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Abstract

Purpose

Vessel wall imaging (VWI) using T1 dark blood MRI can depict inflammation of intracranial
arteries in patients with cerebral vasculitis. Recently, 3D VWI sequences were introduced at
3 Tesla. We aimed to compare 2D and 3D VWI for detection of intracranial vessel wall
enhancement (VWE) in patients suspected of cerebral vasculitis.

Methods

44 MRI scans of 39 patients were assessed that included bi-planar 2D T1 and whole-brain
3D T1 SPACE dark blood VWI pre and post contrast. Visibility and VWE were analyzed in
31 pre-specified intracranial artery segments. Additionally, leptomeningeal and parenchy-
mal contrast enhancement was assessed.

Results

Overall, more arterial segments were visualized with 3D VWI (p<0.0001). Detection of VWE
showed fair agreement between 2D and 3D VWI (k = 0.583). On segmental level, more
VWE was detected in intradural ICA by 2D VWI (p<0.001) and in VA V4 segment by 3D VWI
(p<0.05). 3D VWI showed more leptomeningeal (p<0.05) and parenchymal (p<0.01) con-
trast enhancement. In patients with positive diagnosis of cerebral vasculitis, sensitivity was
of 67% (2D and 3D VWI) and specificity was 44% (2D VWI) and 48% (3D VWI); more VWE
was seen in arteries distal to VA and ICA compared to non-vasculitic patients.
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Conclusion

2D and 3D VWI differed in the ability to detect VWE. Whole brain coverage with better evalu-
ability of VAs and distal intracranial artery segments, and depiction of more parenchymal
and leptomeningeal enhancement make 3D VWI more favorable. As VWE in arteries distal
to VA and ICA may be used for discrimination of vasculitic and non-vasculitic patients, future
increase in spatial resolution of 3D VWI sequences may be beneficial.

Introduction

CNS vasculitis is a rare but potentially devastating disease that requires high diagnostic cer-
tainty and fast initiation of treatment. Particularly for primary angiitis of the CNS (PACNS) or
secondary brain artery inflammation due to undiagnosed underlying systemic disease, the
diagnosis remains challenging. For PACNS, biopsy of the leptomeninges and cortex remains
the gold standard [1, 2]. However, several studies showed that sensitivity of invasive histopath-
ologic diagnosis remains only 50-75% leading to many false negative results [3-5]. Standard
MRI with MRA may depict large artery stenosis, parenchymal lesions, or parenchymal/lepto-
meningeal contrast-enhancement but lacks specificity to distinguish vasculitic stenosis [5-7].
The invasive technique digital subtraction angiography (DSA) detects intracranial vasculitis
with a good sensitivity (60-90%), especially stenoses of the large and medium-sized intracra-
nial vessels. Though, it misses most of the changes in smaller vessels or non-stenotic vasculitic
lesions and may not differentiate between vasculitis and reversible cerebral vasoconstriction
syndrome (RCVYS) resulting in a very low specificity for intracranial vasculitis (6-30%) [5, 7].

Since the first description of vessel wall enhancement (VWE) in CNS vasculitis using high-
resolution vessel wall imaging (VWI) MRI [8], many studies have demonstrated that VWI
sequences can detect and discriminate vasculitic lesions from other vasculopathies such as ath-
erosclerotic plaques or RCVS, which DSA often cannot discriminate [9-16]. In VWI MRI, 2D
high-resolution T1w and T2w TSE sequences using blood-suppression are usually employed to
visualize focal wall lesions and VWE [17, 18]. However, these sequences suffer from long imag-
ing times since two orthogonal planes are needed for accurate lesion detection, and limited spa-
tial coverage of whole brain arteries. The latter necessitates exact planning of scan area in case
of visible stenotic lesions on MRA or parenchymal damage that may point into the direction of
vessel wall pathology, but may the complete burden of vessel wall pathology may still be missed.

Recently, 3D VWI MRI sequences with variable refocusing flip angles were introduced
which offer isotropic spatial resolutions, larger whole-brain coverage, and shorter acquisition
times, at cost of slightly lower in-plane resolutions [19-21]. Furthermore, an improvement of
the signal to noise in the vessel wall and of the contrast to noise vessel wall versus lumen in 3D
versus 2D VWI sequences was described [22]. However, 3D sequences still lack validation for
clinical use in patients with suspected intracranial large artery vasculitis or vasculopathy.

In this prospective study, we compared a 3D black blood VWI sequence with whole-brain
coverage at 3 Tesla with 2D VWI in two orthogonal planes for the detection and characteriza-
tion of VWE in a cohort of patients with clinical suspicion of intracranial vasculitis.

Methods
Patients

This single-center prospective observational study was approved by the ethical review board of
the University of Freiburg Medical Center/Germany and was registered in the German

PLOS ONE | https://doi.org/10.1371/journal.pone.0213514 March 8,2019 2/14


https://doi.org/10.1371/journal.pone.0213514

@ PLOS | O N E 3D vs 2D contrast-enhanced MRI vessel wall imaging at 3 Tesla in suspected cerebral vasculitis

Clinical Trial Register (ID: DRKS00009518). Patients were included between 07/2015 and 03/
2016 if there was clinical suspicion of primary CNS vasculitis, large vessel CNS vasculopathy,
or secondary involvement of intracranial arteries in systemic vasculitis. Written informed con-
sent was obtained. All clinical diagnoses were confirmed by a senior rheumatologist who ana-
lyzed the diagnostic criteria for vasculitis S1 Table. Thereby, the rheumatologist had access to
all clinical data including all neuroradiological imaging reports but was blinded to the readers’
evaluation of the study.

MRI protocol

All examinations were performed on a 3 Tesla MRI scanner (MAGNETOM Prisma, Siemens,
Erlangen, Germany) with a 64-channel coil. The MRI protocol included a standard DWI
sequence, a 3D multi-slab TOF MRA sequence of the arteries at the circle of Willis, followed
by two orthogonally placed 2D T1 TIRM and one 3D T1 SPACE fatsat dark blood VWI
sequences (MRI parameters are summarized in Table 1). Both 2D slabs had thickness of
31mm with limited vessel coverage. Thus, exact placement of these 2D slabs was planned indi-
vidually by an experienced MRI radiologist aiming to cover possible intracranial stenosis or
vessel luminal abnormalities as visualized on TOF MRA. Thereby, a suitable combination of
two orthogonal planes was chosen for the affected vessel course (e.g. axial and coronal planes
in MCA stenosis). If no obvious stenosis/luminal abnormality was present, standard axial and
coronal planes were placed over the circle of Willis. The 3D VWI sequence had whole brain
coverage including the upper neck (to the level of 4" cervical vertebra). After intravenous
administration of contrast media (Prohance, 0.5M) and a fixed delay of 4 min, first the 2D and
then the 3D VWI sequence were repeated.

Image analysis

Images were evaluated on PACS workstation by two neuroradiologists: one junior reader and
one senior reader (2 and 13 years of neuroimaging experience, respectively) that were blinded
to clinical data. 2D and 3D VWI were analyzed in separate sessions after inspection of the TOF
MRA and DWI images for potential vessel stenosis and ischemic changes. The following 31
pre-specified intracranial artery segments were assessed: ICA extradural (C1-C5 segment) and
intradural (C6/7 segment); vertebral artery (VA) V3, V4, and V5; anterior cerebral artery
(ACA) Al, A2, and A3; middle cerebral artery (MCA) M1, M2, M3, and M4; posterior cerebral
artery P1, P2, and P3/4 (paired segments); and basilar artery (BA, non-paired). Both readers
evaluated the image quality of each arterial segment in consensus using a semi-quantitative

Table 1.

2D VWI—T1 TIRM dark blood 3D VWI—T1 SPACE fatsat dark blood
Slice orientation axial, coronal, or sagittal Sagittal
Field-of-view (FOV) 230x 201 mm 230 x 230 mm
Matrix 512x410 256 x 265
Slice thickness 2 mm (10% gap) 0.9 mm
Spatial resolution 0.45 x 0.45 mm 0.9 mm (isotropic)

(in-plane)

Number of slices 15 192
Scan time 4 min 6 sec 6 min 45 sec

MRI protocols of 2D and 3D VWI sequences at 3 Tesla.

https://doi.org/10.1371/journal.pone.0213514.t001
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score from 0-2: 0 = not visualized or not evaluable (severe artifacts); 1 = evaluable with some
artifacts or partially visualized, 2 = well evaluable and visualized). Presence of VWE was
assessed separately by each reader and was further classified as concentric or eccentric and
short- or long-segmental. Concentric VWE was defined if it involved the whole wall circum-
ference and was uniformly distributed; eccentric VWE if either only part of whole wall was
involved or if the enhancement of the wall circumference was non-uniformly distributed.
VWE was defined as short-segmental if seen only on a single slice (2mm) of the 2D VWI or if
revealed a longitudinal extension of < 2 mm on 3D VWI; long-segmental involvement was
defined if the extension of VWE as longer than 2 mm. Additionally, the presence of parenchy-
mal or leptomeningeal contrast-enhancement was evaluated on both 2D and 3D VWL. In the
case of differing results between the two readers, a consensus reading was performed.

Statistical analysis

Statistical analyses were performed using SAS 9.2 (SAS Institute Inc., Cary, NC, USA). Agree-
ment between two raters or between MRI VWI methods were assessed with Cohen’s kappa (k)
coefficient. We calculated simple «; or weighted « in case of more than two ordered categories.
Results from two raters (or MRI VWI methods) were compared with McNemar’s test, i.e. a
paired test comparing whether one rater more frequently produces positive results. In case of
more than two categories, a generalization of McNemar’s test was applied (Bowker’s test for
symmetry). When comparing the further characterization of VWE, only arterial segments that
showed VWE on both VWI sequences, were evaluated. Sensitivity and specificity were calcu-
lated with confidence limits based on the exact binomial distribution. Results of VWE in vas-
culitic and non-vasculitic patients were compared with Fisher’s exact test.

Results
Patients and diagnoses

44 MRI examinations from 39 patients were analyzed (mean age; 52.5 years, range 14-77
years; 62% female). In 26% of MRI scans (12/44 MRI), cerebral ischemia was diagnosed on
DWTI. Patient details including diagnosis of CNS vasculitis or alternative neurological diagno-
sis are summarized in S2 Table. 44% of patients (17/39) had a diagnosis of extracranial vasculi-
tis, systemic vasculitis, or other rheumatic disorder predisposing to secondary CNS vasculitis.
26% of patients (10/39) had a final diagnosis of intracranial CNS vasculitis, of these 50% (5/10)
were histopathologically proved by brain biopsy or other specimen in case of systemic vasculi-
tis (e.g. temporal artery in giant cell arteriitis). Of the patients with a diagnosis predisposing to
secondary CNS vasculitis 41% (7/17) were diagnosed with CNS vasculitis. In 46% of MRI
scans (21/44), an immunosuppressive medication was given prior to the MRI scan (median
duration of intake, 60 days).

Image quality and visualization of arterial segments

On 3D VWI, 86.4% (608/704) of paired arterial segments showed good image quality of the
arterial wall, 11.2% (79/704) were partially evaluable, and 2.4% (17/704) were not evaluable.
On the 2D VWI, 25.4% of paired arterial segments (179/704) were visualized with good image
quality, 47.4% (334/704) were limitedly evaluable and 27.1% (191/704) were not evaluable S3
Table. Overall, all arterial segments were better visualized/evaluable on 3D VWI (p<0.0001).
On 3D VWI, the extradural ICAs, VAs (V3-5 segments), and the peripheral artery segments
(A2, A3, M2-4, and P2 and P3/4) were better visible (p<0.0001). In addition, the BA was also
better evaluable on the 3D VWI (p<0.05). Arterial wall image quality was not different
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between 2D and 3D VWI for the proximal segments of the circle of Willis (intradural ICAs,
ACA A1, MCA M1, and PCA P1).

Detection and characterization of VWE:

Opverall in all analyzed arterial segments, VWE detected by reader consensus showed a fair agree-
ment (k = 0.583) between 2D (77/1364 positive segments) and 3D VWI (78/1364 positive seg-
ments; Table 2). At individual segment level, VWE in the intradural ICAs was more frequently
observed on 2D vs. 3D T1 VWI (p<0.001; Fig 1). Whereas in VA V4 segments, VWE was more
frequently seen on 3D compared to 2D VWI (p<0.05; Fig 2). For the remaining arterial segments,
VWE did not differ significantly between 2D and 3D VWI. When analyzed on a MRI scan level,
any VWE was seen in 59.1% (26/44) on 2D vs. 56.8% (25/44) on 3D VWI with a good agreement
(k = 0.76). 2D and 3D VWI showed a fair agreement for characterizing short vs. long segmental
VWE (k = 0.58) and a poor agreement for concentric vs. eccentric type of VWE (i = 0.05).

Comparing only the arterial segments that were imaged and well evaluable (image quality
score of 2) in both sequences (299/1364; S4 Table), VWE detected by reader consensus showed
a fair agreement (x = 0.592). Significantly more enhancement was observed on 2D VWI (26/
299 positive segments) compared to 3D VWI (13/299 positive segments; p<<0.001). Thereby,
2D VWI detected significantly more enhancement in the intradural ICA (19/72 vs. 7 /72 in 2D
vs 3D VWI; p = 0.0005). 2D and 3D VWI showed a fair agreement for characterizing short vs.
long segmental VWE (k = 0.43). The calculation of agreement for the concentric vs. eccentric
type of VWE was not possible.

Inter rater agreement of VWE

Inter rater agreement for VWE was fair on 2D VWI (x = 0.55) and good on 3D VWI (x =
0.65). For characterizing short vs. long segmental VWE, interrater agreement was poor on 2D

Table 2.

Arterial Segment 2D VWI 3D VWI P-value*
ICA, extradural 8.0% (7/88) 8.0% (7/88) 1.0000
ICA, intradural 23.9% (21/88) 8.0% (7/88) 0.0002
ACA, Al 3.4% (3/88) 2.3% (2/88) 0.3173
ACA, A2 1.1% (1/88) 3.4% (3/88) 0.1573
ACA, A3 0.0% (0/88) 1.1% (1/88) 0.3173
MCA, M1 6.8% (6/88) 4.5% (4/88) 0.1573
MCA, M2 12.5% (11/88) 10.2% (9/88) 0.1573
MCA, M3 0.0% (0/88) 1.1% (1/88) 0.3173
MCA, M4 0.0% (0/88) 1.1% (1/88) 0.3173
VA, V3 4.5% (4/88) 8.0% (7/88) 0.0833
VA, V4 19.3% (17/88) 33.0% (29/88) 0.0143
VA, V5 5.7% (5/88) 6.8% (6/88) 0.5637
Basilar artery 2.3% (1/44) 2.3% (1/44) 1.0000
PCA, P1 1.1% (1/88) 0.0% (0/88) 0.3173
PCA, P2 0.0% (0/88) 0.0% (0/88) NaN
PCA, P3/4 0.0% (0/88) 0.0% (0/88) NaN
All segments 5.6% (77/1364) 5.7% (78/1364) 0.8981

Frequencies of VWE on 2D and 3D VWI for all analyzed arterial segments. NaN = not a number.
*calculated with McNemar’s test.

https://doi.org/10.1371/journal.pone.0213514.t002
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Fig 1. 51-year-old female patient with neuroborreliosis, bilateral neuritis of 3rd nerve, and right MCA territory lenticulostriate infarct. TOF MRA
(targeted MIP, A) shows bilateral medium-grade long-segmental stenosis of intradural ICAs and left MCA M1 segment, and high-grade right MCA stenosis.
2D and 3D VWTI in coronal and axial views: Thin concentric VWE (white arrows) of right supraclinoid ICA is barely visible on 3D (B, D) and clearly visible on
2D (C, E) VWL Concentric VWE at left MCA bifurcation/proximal M2 (white arrowheads) is well visualized on both 2D (E) and 3D VWI (D).

https://doi.org/10.1371/journal.pone.0213514.9001

VWI (kx = 0.19) and fair on 3D VWI (x = 0.47). For the differentiation of concentric vs. eccen-
tric type of VWE, it was fair on 2D VWI (kx = 0.48) and poor on 3D VWI (x = 0.26).

The senior reader found significantly more VWE on 3D (71/1364 positive segments) vs. 2D
VWI (47/1364 positive segments; p<0.001; k = 0.56). For the junior reader, VWE was not sig-
nificantly different between 2D and 3D VWI (84 vs. 69 of 1364 segments, « = 0.45).

VWE in vasculitic versus non-vasculitic patients

In patients with a clinical diagnosis of CNS vasculitis, 10/15 of MRI scans showed any VWE
on the 2D and 3D VWI, resulting in a sensitivity of 67% (95%-CI: 38-88%). In patients with
diagnosis other than CNS vasculitis, VWE was seen in 16/29 on 2D and 15/29 on 3D VWI
resulting in a specificity of 44% (95%-CI, 26-64%) for the 2D and of 48% (95%-CI, 29-67%)
for the 3D sequence. From all patients with positive VWE, 38% (2D VWI) and 40% (3D VWI)
were diagnosed with CNS vasculitis, 58% (2D VWI) and 56% (3D VWI) had a different neuro-
logical diagnosis, and 4% (both VWI sequences) did not have an alternative neurological diag-
nosis, respectively.
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A

Fig 2. 68-year female patient with giant cell arteriitis and left MCA territory infarcts. CE-MRA of supraaortic arteries (A) shows bilateral long segmental irregular
VA stenosis involving right V3 and V4 as well as left V4 segments (white arrowheads) and long-segmental stenosis of left extra- and intracranial ICA (white arrows). 3D
VWI with multiplanar views (B-D) depicts multiple areas of long-segmental concentric VWE in bilateral V3 and V4 segments and left cervical/petrosal ICA (white
arrows). Due to limited coverage, 2D VWI shows only parts of the enhancing lesions in left petrosal ICA segment (black arrow in E).

https://doi.org/10.1371/journal.pone.0213514.g002

In all analyzed arteries (Table 3), significantly more VWE was encountered in vasculitic
patients (2D VWI: 37/465; 3D VWI: 36/465) compared to non-vasculitic patients (2D VWI:
40/899; 3D VWI: 42/899) on both sequences (2D: p = 0.0093, 3D: p = 0.02630). Considering
only arterial segments that were images and well evaluable arterial on both sequences (image
quality score of 2), again significantly more VWE was found in vasculitic patients compared to
non-vasculitic patients on both VWI sequences (2D VWI: p = 0.0163; 3D VWL p = 0.0117; S5
Table). On individual segment level, VWE was significantly more present in the MCA M1
(p =0.0213) and M2 (p = 0.0152) segments in vasculitic patients on 2D VWI and in the intra-
dural ICA segments (p = 0.0429) on 3D VWL Detailed characterization of VWE (short/long
segmental and concentric/eccentric) showed not difference between vasculitic and non vascu-
litic patients.

A subgroup comparison of VWE was performed analyzing only the peripheral arterial seg-
ments after exclusion of the proximal extradural and large transdural segments (VA V3-V5
and intradural-/extradural ICA segments). In these segments, significantly more VWE was
found in the vasculitic patients compared to the non vasculitic patients on both 2D (p<0.001)
and 3D (p = 0.0204) VWI sequences. Whereas no significant difference in VWE was found in
the excluded VA and ICA segments between the vasculitic and non-vasculitic patients.

Of the patients predisposing to secondary CNS vasculitis 47% (8/18) had intracranial VWE
in both sequences.
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Table 3.
Arterial Segment Vasculitic Patients Non-vasculitic Patients
2D VWI 3D VWI 2D VWI 3D VWI

ICA, extradural 6.7% 10.0% 8.6% 7.4%
ICA, intradural 36.7% 16.7% # 17.2% 3.4% #
ACA, Al 6.7% 3.3% 1.7% 1.7%
ACA, A2 3.3% 6.7% 0.0% 1.7%
ACA, A3 0.0% 0.0% 0.0% 1.7%
MCA, M1 16.7% * 10.0% 1.7% * 1.7%
MCA, M2 26.7% * 20.0% 5.2% * 5.2%
MCA, M3 0.0% 0.0% 0.0% 1.7%
MCA, M4 0.0% 0.0% 0.0% 1.7%
VA, V3 6.7% 13.3% 3.4% 5.2%
VA, V4 16.7% 33.3% 20.7% 32.8%
VA, V5 0.0% 3.3% 8.6% 8.6%
Basilar artery 6.7% 6.7% 0.0% 0.0%
PCA, P1 0.0% 0.0% 1.7% 0.0%
PCA, P2 0.0% 0.0% 0.0% 0.0%
PCA, P3/4 0.0% 0.0% 0.0% 0.0%
All wo ICA/VA segments 5.4% * 4.1% # 1.0% * 1.5% #
ICA/VA segments only 13.3% 15.3% 11.7% 11.4%
All segments 8.0% * 7.7% # 4.4% * 4.7% #

Comparison of VWE in all analyzed arterial segments between vasculitic and non-vasculitic patients. All wo ICA/VA
segments = all segments excluding ICA and VA segments. Significant difference of VWE between vasculitic and non-

vasculitic patients is indicated by * on 2D and * on 3D VW.

https://doi.org/10.1371/journal.pone.0213514.t1003

Brain parenchymal and leptomeningeal contrast-enhancement

Both readers detected contrast-enhancement in the brain parenchyma more frequently on 3D
VWI (38.6%; 17/44 MRI scans) versus 2D VWI (25%; 15/44 MRI scans; p<0.05). The presence
of leptomeningeal contrast-enhancement was also more commonly encountered on 3D with
(22.7%; 10/44) versus 2D VWI (2.3%; 1/44; p<0.01).

Discussion

In this study, we compared the detection and characterization of VWE of two commercially
available 2D and 3D MRI VWI sequences at 3 T within a prospective cohort of patients that
were examined under the clinical suspicion of intracranial vasculitis. 3D intracranial VWI
sequences were recently introduced for high-field MRI since they offer high isotropic spatial
resolutions with a good T1 contrast within clinically adequate scan times [21-23]. Our study
showed that using 3D VWI with whole brain coverage both peripheral arterial segments (A2,
P2, M2-4) and proximal segments, such as the extradural ICA, VA V3-5, and BA were better
evaluable compared to a 2D VWI protocol acquired in two orthogonal planes. This was mainly
attributed to the non-visualization of these vessel segments on both 2D planes due to limited
spatial coverage. In addition, scan time was slightly shorter for 3D (6:45 min) vs. 2D (8:12 min
for two orthogonal sequences) VWI protocol. For the detection of VWE, an overall fair agree-
ment was found between 2D and 3D VWI which further improved when any enhancement
per scan was regarded. At detailed analysis of arterial involved segments, VWE was more fre-
quently observed on 2D VWI at the intradural ICA segment which may be attributed to the
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Fig 3. 39-year-old male patient with possible migraine and high-grade MCA stenosis: 2D axial (A) and coronal (B)
VWI reveals short segmental distal MCA VWE (arrows) that resembles a concentric appearance. 3D VWI with axial
(C) and sagittal oblique (D) reformatted images: The latter image which is orientated perpendicular to MCA vessel
course shows that there is obvious eccentric VWE (arrow) which is not obvious on standard 2D views.

https://doi.org/10.1371/journal.pone.0213514.9003

higher spatial resolution and signal-to-noise ratio of the 2D sequence. The latter may improve
the visualization of faint VWE and the differentiation of VWE from closely enhancing venous
structures such as the cavernous sinus (Fig 1). However, the higher in-plane resolution of 2D
VWI sequences was at cost of a limited spatial coverage of the brain arteries compared to the
3D VWI sequence that covers the whole brain and upper cervical area. The latter was responsi-
ble for the better detection rate of VWE in the VA segments. A future direction to improve
spatial resolution of 3D black blood imaging with whole brain coverage [22, 24-26] at ade-
quate scan times may be the application of the recently introduced compressed sensing tech-
nology (CS-SPACE) [27].

Furthermore, the higher inter-rater agreement on 3D VWI was likely related to a superior
analysis of the whole vessel wall circumference with 3D isotropic data (Fig 3). Such 3D visuali-
zation allows for a better discrimination between VWE of an artery and an enhancing vein
being located adjacent to an artery [18]. Detailed characterization of VWE into concentric and
eccentric/short and long segmental showed only a fair agreement between both sequences.
This may again relate to differences in in-plane resolutions and 3D capabilities between both
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techniques. Both, high spatial resolution and 3D visualization are important to detect such fine
differences in VWE that have been shown to be of diagnostic relevance: vasculitic lesions
rather show a concentric VWE whereas atherosclerotic lesions mostly reveal an eccentric
enhancement [9, 11, 12, 28-31].

Despite the technical progress of VWI and the implementation of clinical diagnostic guide-
lines, biopsy remains the gold standard of the diagnosis of cerebral vasculitis [1, 2, 32].
Though, several studies demonstrated a comparably low sensitivity and specificity of the brain
biopsy with an elevated risk of complication compared to peripheral vessel biopsy [3-6, 17,
32]. MRI can help to improve sensitivity by localizing regions of active disease. Salvarani et al.
revealed that around 8% of patients with cerebral vasculitis show leptomeningeal enhance-
ment, which is a comparatively easily reachable location for a targeted biopsy [6]. Moreover, in
small vessel vasculitis, patchy parenchymal or meningeal enhancement can be the only diag-
nostic hint apart from infarctions not restricted to a vascular territory [6, 33, 34]. In our study,
3D VWI detected more leptomeningeal and parenchymal enhancement likely related to its
larger coverage and isotropic resolution providing additional important diagnostic
information.

We also correlated the findings of VWE to the diagnosis of cerebral vasculitis obtained
from all available clinical and imaging data. The overall sensitivity (67% for both sequences,
respectively) and specificity (46% for both sequences) of any VWE was not very high. This
may relate to the fact that the subtype of biopsy-proven PACNS may only involve small vessels
and not show any VWE at the time of the diagnosis [15]. Moreover, many other conditions
may lead to VWE like atherosclerotic plaques, intracranial artery dissections and also non
pathological processes like the vasa vasorum [13, 35]. However, both VWI techniques showed
more enhancing arterial segments in vasculitic patients, being significant on both sequences
(p < 0.05). In particular, the proximal MCA segments (M1/M2) showed a higher involvement
in patients with cerebral vasculitis which may be used as a potential discriminator since there
is an emerging body of evidence that VWE may also occur in asymptomatic patients [19, 20].

In recent studies, 70% VWE was encountered in the VA or ICA where most atherosclerotic
plaques which eccentric type of VWE are located as well as where the majority of vasa vasorum
within intracranial arteries are found [35-39]. In a former study by Takano et al. with asymp-
tomatic patients using 1.5T MRI, VWE occurred in 33% in the VA, in 14% in the intradural
ICA and in 96% in the extradural ICA [40]. Whereas in the MCA and the BA, only 3.5% of
VWE was seen in this asymptomatic cohort [40]. Moreover, recent studies by Harteveld et al.
using 3D VWI sequences at 3T and 7T, demonstrated positive intracranial VWE in asymp-
tomatic patients with the majority being located in the intradural VA and distal ICA segments
(25, 41].

Along with these results, our subgroup analysis that excluded the ICA and VA segments
showed an increased significance of VWE in the remaining cerebral arteries (ACA, MCA, BA,
and PCA) for the diagnosis of cerebral vasculitis. On the other hand, these results underline
the difficulty in interpreting the findings of VWE in the VA and ICA (Fig 2) which may
require additional consideration of clinical data, as well as other imaging data on the vessel
lumen (TOF- or CE-MRA) and the vessel wall lesion (T2-signal intensity) in order to discrimi-
nate inflammatory lesions from incidental findings [9, 12, 24].

Our study population included patients with intracranial artery dissections (n = 4) und
large artery thrombosis (n = 1) which may cause local reactive VWE [9, 42]. This may be con-
sidered as a study limitation, yet it represents the nature of a real-world study approach with
patients being scanned under the clinical suspicion of cerebral vasculitis or vasculopathy.
Additionally 2D VWI was only acquired in two standard orthogonal planes to make the MRI
acquisition non-dependent of the examiner, which limited the ability to evaluate all arterial
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segments perpendicularly to their vessel course. In the optimal case, the 2D VWI sequences
should be placed perpendicular to a potential stenotic lesion seen on MRA imaging prior to
acquisition of VWI, which appears as a further disadvantage of 2D VWI as it always requires
the presence of a planning radiologist. Further limitations relate to the overall small number of
patients, the fixed order of acquisition of the 2D VWI sequences before the 3D VWT after con-
trast media administration, and the fact that 49% of our patients were under immunosuppres-
sive medication which has been described to reduce the findings of VWE in cerebral vasculitis
[11,43]. As only 4 patients received a follow up VWTI in our study, the reduction of intracranial
VWE under immunosuppressive medication could not be examined sufficiently. However this
topic should be addressed more intensely in further studies.

Conclusions

In summary, 3D VWI MRI in general did not differ in the ability to detect VWE compared to
bi-planar 2D VWI. Mostly the larger coverage of the 3D sequence appears advantageous in
detecting more VWE lesions, as well as meningeal or parenchymal contrast enhancement in
areas not covered by the 2D sequence and omits the need for exact planning of scan area. In
patients with cerebral vasculitis, overall more VWE was detected, and specifically in the proxi-
mal MCA segments on both VWTI techniques. Whereas, VWE may also be seen in the distal
VA and extradural ICA segments in asymptomatic or non-vasculitic patients. Some VWE
lesions of the intradural ICAs were not seen on 3D compared to 2D VWI. As the latter VWI
sequence has a higher in plane resolution, future increase in 3D spatial resolutions, e.g. with
application of compressed sensing MRI technology may be of potential benefit.
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