landscapes, in which formal protected

areas were either indistinguishable from the continuous forest in surrounding areas (i.e., CAX,

COU, CSN, and YAS) or fragmented forest landscapes in which protected areas were embed-

ded within a patchwork mosaic of forest and non-forest areas (i.e., BCI, MAN, VB, and YAN)

(See categorization criteria for landscapes in [33]).

Table 1. Location and area of the eight Neotropical forest sites analysed in this paper.

Code Study site, Country Longitude, Latitude Area (ha) Landscape typea

BCI Barro Colorado Nature Monument, Panama -79.851, 9.092 32631.22 FR

CAX Caxiuanã National Forest, Brazil -51.534, -1.775 471192.63 CF

COU Cocha Cashu—Manu National Park, Peru -71.409, -11.843 1704505.53 CF

CSN Central Suriname Nature Reserve, Suriname -56.207, 4.741 1630233.61 CF

MAN Manaus, Brazil -59.935, -2.415 1198944.01 FR

VB Volcan Barva Transect, Costa Rica -84.021, 10.422 49502.04 FR

YAN Yanachaga National Park, Peru -75.303, -10.316 293234.07 FR

YAS Yasuni Research Station, Ecuador -76.458, -0.609 1040686.74 CF

aClassification based on [33]: FR–fragmented forest and CF–continuous forest.

https://doi.org/10.1371/journal.pone.0213671.t001
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Data collection

We collected data on five Neotropical cats, Panthera onca (jaguar), Puma concolor (puma),

Leopardus pardalis (ocelot), Herpailurus yagouaroundi (jaguarundi), and Leopardus wiedii
(margay), following the standardized TEAM protocol for monitoring terrestrial vertebrates

[40,41]. The sampling design consisted of a set of regular grids of 60 camera trap stations at a

density of one camera per 2 km2 (spaced approx. 1.4 km apart), corresponding to a sampling

area of� 120 km2 at each site (Fig 2). Camera traps were deployed once a year at the same

camera trap station, remaining in the field for at least 30 days (ranged 30–60 days) during the

dry season at each site (or months with <200 mm mean rainfall). Each year of survey (i.e, 60

camera traps X 30 days) was defined as a sampling period.

The total number of sampling period varies between study sites (2–10 years of data),

because monitoring protocol was implemented in different moments at each site. Therefore

for occupancy modeling, we performed exploratory analysis to select the ideal time interval to

group the data for analysis, and then used five sampling periods at each study site (except for

Manaus where only two surveys were available) (Table 2, See Data Analysis for details).

Fig 2. Location of the eight Neotropical study sites and a map of a typical camera trap array at Caxiuanã National Forest (CAX), Brazil. Each point

represents a camera trap location. Camera traps are distributed in two sampling arrays of 30 camera traps each (North and South of Caxiuanã River) See site

codes on Table 1.

https://doi.org/10.1371/journal.pone.0213671.g002
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Camera traps (Models RM45 and HC500, Reconyx Inc.) were setup to take three pictures per

trigger with no delay between photos, working 24 hours/day. No baits were used to attract ani-

mals (Detailed information about the implementation protocol is available on [40,41]).

In addition to the target species’ data, we collected information on prey species of jaguar,

puma, and ocelot using the images from the camera traps. The use of camera trap images to

assess prey availability has been adopted in previous carnivore studies, for both occupancy

[8,42,43] and detection probabilities [44]. This was possible because the method allows record-

ing a wide range of ground-dwelling mammals and birds, most of them medium to large-sized

species. Data from mammals and birds with body size < 1Kg, recognized as jaguarundis and

margays’ prey [8,10,34], were not recorded because their occurrence would be probably

under-represented given the method used [40].

Ethics statement

Field activities have been developed in partnership with each protected area site. During this

research, the animals were photographed through camera traps in their natural environment

and none of them were captured, handled or sacrificed. Therefore, there are no protocols to be

reported to institutional or governmental agencies that regulate animal research.

Covariates

For each camera trap station we recorded variables associated with landscape complexity (ele-

vation range, distance to the nearest water source, slope and the Normalized Difference Vege-

tation Index—NDVI), food resources (prey availability) and species interactions (occupancy

estimates of potentially competing cat species). Elevation and slope data were calculated using

a digital elevation model (DEM) based on the NASA Shuttle Radar Topographic Mission

(SRTM), with spatial resolution of one arc-second (� 30m). Elevation range was obtained by

the difference between the higher and lower elevation of camera traps station within each

study site. Normalized Difference of Vegetation Index (NDVI), was generated from eMODIS

Table 2. Sampling period analysed, sampling effort, number of detections (Detc), records per 100 CT/days (RAI), and estimated occupancy probability1 (ψ) from

single-season models of the Neotropical cats’ species in eight protected forest sites.

Site Number of Sampling

periods (years)

Effort Jaguar Puma Ocelot Jaguarundi Margay Oncilla

Detc RAI C (±SE) Detc RAI C (±SE) Detc RAI C (±SE) Detc RAI C Detc RAI ψ Detc RAI ψ
BCI 5 (2010–2014) 9199 0 - - 0 - - 196 2.13 0.74

(0.17)

10 0.11 - 4 0.04 - 0 - -

CAX 5(2010–2015) 11395 36 0.32 0.45

(0.14)

58 0.51 0.43

(0.03)

43 0.38 0.57

(0.09)

2 0.02 - 28 0.25 - 0 - -

COU 5 (2011–2015) 9481 46 0.49 0.50

(0.16)

45 0.47 0.46

(0.03)

283 2.98 0.67

(0.14)

9 0.09 - 9 0.09 - 6 0.06 -

CSN 5 (2008–2012) 11107 39 0.35 0.47

(0.16)

39 0.35 0.43

(0.04)

127 1.14 0.60

(0.10)

22 0.20 - 33 0.30 - 2 0.02 -

MAN 2 (2010–2011) 4600 10 0.22 0.34

(0.09)

5 0.11 0.37

(0.06)

18 0.39 0.63

(0.09)

4 0.09 - 0 0 - 0 - -

VB 5 (2012–2016) 6971 2 0.03 - 37 0.53 - 21 0.30 0.62

(0.11)

0 - - 1 0.01 - 1 0.01 -

YAN 5 (2011–2015) 8249 23 0.28 0.37

(0.08)

17 0.21 0.47

(0.03)

60 0.73 0.60

(0.09)

16 0.19 - 7 0.08 - 0 - -

YAS 5 (2012–2016) 11833 30 0.25 0.62

(0.18)

54 0.46 0.43

(0.04)

167 1.41 0.66

(0.12)

18 0.15 - 17 0.14 - 0 - -

1Occupancy probability and standard deviation estimated by model averaging.

https://doi.org/10.1371/journal.pone.0213671.t002
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NDVI scenes (Vegetation monitoring). We obtained the mean NDVI at a buffer of a 500

meters radius around each camera trap point. Data of DEM and eMODIS were downloaded

from the U.S. Geological Survey [45] and the estimates were made using QGIS software [46].

Distance to the nearest water source (river/streams) was estimated using hydrological shape-

files from HydroSHEDS [47] in QGIS software [46] and the R package Fossil [48].

Prey availability at each camera trap station was inferred using the camera data of potential

prey species (ground-dwelling mammals and birds; See S1 Table for prey species list at each

site). Firstly, prey images were separated assuming a 1-hour interval between consecutive pho-

tos to ensure the records were independent [49,50]. Prey availability was defined as the ratio

between the total number of prey records and the sampling effort for each camera trap station

in each sampling period [51–53]. We subdivided prey species into two categories [44]: 1)

Large-bodied prey: mammals and birds with a body mass greater than 15 kg, and 2) Small-

bodied prey, mammals and birds with a body mass less than 15 kg. These categories are based

on dietary preferences of jaguar and puma (which mostly consume medium to large-bodied

prey [54,55]), and ocelot (which consume small to medium-bodied prey [10,18]). Prey body

mass data were obtained from the EltonTraits1.0 database that includes information on key

descriptors of the foraging ecology of birds and mammals [56]. We normalized all covariates

and used Spearman’s rank correlations to test for collinearity. Only covariates with low corre-

lation (ρ> 0.70) were used (S2 Table).

Data analysis

Spatial partitioning. We used single-species occupancy models with a likelihood-based

approach to estimate the occupancy (ψ) of jaguar, puma and ocelot, and assess habitat use and

intraguild interactions, while accounting for detection probability [57,58]. Because data for

jaguarundi, margay, and oncilla were restrict to few records in most of the study sites and/or

species were not recorded during consecutive sampling periods (preventing species pairs com-

parisons), we did not perform occupancy analysis for these three smaller cats (Information

about detections and relative abundance were given at Table 2).

We organized the detection histories of each species by dividing each of the sampling peri-

ods into sampling occasions of five days each [53]. We adopted a single-season analytical

approach, wherein data from five sampling periods at each study site were stacked, as indepen-

dent surveys in modelling procedures. Single-season modelling was chosen because our data

were too sparse to fit multi-season occupancy models, which estimates additional parameters

(colonization/extinction). Also, this was based on the assumption that annual variation in

detection probability and occupancy (and the relationship between occurrence and habitat

covariates) would be minimal over the time-frame of the study. We therefore developed mod-

els to formally assess the effect of time (multiple sampling periods) in occupancy and detec-

tion. We allowed psi (ψ) to be constant and to vary according to study site and time (i.e.,

sampling period) or a combination of both, and then we assumed the same for detection prob-

ability (p) using all possible combinations between parameters and covariates. Model selection

results provided no evidence that time had a marked influence on occupancy and detection

probabilities (S3 Table). From this, we relaxed the basic occupancy modelling assumption that

sites are closed to population changes [58,59] and broadly interpreted occupancy as a measure

of local habitat use, instead to “true occupancy”, considering that the presence of a species at a

camera trap station occurs completely by chance [57].

We used a multi-stage approach while modelling the occupancy of each cat species (similar

to [9,60]). We first built models to find the main covariates influencing for detection probabil-

ity prior to performing model selection to investigating habitat use [57]. We constrained
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occupancy to be constant (ψ (.)) and allowed p to vary by a single covariate or a combination

of covariates (additive effects) [57]. The covariates used in detection (p) models reflect habitat

characteristics and/or access to resources that likely to affect animal behavior and, conse-

quently, species’ detection. We also introduced a categorical variable, referring to “study site”,

which account for factors that can influence detection due to slightly different field procedures

and local habitat characteristics. Covariates for p were: elevation range, NDVI, large-bodied

prey availability for jaguar and puma models, and small-bodied prey availability for ocelot

models, and study site.

For the next stage, we developed a second model set to determine the most influential habi-

tat factors for occupancy. We allowed ψ to vary by a single covariate or a combination of two

covariates, and fixed detection covariate(s) to those selected from the previous step for each

species. We selected covariates for occupancy models that may reflect habitat preferences: ele-

vation range, distance to the nearest water source, NDVI, availability of small-bodied prey and

large-bodied prey. We hypothesized that prey availability would have a positive effect on habi-

tat use, with large-bodied prey being a key factor for jaguar and puma, and small-bodied prey

for ocelot. We were interested in the possible difference between the two most similar species

(jaguar and puma), so we expected that puma will vary in its selection of optimal habitat.

Finally, in a third step we used single-species occupancy models to examine species co-

occurrence by including occupancy estimates of jaguar, puma and ocelot from previous step as

a potential covariate in predicting occupancy. By assuming that the influence of larger-bodied

species is more intense on smaller ones, either by interference competition or interspecific kill-

ing [6,19,23], we built models to examine if habitat use is significantly influenced by the occur-

rence of a reciprocal competitor. In this way, for example, if jaguar are significantly

influencing the spatial distribution (and hence habitat use) of puma or ocelot, then we would

expect a significant association in the model. We therefore hypothesized negative effects of jag-

uar on puma and ocelot, negative effects of puma on ocelot, and neutral effects of either puma

or ocelot on jaguar occupancy. We evaluated species interactions models including the most

supported habitat models (ΔAIC < 2 from step 2) in the model set for each species, and com-

paring AIC values and models weights [9,61].

We assessed candidate models and estimated parameters for each modelling step using the

R package Unmarked [62,63]. We performed a multi-model selection procedure based in Akai-

ke’s Information Criterion (AIC) and model fits were evaluated using the overdispersion

parameter (ĉ) on the saturated model (including all covariates, e.g., ψ (small+large+elevation

+dist.water+ndvi)) by running a goodness-of-fit test [57,61]. Models with ΔAIC < 2 were con-

sidered to have substantial support and ĉ was used to correct AIC for overdispersion (QAIC)

[61]. When several models obtained AIC support, we applied model averaging to obtain occu-

pancy and detection estimates, using the R package AICcmodavg [61,64].

Additionally, we assessed the relative importance of each covariate by summing the Akaike

weights (AICwt/QAICwt) of all the models in which that covariate was present [61]. When

models set do not contain the same number of each covariate, we divided the cumulative

model weights for a particular variable by the number of models containing that variable to get

an average weight (AICwt/QAICwt) [61]. We used beta coefficients to determine whether the

influence of a covariate was negative or positive and calculated the 95% confidence intervals

for the model averaged estimates to discriminate the importance of individual variables

[57,61,64]. When 95% CIs of beta estimates did not include 0, we concluded that the given

covariate has a strong effect on habitat use [61].

Temporal partitioning. We used time and date recorded in the images of all camera traps

and surveys to describe daily activity patterns, activity levels and temporal overlap. Analyses

were performed when species presented a minimum of ten images at each study site [65].

Felid coexistence in Neotropical forests
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Time of day was converted to solar time (i.e., adjusted according to sunrise and sunset) and

anchored in the equinoctial algorithm (pi/2 and pi�3/2) for all study sites, allowing the com-

parison between different time zones [66,67], using the Insol package in R [66].

Activity pattern (i.e., distribution of activity of an animal throughout the day) was estimated

using the Kernel circular density function [68,69]. To quantify overlap between daily activities

we used the overlap coefficient (Δ), which varies from 0 (no overlap) to 1 (total overlap). We

used Δ1 and Δ4 estimators when the number of images was <75 and�75, respectively [69,70].

Confidence intervals were obtained from 999 smoothed bootstrap samples. Analyses were con-

ducted using the Overlap and Activity packages in R [70,71]. As the overlap coefficient is a

descriptive method, we compared the activity patterns of each species pairs using Watson’s

two-sample test (U2) in the Circular package, which is a homogeneity test for circular data,

where values for U2 inform if two samples belong to the same parent population (H0) or differ

significantly [65,72]. Based on morphometric similarity and greater probability of competition

and intraguild killing [23], we hypothesized higher temporal segregation between species pairs

experiencing higher chances of competition.

Finally, we investigated whether activity patterns and activity levels (i.e., proportion of

hours/day that an animal is active) within the same species across study sites can be explained

by competitive pressure. We expected temporal shifts within the same species between study

sites due to low or high occupancy of large predators. We then assumed that the pressure of

competition and/or killing risk would be determined by a ranking based on occupancy esti-

mates of jaguar, puma and ocelot from previous spatial analyses (and camera trap rates for jag-

uarundi and margay). Intra- and inter-specific comparisons of activity levels were

implemented using a Wald test in the Activity package [71].

Results

Five years of camera-trapping at each of the eight study sites amounted to a total sampling

effort of 72,835 camera trap days across 480 camera trap stations, yielding 186 records of jag-

uar (Panthera onca), 255 of puma (Puma concolor), 915 of ocelot (Leopardus pardalis), 81 of

jaguarundi (Herpailurus yagouaroundi), 99 of margay (Leopardus wiedii) and nine of oncilla

(Leopardus tigrinus) (Table 2).

Spatial partitioning

Detection probability. Two ‘best’ models supported large-bodied prey, study site and ele-

vation as the main predictors for jaguar detection probability, while highest-ranking models

indicated large-bodied prey and elevation as important in explaining puma detectability (S4

Table). For ocelot, the two top-ranked models for detectability included all possible predictors.

On the basis of AIC/QAIC and model weights, we selected the most parsimonious model of

each species while running occupancy models, capturing the main features of the data [57] (S4

Table).

Occupancy probability. Two occupancy models were supported for jaguar in habitat

models set (AIC < 2), with a significant positive effect of large-bodied prey availability (Figs

3A and 4A; S5 Table). As expected, adding puma and ocelot occupancy estimates had no influ-

ence on jaguars’ habitat use (Figs 3B and 4B; S6 Table). Even with the covariate ‘puma occu-

pancy’ being first-ranked in the models set accounting for species interactions, only large-

bodied prey strongly affected jaguars’ habitat use (based on 95% IC; Fig 4B and S6 Table).

For puma, five models received support, but none of the best-ranked covariates (distance to

the nearest water source, NDVI, and elevation) represented a strong effect on habitat use (Figs

3A and 4A; S5 Table). Adding jaguar and ocelot occupancy estimates improved the fit of puma
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models incorporating habitat covariates (Fig 3B), but both species had no significant influence

on pumas’ habitat use (Fig 4B and S6 Table).

Five models had substantial support for ocelot occupancy with a positive effect of small

prey availability emerging as the most important predictor. Elevation, large-bodied prey,

NDVI and distance to nearest water source were also ranked highly, but only small-bodied

prey had a significant effect (Figs 3A and 4A; S5 Table). Model set accounting for species inter-

actions also supported five models, but only small-bodied prey had a large effect on ocelot

occupancy, contradicting our hypothesis (Figs 3B and 4B; S6 Table).

Temporal partitioning

There was a moderate degree of temporal overlap between jaguar, puma and ocelot activity

patterns, with the peaks of activity differing between most of the analyzed species pairs (Fig 5;

S7 Table). We observed an overlap average of Δ = 0.69 for jaguar-puma, Δ = 0.63 for jaguar-

ocelot, and Δ = 0.66 for puma-ocelot. Higher coefficients of overlap were observed for jaguar-

puma and jaguar-ocelot pairs at CSN (Δ> 0.79) and lower overlap was observed for jaguar-

puma at YAN (Δ = 0.50) and jaguar-ocelot at YAN and YAS (Δ< 0.50). Considering the

smaller cats, pairwise activity overlap in ocelot-jaguarundi were low for all sites (average of Δ =

0.39), while ocelot-margay on average overlapped by Δ = 0.69. Jaguarundis and margays could

only be compared across two sites, but showed the lowest activity overlap (mean Δ = 0.20), due

to their nearly opposite temporal activity (Fig 6; S7 Table). Low numbers of jaguarundi and

Fig 3. Relative importance of environmental and interaction covariates on the habitat use of three Neotropical forest cats. Row A–Sum of models weights

(AICwt/QAICwt) of occupancy models to assess habitat factors; row B–Sum of models weights (AICwt/QAICwt) of occupancy models to assess both habitat factors

and species interactions.

https://doi.org/10.1371/journal.pone.0213671.g003
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margay photographic detections prohibited detailed analysis of overlap activity for all study

sites, but we observed from other 6 records of jaguarundi (CAX: 2; MAN: 4) and 21 records of

margay (BCI: 4; COU: 9; VB: 1; YAN: 7) that species were active in the same time period

observed during overlap analysis described above (Fig 6), with jaguarundi active during day-

light and margay being more active during night time.

Examining temporal shifts within the same species across study sites, we observed that jag-

uars were mainly active during the day at CAX, YAN and YAS sites (>60% of activity between

06:00h and 18:00h), but exhibited a cathemeral activity pattern at CSN. Nevertheless, differ-

ences were only significant when these sites were compared with COU, where jaguar exhibited

a nocturnal peak (40% of activity between 18:00h – 00:00h) (Fig 7; S8 Table). Puma showed a

non-uniform pattern, showing different activity peaks across sites (Fig 7). Overlap within

Fig 4. Covariates effect on habitat use of jaguar, puma and ocelot. Beta estimates with 95% of confidence interval estimated from single-season

species models: row A—Beta estimates from occupancy models to assess habitat factors; row B–Beta estimates from occupancy models to assess both

habitat factors and species interactions (The beta estimates has an effect on the dependent variable when confidence interval do not include 0).

https://doi.org/10.1371/journal.pone.0213671.g004
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puma populations was on average Δ = 0.71 (range = 0.50–0.88) and activity pattern differed

significantly (S8 Table).

Ocelots were mainly active during crepuscular and nocturnal periods (>60% of activity

between 18:00h and 06:00h). The only exception was CSN, where ocelots showed a cathemeral

pattern. Temporal overlap within ocelots across sites was high (mean Δ = 0.79; range = 0.67–

0.88). Jaguarundis exhibited a completely diurnal pattern across all sites with a bimodal activity

peaks around dawn and dusk, while margays were strictly nocturnal (~70% of activity between

18:00h and 06:00h). Both species showed no significant differences in their activity period

across sites (Fig 7; S8 Table).

The overall activity levels (proportion of time spent active) were 0.58 (SE = 0.09) for jaguar,

0.47 (SE = 0.09) for puma, 0.45 (SE = 0.07) for ocelot, 0.32 (SE = 0.07) for jaguarundi and 0.33

(SE = 0.07) for margay (Fig 8). Considering the effect of predator pressure, activity level of

puma was higher at VB, where jaguar had the lowest abundance. However, differences are sta-

tistically significant only between VB and YAN sites (Wald χ2 = 4.67, df = 1, p = 0.03; S9

Table).

Ocelot daily activity levels were higher at CSN, which differed significantly to other sites

(except when compared with CAX and BCI). Ocelot activity level was also higher at BCI,

where large-bodied cats are missing and ocelots are essentially the top-predator. Differences

were statistically significant between BCI and three other sites: MAN (Wald χ2 = 5.66, df = 1,

p = 0.01), VB (Wald χ2 = 6.30, df = 1, p = 0.01) and YAS (Wald χ2 = 10.03, df = 1, p< 0.01).

Jaguarundis and margays were active for a similar proportion of time, regardless of ocelot

occupancy patterns. Margay activity was higher at CAX, where ocelot occupancy was lower,

but differences were not significant (Fig 8; S9 Table).

Discussion

Our study explored how environmental and species interactions affect the habitat use and

activity patterns of forest felid assemblages in the New World tropics. The patterns and assem-

blage structure observed at our eight study sites are congruent with previous studies in Neo-

tropical forests [6,29,31], with the two large-bodied cats consistently showing their highest

abundances in large tracts of protected forests, the ocelots being numerically dominant at

most of the sites, regardless of their conservation status and forest extent, and the smaller cats

appearing as less abundant species.

Species habitat use and spatial partitioning

Occupancy models accounting for detection probability showed evidence that niche differenti-

ation between jaguar, puma, and ocelot according to prey preferences is a potential mechanism

of coexistence. Jaguars and ocelots occupancy was closely related to prey availability [24,55],

which helps explain differences across sites. Large-bodied prey were more abundant at sites

where jaguar occupancy estimates were higher (e.g. YAS and COU). Conversely, low incidence

of large-bodied prey abundance matched low rates of jaguar occupancy (e.g. MAN and YAN).

At YAN site, for example, two important ungulate prey species of jaguar—brown brocket deer

(Mazama nemorivaga) and white-lipped peccary (Tayassu pecari)—failed to be recorded dur-

ing the entire camera trapping monitoring.

Fig 5. Coefficient of overlap in daily activity patterns between jaguar, puma and ocelot in Neotropical forest sites.

X and Y axis represent time of the day and activity density, respectively. Overlap is represented by blue shaded areas

and Δ is the coefficient of overlap (varying from 0 –no overlap to 1 –total overlap). (�) indicates significant differences.

Study site is indicated in the top left corner.

https://doi.org/10.1371/journal.pone.0213671.g005
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Even though models reflected some well-known relationships, like jaguars and pumas pre-

senting positive associations with water bodies [14,73], only prey availability emerged as an

important covariate in determining jaguars’ space use. Puma was not significantly influenced

by any covariates. Also, models evaluating species interactions showed no evidence of avoid-

ance of puma to the jaguar, and vice-versa. These findings agree with other studies that shown

no spatial segregation between jaguars and pumas [44,74], and potentially species may adopt

other mechanisms to allow coexistence, as the use of different food resources and/or partition-

ing of their activity period [6,67,75].

Our hypothesis that smaller-bodied predators behaviorally evade larger apex predators was

framed based on the notion that the local distribution of a top predator may be shaped by

resource availability, while the distribution of a mesopredator is largely related to predation

risk [76]. Although we did not find a significant influence of jaguar on the spatial distribution

of puma, our results suggest that jaguar selects habitats based on high prey abundance, whereas

puma display sufficient plasticity in habitat use, indicated by the lack of significance for any

covariates in the top-ranked models, and this probably reduces convergence in the use of simi-

lar resources with jaguar [15,77]. Pumas are considered to be more opportunistic predators,

being observed at fragmented and human-modified forest landscapes, which have a heavier

impact on jaguars [15,73,77].

Fig 6. Coefficient of overlap in daily activity patterns between ocelot, jaguarundi and margay in Neotropical forest sites. X and Y

axis represent time of the day and activity density, respectively. Overlap is represented by blue shaded areas and Δ is the coefficient of

overlap (varying from 0 –no overlap to 1 –total overlap). (�) indicates significant differences. Study site is indicated in the top left

corner.

https://doi.org/10.1371/journal.pone.0213671.g006

Fig 7. Intraspecific variation in daily activity patterns in felid species across eight Neotropical forest sites. X and Y axis represent time of the day and activity

density, respectively.

https://doi.org/10.1371/journal.pone.0213671.g007
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Regarding ocelots, its distributions were strongly influenced by small-bodied prey rather

than other habitat covariates or by occupancy estimates of the two largest predators. These

findings supported the idea that ocelot does not meaningfully compete for food resources with

either jaguar or puma [18]. Competition between puma and ocelot is expected to be higher

when jaguar is relatively abundant [78], but competitive exclusion between these species is at

best unlikely given the lack of interaction we observed. Our results agree with other studies

showing spatial co-occurrence between pumas and ocelots [6,74], and observing that detection

Fig 8. Daily activity level of felid species across the eight Neotropical forest sites. Proportion of active hours per day. Error bars represent the standard error.

https://doi.org/10.1371/journal.pone.0213671.g008
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probability can be higher when the other species were present in the same camera trap station

[6]. Furthermore, ocelot occupancy was high both at sites where the two largest-bodied felids

were either absent (BCI) or rare (YAN and MAN), but also at sites where these apex predators

were relatively common (YAS and COU).

Our results are according with studies involving other sympatric mammalian carnivores. In

general, species with similar ecological requirements were often more likely to overlap spatially

[7], and habitat features were more important in maintaining the distribution and structure of

carnivore guild than species interactions [9].

Temporal partitioning

Another coexistence mechanism explored in our study was temporal partitioning [6,79]. In sup-

port of our temporal segregation hypothesis, we observed that the activity patterns of species

pairs (i.e. jaguar-puma, jaguar-ocelot and puma-ocelot) overlapped to a moderate degree, and

were significantly different in pairwise comparisons of activity at most sites. Because of the

greater morphological similarity between jaguar and puma, we expected a lower degree of over-

lap between them compared to jaguar-ocelot and puma-ocelot pairs, but this was not confirmed.

However, other studies observed that top predators exhibit similar daily activity cycles

[44,80,81], indicating that some degree of temporal overlap would be expected from the similar

dietary profiles of jaguars and pumas. It is more likely that the general temporal patterns can be

related to the attractiveness of food resources, rather than avoidance of a larger predator [11,67].

Jaguar and puma are able to adjust their activity to reduce their foraging energy expendi-

ture, by matching their activity to that of their main prey species [30,67]. We cannot rule out

the option that prey abundance and some other habitat characteristics affects temporal activity

[29], and consequently temporal partitioning between apex predators. Indeed, the lowest over-

lap between jaguar and puma was observed at the Ecuadorian site (YAN, Δ = 0.51). Perhaps

this is likely associated with the absence of some species and low abundance of large-bodied

prey, as stated above. Further analysis considering more detailed habitat characteristics and

human disturbance factors are required to understand the relationship between the daily activ-

ities of predators facing differences in prey availability.

Considering the smaller felids, our hypotheses of low overlap in activity patterns were con-

firmed for both the ocelot-jaguarundi and jaguarundi-margay species pairs, which are closest

in terms of body weights [34]. This is consistent with a study in the Brazilian Atlantic Forest

[6], which suggested that jaguarundis reduce interference competition with the larger ocelots,

and avoid competition with similarly-sized margays, by selecting opposite time-periods for

their activities. Also, even with ocelots and margays overlapping in their activity patterns,

some adaptations for an arboreal life permit the margays to explore a different niche from oce-

lots [34,36]. A study in Atlantic forest remnant using co-occurrence analysis found no evi-

dence that ocelot have a negative influence on how the margay use the habitat [8].

A final approach in our activity pattern analysis was to investigate if competitive pressure,

here measured as occupancy of larger-bodied predators (or abundance for jaguarundi vs mar-

gay), could explain shifts in activity patterns and levels across study sites. Daily activity patterns

within pumas across sites reinforced the notion that temporal shifts in jaguar activities have an

impact on sympatric pumas, which tends to concentrate its activities away from the peak of

jaguar activity. Moreover, when jaguars are virtually absent, as in VB, pumas extended their

activity, with diurnal peaks between mid-day and dusk. Similar results were observed in daily

activities patterns of puma and leopard in areas with high or low abundances of apex predators

(jaguar and tiger, respectively), likely as an evasive response in side-stepping direct encounters

when dominant species are most active [29,82].
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Ocelots showed temporal segregation in relation to jaguars and pumas, but temporal activi-

ties were unlikely modulated by intraguild killing pressure, and nocturnal activity was also

observed across several Neotropical landscapes [6,12,83–85]. Degree of overlap between ocelot

populations did not support our hypothesis of competitive pressure, and ocelots were active

during similar periods of the day at BCI, where large cats are absent, VB and MAN, where

detection rates were low, and YAS and COU, where large cats were far more common.

Jaguar was active for the same proportion of time in most of the sites, as well as pumas, jag-

uarundis and margays, and differences in activity across sites were mostly not significant.

These felid species were therefore active during similar amounts of time regardless of the

occurrence of larger predators. Despite significant differences in activity levels of ocelots, no

clear pattern could be identified across sites with either higher or lower occurrence of top

predators. Due to the large effect found between ocelots’ habitat use and small-bodied prey in

our occupancy analysis, we expect that further studies evaluating factors other than competi-

tion pressure of a larger predator may explain differences on activity levels.

Conclusions

This is the first study providing a large-scale insights into the co-occurrence of five forest

hyper-carnivore species throughout the Neotropical region, assessing patterns across protected

areas of differing size and intactness. We have shown that jaguar, puma and ocelot exhibit

clear spatial preferences at local to landscape scales according to prey availability. We found

that prey availability is more important for felid space-use than either landscape variables or

species interactions, which likely supports the notion of multi-species convergence on produc-

tive prey sites, rather than competitive interactions.

Competition was more important in explaining spatial and temporal segregation among

jaguars and pumas, than between either of these apex predators and ocelot. Otherwise, inter-

specific competition played an important role between ocelot and smaller sympatric cats [18],

since both the local occupancy and circadian activity rhythms of ocelots affect jaguarundi and

margay.

A recent global-scale study of co-occurrence of sympatric carnivores found that similar-

sized species sharing the same temporal activity patterns and dietary habits were more likely to

co-occur than expected by chance [7]. Although, the study used a categorization to describe

general activity patterns and diet, not capturing variations on carnivores’ behaviour at a partic-

ular study area. Indeed, our results showed that some spatial and temporal overlapping may

occur, mainly between the three largest species, but go further assessing finer-scale of resource

availability and diurnal rhythms, detecting niche partitioning in a local scale and differences in

felids’ behaviour across study sites. In this paper, we highlight the importance of understand-

ing the implications of interspecific interactions to conservation and management strategies,

particularly in terms of rapidly declining carnivore populations, which may have major

impacts on the diversity of lower trophic levels [2].
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80. Ávila Nájera DM, Chávez C, Lazcano Barreto MA, Mendoza GD, Perez-Elizalde S. Overlap in activity

patterns between big cats and their main prey in northern Quintana Roo, Mexico. Therya. 2016; 7: 439–

448. https://doi.org/10.12933/therya-16-379
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