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Abstract

This paper highlights the importance of optimized shape index for agricultural management

system analysis that utilizes the contiguous bands of hyperspectral data to define the gradi-

ent of the spectral curve and improve image classification accuracy. Currently, a number of

machine learning methods would resort to using averaged spectral information over wide

bandwidths resulting in loss of crucial information available in those contiguous bands. The

loss of information could mean a drop in the discriminative power when it comes to land

cover classes with comparable spectral responses, as in the case of cultivated fields versus

fallow lands. In this study, we proposed and tested three new optimized novel algorithms

based on Moment Distance Index (MDI) that characterizes the whole shape of the spectral

curve. The image classification tests conducted on two publicly available hyperspectral data

sets (AVIRIS 1992 Indian Pine and HYDICE Washington DC Mall images) showed the

robustness of the optimized algorithms in terms of classification accuracy. We achieved an

overall accuracy of 98% and 99% for AVIRIS and HYDICE, respectively. The optimized indi-

ces were also time efficient as it avoided the process of band dimension reduction, such as

those implemented by several well-known classifiers. Our results showed the potential of

optimized shape indices, specifically the Moment Distance Ratio Right/Left (MDRRL), to dis-

criminate between types of tillage (corn-min and corn-notill) and between grass/pasture and

grass/trees, tree and grass under object-based random forest approach.

Introduction

Broadband vegetation indices (VIs) reduce spectral data dimension by limiting the number of

bands at different ranges of the electromagnetic spectrum to extract vegetation information

from remotely sensed images. Mostly, the bands are selected from the visible and near/mid

infrared regions in order to measure the photosynthetic activity of the plant [1] [2], vegetation

dynamics [3], biomass abundance [4], predict crop yield [5], and biotic stresses [6]. This

PLOS ONE | https://doi.org/10.1371/journal.pone.0213356 March 7, 2019 1 / 22

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Salas EAL, Subburayalu SK (2019)

Modified shape index for object-based random

forest image classification of agricultural systems

using airborne hyperspectral datasets. PLoS ONE

14(3): e0213356. https://doi.org/10.1371/journal.

pone.0213356

Editor: Changshan Wu, University of Wisconsin

Milwaukee, UNITED STATES

Received: August 13, 2018

Accepted: February 20, 2019

Published: March 7, 2019

Copyright: © 2019 Salas, Subburayalu. This is an

open access article distributed under the terms of

the Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The datasets used in

this study are fine spatial resolution airborne

remote sensing images (AVIRIS and HYDICE) that

are owned by third-party organizations, and are

publicly available online through their websites.

AVIRIS and HYDICE datasets are publicly available

online (https://engineering.purdue.edu/~biehl/

MultiSpec/hyperspectral.html). All codes used are

already available online through the R Project

repository (https://cran.r-project.org/web/

packages/randomForest/index.html). The authors

confirm that we had no special access or privileges

http://orcid.org/0000-0001-9019-730X
https://doi.org/10.1371/journal.pone.0213356
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0213356&domain=pdf&date_stamp=2019-03-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0213356&domain=pdf&date_stamp=2019-03-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0213356&domain=pdf&date_stamp=2019-03-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0213356&domain=pdf&date_stamp=2019-03-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0213356&domain=pdf&date_stamp=2019-03-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0213356&domain=pdf&date_stamp=2019-03-07
https://doi.org/10.1371/journal.pone.0213356
https://doi.org/10.1371/journal.pone.0213356
http://creativecommons.org/licenses/by/4.0/
https://engineering.purdue.edu/~biehl/MultiSpec/hyperspectral.html
https://engineering.purdue.edu/~biehl/MultiSpec/hyperspectral.html
https://cran.r-project.org/web/packages/randomForest/index.html
https://cran.r-project.org/web/packages/randomForest/index.html


reduction of spectral information could pose some drawbacks such as index saturation beyond

certain level when estimating high vegetation biomass [7] [8]. Another constraint in the use of

existing broadband VIs is the challenge of choosing relevant band centers and widths [9] for

agricultural management system mapping, particularly if it involves hyperspectral data where

there is increased number of near-continuous bands. Under such circumstances, broadband

VIs resort to using only average spectral information over wide widths resulting in loss of cru-

cial information, such as little absorption features caused by the differences of spectral

responses from agricultural fields that may be available in those specific narrow bands [10].

These hardly noticeable spectral absorption features could be the key for differentiation of

landcover classes with similar spectra, as in the case of crop residue and soil.

Hyperspectral sensors, including the Airborne Visible/Infrared Imaging Spectrometer

(AVIRIS) from National Aeronautics and Space Administration (NASA) and Hyperspectral

Digital Imagery Collection Experiment (HYDICE) from U.S. Navy Space and Warfare Systems

Command, offer improvements in spectral and spatial resolution. Increased number of bands

means another challenge for users who need to extract appropriate optimal wavebands for spe-

cific applications. As bands become narrow, neighboring bands could have redundant infor-

mation that may require users to devote more time in data mining and complex processing of

removing redundant bands [10] [11]. The potential and challenges of hyperspectral narrow-

band sensors have inspired the development and application of the shape-based metric called

moment distance index (MDI) [12].

MDI was initially developed for the analysis of hyperspectral reflectance curves for vegeta-

tion and soil sensitivity studies. Being sensitive to the visible (VIS) to near infrared (NIR)

regions where there is a strong difference in the reflectances for vegetation and soil, MDI has

been utilized to identify spectral regions for chlorophyll and carotenoids [13], estimate green

vegetation fraction [14], detect greenhouses using WorldView-2 and Landsat satellite data

[15], discriminate vegetation classes [16] and used as a main component for a new Threshold

Relative Radiometric Correction Algorithm (TRRCA) for multiband satellite data [17]. MDI is

an effective tool for landcover classification when applied to medium and high spatial resolu-

tion images. Aguilar et al. [15] reported MDI as the most important spectral feature to detect

vegetative versus non-vegetative regions when tested against other indices such as Normalized

Difference Vegetation Index (NDVI), Green Normalized Difference Vegetation Index

(GNDVI), Normalized Difference Water Index (NDWI), Enhanced Vegetation Index (EVI),

and Plastic-Mulched Landcover Index (PLMI). MDI was superior when used as a component

in object-based analysis in discriminating classes of vegetation [16].

The advantage of MDI over other existing spectral VIs for landcover classification is its dis-

criminatory power to characterize the raw shape of the reflectance curve by using all available

spectral bands (multispectral or hyperspectral) that could carry additional spectral information

useful for vegetation mapping [13]. MDI could also address the challenge of high dimensional-

ity inherent in hyperspectral datasets, by obliterating the need to perform curve transforma-

tion (e.g., derivative). Besides, no priori knowledge of optimal wavebands is required to use

MDI, nor there is a need to spend much time in removing redundant bands, or aggregating of

bands [18], or selecting informative bands [11]. The MDI framework could be explored for

optimal use of the spectrum in a computationally simple and broadly applicable manner. Fur-

ther, image denoising is not required for MDI to work. Even hyperspectral image denoising

algorithms cannot guarantee removal of noise from image. In fact, denoising techniques could

oversmooth images and leads to information loss [19]. However, the limitation of MDI is that

it is an unbounded metric. It increases or decreases as a nontrivial function of the number of

bands considered and the shape of the reflectance curve that spans those contiguous bands.

This limitation could be an issue when comparing results from different sensors since the
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spectral resolution could differ from one sensor to another. For example, applying MDI to an

AVIRIS image with 220 spectral bands could result differently when using MDI to the

HYDICE image with 190 spectral bands. Hence, the main goal of this study is to develop

enhanced indices based on the principle of MDI that could ease comparisons across different

biome-types and hyperspectral sensors, within the framework of object-based image analysis

(OBIA) approach. This study contributes to the (1) improvement in the discrimination

between vegetation classes and agricultural management systems by utilizing the potential of

the optimized MDIs; and (2) identification of the best combination of variables for image clas-

sification using object-based random forest approach.

Materials and methods

The methodology was based upon the steps displayed in Fig 1, which included (1) processing

and segmenting the images, (2) applying the random forest classifier, and (3) evaluating and

assessing the results.

• In the first step, we processed the two airborne image datasets. From the resulting images,

we derived spectral indices and textural features. For each derived index and feature, we

applied segmentation analysis to produce image objects that served as input variables for our

models.

Fig 1. The three major steps used of the study include (1) processing and segmenting the images, (2) applying the random forest

classifier, and (3) evaluating and assessing the results.

https://doi.org/10.1371/journal.pone.0213356.g001
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• In the second step, we divided all input variables into different sets. To thoroughly evaluate

the classification performance of our new and enhanced indices, we ran different analyses

using five sets of data with and without the moment distance metrics. We used each set to

run the Random Forest learning classifier.

• In the final step, we evaluated the results from the five sets of data, compared classification

accuracies, and checked whether accounting for optimized MDI had improved classification

results.

The following provides a summary of data sources, the variables used in the models, model

structure, and assessment algorithm.

Airborne image datasets

Two publicly available hyperspectral image datasets (Fig 2) (available from: https://

engineering.purdue.edu/~biehl/MultiSpec/hyperspectral.html) served as excellent testbeds to

demonstrate the performance of the improved and optimized MDI algorithm for landcover

classification, with a particular focus on vegetation cover. The first dataset was from the

AVIRIS flight campaign in 1992 over Indian Pines in North-western Indiana [20]. The image

Fig 2. AVIRIS Indian Pines (A) RGB composite image (channels 47, 24, and 14), (B) its reference map and (C) its training and test set. HYDICE

Washington DC Mall (D) RGB composite image (channels 51, 41, and 22), (E) its reference map and (F) its training and test set.

https://doi.org/10.1371/journal.pone.0213356.g002
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size is 145 x 145 pixels with 220 spectral reflectance bands in the wavelength range of 400 nm

to 2500 nm. A well-known ground truth data also comes with the image dataset with 10 identi-

fied classes: wheat, soybean-notill (no tillage), soybean-min (minimum tillage), soybean-clean

till, grass/tree, grass/pasture, corn-notill (no tillage), corn-min (minimum tillage), woods, and

hay. The spatial resolution is 20 m. The second dataset was a subscene of a 191-band Hyper-

spectral Digital Imagery Collection Experiment (HYDICE) Washington DC Mall image. Orig-

inally, there were 307 x 1208 pixels and 210 spectral bands covering the 400 nm to 2400 nm

electromagnetic spectrum. We used an image size of 300 × 500 pixels with spatial resolution of

approximately 3 m, to limit the analysis to the northern area with more varied land cover clas-

ses: water, grass, tree, road, and pathway. We added this test dataset to check on how the opti-

mized indices discriminate between tree and grasses, specifically. The original dataset [21]

included a thematic map with ground-truth labels. From the labeled data, we randomly sam-

pled 30% as the training set and the rest as the test samples. The information classes and train-

ing and test samples for both images are listed in Table 1 and shown in Fig 1.

Original moment distance

The moment distance (MD) framework (Fig 3) has two aspects: the set of equations that gener-

ate the metrics and the choice of positions within the reflectance curve to highlight. The MD

framework that is described in the following set of equations and detailed in Salas and Henebry

[12] [13], would generate the final MDI equation:

MDLP ¼
XlRP

i¼lLP
ðri

2 þ ði � lLPÞ
2
Þ

0:5
ð1Þ

MDRP ¼
XlLP

i¼lRP
ðri

2 þ ðlRP � iÞ2Þ0:5 ð2Þ

Table 1. The ground-truth classes of the AVIRIS and HYDICE datasets and the training and test sets used for the

classes.

AVIRIS

Class Train Test Total

Corn-min 197 460 657

Grass/tress 166 387 553

Corn-notill 224 522 746

Soybean-min 369 860 1229

Soybean-notill 181 422 603

Soybean-clean 137 319 455

Woods 214 499 713

Hay-windrowed 96 225 321

Wheat 71 167 238

Grass/pasture 146 340 485

HYDICE

Class Train Test Total

Water 362 846 1208

Tree 317 741 1058

Grass 267 622 889

Road 193 451 644

Pathway 210 491 701

https://doi.org/10.1371/journal.pone.0213356.t001
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MDI ¼ MDRP � MDLP ð3Þ

where the moment distance from the left pivot (MDLP) is the sum of the hypotenuses con-

structed from the left pivot to the value at successively longer wavelengths (index i). In other

words, MDLP is the summation of hypotenuses from the wavelength location of left pivot (λLP)

to the wavelength location of right pivot (λRP). For the hypotenuse, one base of the triangle is

the difference from the left pivot (i-λLP) along the abscissa and the other is simply the value of

the reflectance (ρ) at i (Eq 1). Similarly, the moment distance from the right pivot (MDRP) is

the sum of the hypotenuses constructed from the right pivot to the value at successively shorter

wavelengths (index i from λRP to λLP); where for the hypotenuse, one base of the triangle is the

difference from the left pivot (λRP-i) along the abscissa and the other is simply the value of the

reflectance (ρ) at i (Eq 2). The final equation is the unbounded MDI (Eq 3).

Optimized MD: Moment distance index normalized and moment distance

ratio

The proposed optimized Moment Distance Index Normalized (MDIN) (Eq 4) shares the for-

mal limitations of a normalized difference; however, it should be noted that loss of sensitivity

so familiar to users of the NDVI would be much less of an issue in the MDIN. Unlike the

strong spectral contrast that the NDVI exploits, the magnitude of the MDLP is never too differ-

ent from that of the MDRP. Thus, the value of the numerator is not dominated by a single

pivot. More importantly, MDIN would address the boundless characteristic of MDI.

MDIN ¼
MDRP � MDLP

MDRP þMDLP
ð4Þ

Two other optimized MD metrics evaluated in this study include a simple Moment Dis-

tance Ratio (MDR) with the left pivot (LP) as numerator (Eq 5) and right pivot (RP) as numer-

ator (Eq 6). Both MDRLR and MDRRL explain the true relationship between MDRP and

MDLP and enhance the spectral differences between the moment distances derived from two

Fig 3. Schematic diagram of MDI applied on a sample spectral reflectance curve of a green vegetation (adapted

from Salas and Henebry [12]). Note that the number of points between LP and RP pivots can vary depending on the

number of bands analyzed or the width of the pivot wavelength region.

https://doi.org/10.1371/journal.pone.0213356.g003
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opposing pivots.

MDRLR ¼
MDLP

MDRP
ð5Þ

MDRRL ¼
MDRP

MDLP
ð6Þ

Other spectral indices and textural features

Apart from the original and optimized MDIs, we computed a set of narrow/broad-band spec-

tral indices that have previously shown to perform well for image classification. We included

NDVI, EVI, Normalized Difference Infrared Index (NDII) [22], Nitrogen Reflectance Index

(NRI) [23], Carotenoid Reflectance Index (CRI) [9], Plant Senescence Reflectance Index

(PSRI) [24], and Photochemical Reflectance Index (PRI) [25] as inputs in the classification to

improve feature discrimination and accuracy of our target classes (Table 2). We calculated

these broadband indices based on two or three spectral bands and selected them based on their

application to monitor physiological stress in vegetation and their sensitivity to the presence of

green foliar biomass. We averaged spectral bands to represent NIR (750–850 nm), red (600–

700 nm), green (500–600 nm), and blue (400–500 nm) [12] for all broadband indices. For con-

sistency, we used these same ranges of bands for both hyperspectral images in this study.

Image textures have shown in the past to be effective for landcover classification using very

high resolution imagery [26] [27] [16] [28]. Here, we exploited the gray-level-gradient co-

occurrence matrix analysis (GLGCM) to derive image textures: variance (VAR), entropy

(ENT), correlation (COR), contrast (CON), and angular second moment (ASM). GLGCM

measures use a gray-level spatial dependence matrix, which is a function of both the angular

relationship and distance between two neighboring pixels. We implemented GLGCM on the

three highest principal component (PC) score images that accounted for the most variances of

all spectral bands. In total, we extracted 15 second-order statistical textural variables from the

three highest PC scores in this study.

Object-based image analysis

Object-based image analysis (OBIA) improves classification accuracy with respect to the tradi-

tional pixel-based approach. With OBIA, an object is represented in its true spatial landscape

pattern instead of a squared classified pixel [32]. We produced image objects for all inputs

used in the classification. Since object extraction is scale-dependent, we ran different scale

Table 2. Description of other spectral indices used as input predictor variables in this study.

Variables Formula Description/Application

NDVI Red� NIR
RedþNIR Exploits the strong differences in the red and NIR reflectance where contrast

between vegetation and soil is maximal.

EVI 2:5� NIR� Red
1þNIRþ6�Red� 7:5�Blue Effective in classifying high biomass regions like cultivated agricultural fields [29].

NDII l819� l1649

l819þl1649
Used for sensitivity to water content.

NRI Green� Red
GreenþRed Useful indicators for the estimation of biomass in crops [30].

PSRI Red� Blue
NIR

PRI l529� l580

l529þl580
Best hyperspectral narrowband index for estimating crop evapotranspiration [31].

https://doi.org/10.1371/journal.pone.0213356.t002
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levels during the initial segmentation process to find the best scale effects to incorporate on the

prediction accuracy for hyperspectral images [33]. A high scale level could cause fewer defined

segments, while a low scale level could result into over-segmentation [34]. Following Frohn

et al. [35] and our initial results, we selected two scale levels 5 and 20 for AVIRIS and HYDICE,

respectively. We implemented all GIS and remote sensing processes using ArcGIS v10.4 soft-

ware [36] and the commercially-available GRASS GIS software [37].

Random forest classifier

We used Random Forest (RF) [38] and compiled a number of codes in R [39] [40] for classifi-

cation. RF is a non-parametric supervised classifier that uses Classification and Regression

Tree (CART) through bagging, where it randomly picks a set of features and creates a classifier

with a bootstrapped sample of the training data to grow a tree. With RF training data selection,

it is possible that the same sample could be picked several times, whereas others may not be

picked at all. Apart from RF being quite robust with highly collinear variables, the random

selection process at each tree node causes low correlation among the trees and avoids over-fit-

ting [41]. RF does not require assumption of the underlying distributions of the dataset input

[42], making it a convenient method to use for hyperspectral images in the classification of

invasive plants [43], flower species [44], landcover classes [45] [46], grass species [47], and

crops such as wheat [30] and soybean varieties [18]. We generated decision trees following

Colditz [48] and Reese et al. [49] that used the RF classifier on remotely sensed data.

We used all derived indices and textural variables as potential classification input variables

in RF in order to find an ideal hyperplane that could discriminate landcover classes effectively.

We also looked into the importance of each variable since RF is capable of measuring the

importance of the individual input variable or a set of variables (e.g., spectral bands) in the

classification. A high value of the normalized variable (which was based on the accuracies of

the permuted out-of-bag samples, accuracies of the original samples, and the standard devia-

tion) indicates that the variable has a high contribution for the entire RF. This capability of the

RF further enhances the use of the classifier as a tool to combine with OBIA approach.

To thoroughly evaluate the performance of the modified algorithm to the classification, we

ran different analyses using five sets of data with and without the moment distance metrics

(Table 3). First, we ran the RF classifier without any MD metric (set 1). We then ran our R

codes by including the MD metrics: all of set 1 plus MDIN (set 2), all of set 1 plus MDRLR (set

3), all of set 1 plus MDRRL (set 4), and all of set 1 plus original MDI (set 5). We determined

model accuracies by creating and evaluating error metrics [50]: overall accuracy (OA) or the

Table 3. Five sets of data were separately used as inputs in the object-based random forest classification.

Sets Variable Inputs Total Segmented Variable

Inputs

1 NDVI, EVI, NDII, NRI, PSRI, PRI, Texture (VAR, ENT, COR, CON, ASM) 21 segmented variables

2 NDVI, EVI, NDII, NRI, PSRI, PRI, MDIN, Texture (VAR, ENT, COR, CON,

ASM)

22 segmented variables

3 NDVI, EVI, NDII, NRI, PSRI, PRI, MDRLR, Texture (VAR, ENT, COR,

CON, ASM)

22 segmented variables

4 NDVI, EVI, NDII, NRI, PSRI, PRI, MDRRL, Texture (VAR, ENT, COR,

CON, ASM)

22 segmented variables

5 NDVI, EVI, NDII, NRI, PSRI, PRI, Original MDI, Texture (VAR, ENT,

COR, CON, ASM)

22 segmented variables

Note: MD metrics are underlined to highlight their inclusion in the dataset.

https://doi.org/10.1371/journal.pone.0213356.t003
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proportion correctly classified, producer’s accuracy (PA) or errors of omission (a feature is left

out of the class being evaluated), user’s accuracy (UA) or errors of commission (a feature is

incorrectly included in the class being evaluated), and kappa coefficient (measures the perfor-

mance of the classification as compared to randomly assigning values).

In addition, we presented McNemar’s test (Z) [51] to compare the classification results and

to evaluate whether accounting for optimized MDI could improve results. If Z>0, then classi-

fier 1 (e.g., with optimized MDI) is more accurate than classifier 2 (e.g., original MDI). The dif-

ference between classifiers 1 and 2 is statistically significant if |Z|>1.96.

Results

AVIRIS Indian Pines

Fig 4 shows the thematic maps produced using object-based RF classification algorithm. The

estimated overall accuracy from the entire dataset with new optimized indices were 99%

(Kappa = 0.98), 97% (Kappa = 0.96), and 95% (Kappa = 0.95) for MDRRL (set 4), MDIN (set

2), and MDRLR (set 3), respectively. The RF classifier did not perform better when the new

optimized index was removed from the dataset (set 1), resulting in a 91% accuracy and

Kappa = 0.90. With the original MDI (set 5), statistics resulted to an overall accuracy of 94%

and Kappa = 0.93.

A comparison of class accuracies (Table 4) among five datasets showed that without the

MDI, producer’s accuracy ranged from to 81% to 99% while user’s accuracies ranged from

71% to 99%. The largest source of error was soybean-min and corn-notill being classified as

soybean-clean (confusion matrix, not shown). We observed misclassification between pasture

and trees. Accuracies for set 1 were relatively lower compared to other sets for corn-min

(PA = 81% and UA = 82%) and corn-notill (PA = 83% and UA = 86%). Set 1 also had the low-

est UA for class grass/pasture (UA = 91.9). Our results showed that the absence of MDI in the

training set resulted in a less effective discrimination between types of tillage (corn-min and

corn-notill) and between vegetation classes (pasture, trees, woods). However, classification

accuracies improved for corn-min (PA = 93% and UA = 90%), corn-notill (PA = 90% and

UA = 88%), grass/pasture (PA = 98% and UA = 99%) when original MDI was introduced to

the dataset (set 5).

The individual accuracies (PA and UA) for the optimized indices, MDIN (set 2) and

MDRLR (set 3), were relatively high and ranged from 90% to 100%. Both sets produced com-

parable class accuracies and were slightly higher compared to the PA and UA of set 5 with

original MDI, most especially for class corn-notill but not for grass/pasture. However, these

increases in classification accuracies with MDIN and MDRLR did not result into statistically

significant differences when compared to those obtained with original MDI.

MDRRL (set 4) was the only optimized method with a classification improvement consid-

ered statistically significant (Z = 2.54) over the one derived with original MDI (set 5) at 5%

level. In Table 4, accuracies for corn-min and corn-notill have significantly improved with

MDRRL, values ranged from 97% to 99%. For grass/pasture, grass/trees, woods, the accuracies

ranged from 98% to 100%. Only set 4 with MDRRL has perfectly classified wheat crop and

hay.

In terms of how the methods discriminated the ten classes, woods turned out to be best dis-

criminated from other classes using MDRRL, MDRLR, and MDIN. MDRRL was also the best

option in classifying wheat, minimizing classification confusion between corn-min and corn-

notill, and between soybean-min and soybean-notill.
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HYDICE Washington DC Mall

Fig 5 shows results of RF classifications from the five datasets for HYDICE Washington DC

Mall image and Table 5 summarizes the overall accuracy for each class. The estimated overall

accuracy for datasets with optimized indices were 99% (Kappa = 0.99) for MDRRL (set 4), 99%

(Kappa = 0.99) for MDRLR (set 3), and 95% (Kappa = 0.95) for MDIN (set 2). Similar to the

results for AVIRIS Indian Pines image, the RF classifier did not perform better when the opti-

mized index was removed from the dataset (set 1), resulting in a lower accuracy (90%) and

Fig 4. Contrasting the classification results of using different datasets for AVIRIS Indian Pines image: (A) dataset

1 without including any moment distance method, (B) dataset 2 with new MDIN, (C) dataset 3 with new MDRLR, (D)

dataset 4 with new MDRRL, and (E) dataset 5 with original MDI. The maps were derived using object-based random

forest classification.

https://doi.org/10.1371/journal.pone.0213356.g004
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Kappa (0.90). The original MDI (set 5) statistics resulted in an overall accuracy of 95% and

Kappa = 0.94, which is 4% lower than the best performing MDRRL.

Without MDI, producer’s accuracy ranged from to 78% to 100% while user’s accuracies

ranged from 66% to 100%. The source of error for set 1 was the misclassification mainly

between the classes pathway and road, and partly between the classes tree and grass. However,

when we look at the other sets with moment distance algorithm, they not only improved the

overall accuracy, but also enhanced the accuracy of each class.

In terms of sets with optimized algorithms, individual accuracies (PA and UA) were rela-

tively high (> 90%), except for MDIN with UA = 73% for the class road. Set 3 (with MDRLR)

and Set 4 (with MDRRL) provided the best results with significantly improved classifications.

It could be seen in Table 4 that both MDRLR and MDRRL methods outperform the original

MDI class by class, with 99% to 100% overall accuracy. For dataset with MDIN, improvements

in classification were not statistically significant (at 5% level) when compared to the set results

with original MDI. Among the five classes, water was easily identified regardless of the method

used. Similar to results using AVIRIS Indian Pines dataset, trees turned out to be best discrimi-

nated from grass using MDRRL and MDRLR.

Variable importance

Tables 6 and 7 lists the top 5 important variables according to object-based RF classification

models for each dataset and image. For AVIRIS Indian Pines image, EVI seemed to be a pre-

dominant variable, ranking within the top three in 4 out of the 5 datasets (Table 6). Optimized

MDIs—MDIN, MDRLR, and MDRRL—all ranked relatively higher on the list, with MDRRL

being considered as the most important variable for set 4. Surprisingly, texture variables—

VAR, ENT, COR, CON, and ASM—were only showing in the top 10 for all sets but set 4.

Moreover, only one texture variable, entropy (ENT), appeared on set 3 with MDRLR as most

important predictor. Among texture predictors, ASM led the list of importance for texture

measures. The NDVI variable was listed at the bottom of the top 5 in all sets. Among other cur-

rent indices, PRI was the most evident variable in the top 5 for 4 of the 5 sets.

Table 4. Summary of classification accuracies (%) from five sets of data using AVIRIS Indian Pines image: set 1 (no MDI), set 2 (with MDIN), set 3 (with MDRLR),

set 4 (with MDRRL), and set 5 (with original MDI).

Class Set 1

(no MDI)

Set 2

(MDIN b)

Set 3

(MDRLR b)

Set 4

(MDRRL a,b)

Set 5

(orig. MDI b)

PA UA PA UA PA UA PA UA PA UA

Corn-min 81.1 82.0 96.2 93.0 98.1 95.6 99.0 97.4 93.0 89.6

Corn-notill 83.0 86.2 90.6 95.2 91.2 95.2 98.2 97.8 90.0 88.1

Grass/pasture 95.5 91.9 97.5 94.7 98.4 95.1 99.6 99.5 98.5 99.3

Grass/trees 98.0 98.9 99.6 97.9 98.7 98.8 100 98.4 98.8 97.9

Woods 98.8 99.4 100 100 100 100 100 100 99.7 100

Soybean-notill 98.2 89.4 99.1 97.4 98.8 96.8 98.9 98.8 99.6 94.6

Soybean-min 89.5 97.0 94.7 99.2 95.6 97.6 98.9 99.7 87.9 99.4

Soybean-clean 90.2 71.8 98.7 93.6 99.4 91.0 97.9 96.4 98.2 82.5

Hay 97.1 98.3 100 99.4 97.9 100 100 100 100 98.3

Wheat 99.7 98.1 96.7 100 100 91.2 100 100 100 96.5

The marks a,b signify that the set produces significant differences at the 5% level against set 5 and set 1, respectively.

https://doi.org/10.1371/journal.pone.0213356.t004
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The HYDICE Washington DC Mall image classification showed NDVI as a variable with

high importance for sets 1, 2, and 5 (Table 7). It also ranked within the top five for sets 3 and 4.

EVI, which was a predominant variable for the AVIRIS Indian Pines image classification, did

not appear in the top five. Optimized MDIs—MDIN, MDRLR, and MDRRL—all ranked rela-

tively higher on the list, with MDRLR and MDRRL as the most important variables for sets 3

and 4, respectively.

Fig 5. Contrasting the classification results of using five datasets for HYDICE Washington DC Mall image: (A) dataset 1

without including any moment distance method, (B) dataset 2 with new MDIN, (C) dataset 3 with new MDRLR, (D) dataset 4 with

new MDRRL, and (E) dataset 5 with original MDI. The maps were derived using object-based random forest classification.

https://doi.org/10.1371/journal.pone.0213356.g005

Optimized shape index for mapping agricultural systems using airborne hyperspectral datasets

PLOS ONE | https://doi.org/10.1371/journal.pone.0213356 March 7, 2019 12 / 22

https://doi.org/10.1371/journal.pone.0213356.g005
https://doi.org/10.1371/journal.pone.0213356


Discussion

The modified MDIs added another breadth of possibilities in the analysis of hyperspectral

images. The results demonstrated the potential significant challenges in mapping and classify-

ing landcover, specifically vegetation/crops and their management practices, using traditional

approaches.

Our results offered more than merely a validation of the proposed optimized moment dis-

tance algorithms being tested. Results also identified what methods proved effective and what

classification inputs were substantial. The inclusion of the optimized MDRRL in the classifica-

tions of AVIRIS and HYDICE showed significant differences and improvement in OA. The

Table 5. Summary of classification accuracies (%) from five sets of data using HYDICE Washington DC Mall

image: set 1 (no MDI), set 2 (with MDIN), set 3 (with MDRLR), set 4 (with MDRRL), and set 5 (with original

MDI).

Class Set 1

(no MDI)

Set 2

(MDIN b)

Set 3

(MDRLRa,b)

Set 4

(MDRRLa,b)

Set 5

(orig. MDI b)

PA UA PA UA PA UA PA UA PA UA

Water 100 100 100 100 100 100 100 100 100 100

Tree 86.6 90.7 90.6 99.8 99.8 99.8 99.8 100 91.5 96.7

Grass 90.5 94.7 94.8 96.6 100 99.9 100 99.9 100 94.4

Road 86.5 71.7 95.0 72.9 99.7 100 99.7 100 81.1 93.0

Pathway 78.5 66.0 97.1 97.6 100 98.7 100 99.8 86.3 100

The marks a,b signify that the set produces significant differences at the 5% level against set 5 and set 1, respectively.

https://doi.org/10.1371/journal.pone.0213356.t005

Table 6. Rankings of the 5 object features with maximum importance across classes in the RF model using AVIRIS Indian Pines image.

Rank Set 1

(no MDI)

Set 2

(MDIN)

Set 3

(MDRLR)

Set 4

(MDRRL)

Set 5

(original MDI)

Variable Variable Variable Variable Variable

1 EVI CON(PCA1) MDRLR MDRRL EVI

2 ASM(PCA2) MDIN PRI EVI MDI

3 NDII ASM(PCA1) EVI MDRRL NDII

4 PRI PRI NDVI NDVI PRI

5 ENT(PCA1) EVI ENT(PCA1) NRI NDVI

The segmentation scale used was 5.

https://doi.org/10.1371/journal.pone.0213356.t006

Table 7. Rankings of the 5 object features with maximum importance across classes in the RF model using HYDICE Washington DC Mall image.

Rank Set 1

(no MDI)

Set 2

(MDIN)

Set 3

(MDRLR)

Set 4

(MDRRL)

Set 5

(original MDI)

Variable Variable Variable Variable Variable

1 NDVI NDVI MDRLR MDRRL NDVI

2 ASM(PCA2) MDIN PSRI NDVI PSRI

3 PSRI PSRI NDVI PSRI MDI

4 ENT(PCA1) ENT(PCA1) PRI NDII ASM(PCA2)

5 NDII ASM ENT(PCA1) PRI NDII

The segmentation scale used was 20.

https://doi.org/10.1371/journal.pone.0213356.t007
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OA we observed was comparable to other studies that used the same datasets [52] [53]. How-

ever, the relatively high OA should be interpreted with some caution since it may not signify

the true classification accuracy of the maps. For instance, a study with AVIRIS Indian Pines

classification using support vector machine [54] had an OA = 94%, but individual class accura-

cies for some classes like soybeans-notill were relatively low (87%). The same thing was

observed with our results for the same image dataset. For soybean-clean using set 5 (original

MDI), the accuracy for the class was only 83% although the OA of the classification was 96%.

The one promising result in this study was the use of the optimized MDRRL, where many clas-

ses for AVIRIS Indian Pines gained accuracies more than 95% or even 100% (OA = 98%). We

found the same promising performance of the optimized MDRRL using the HYDICE Wash-

ington DC Mall image. These results established the robustness of our proposed MDRRL

algorithm.

Optimized indices on AVIRIS Indian Pines

Results obtained from datasets with MDIN, MDRLR, and without MDI displayed similar dis-

tributions and misclassifications particularly for soybean-min, corn-notill, grass/pasture, and

grass/trees classes. However, against other algorithms tested here, the proposed MDRRL

obtained the best and improved quantitative retrieval performance in discriminating between

soybean-min and corn-notill, grass/pasture and grass/trees, and in classifying wheat—its clear

advantage could be seen in Figs 6 and 7. When compared against other attempts that used

AVIRIS Indian Pines for deep learning-based hyperspectral image (HSI) classification, our

results are particularly remarkable in terms of accuracy. Class-wise, our results for MDRRL

showed better individual accuracies for corn-notill and soybean-notill. Mapping methods such

as the three HSI tests by Li et al. [28] and convolutional neural network applied to hyperspec-

tral images by Paoletti et al. [55] both showed misclassifications for corn-notill as soybean-

min, and for grass/pasture as grass/trees. Another study by Bhardwaj and Patra [52] that

exploited genetic algorithms using full spectral features gave relatively high accuracies (94% to

99%) for corn-notill, soybean-min, grass/pasture, and grass/trees. The only constraint was that

Bhardwaj and Patra [52] needed large filter parameters for constructing attribute profiles.

Optimized indices on HYDICE Washington DC Mall

In HYDICE Washington DC Mall image, both datasets with MDRRL and MDRLR showed

significant performance improvement over those with original MDI and without MDI. Classes

discriminated using these datasets (sets 3 and 4) gained accuracies in the range of 98% to

100%. A study from Feng et al. [56] that used the same image, came out with relatively high

overall classification accuracy (97%) for four classes (water, grass, tree, and road). However,

upon inspection of individual class accuracies, confusion between grass and tree pixels was

still evident that led to misclassifications.

Performance of MDRRL on agricultural management system classification

The optimized MDRRL displayed superior worth in enhancing the image classifications with

statistically significant overall accuracy improvements against the other algorithms. In both

image datasets, MDRRL exhibited less scattered pixel problem (Fig 8), specifically for classes

that could easily be misclassified due to their spectral similarities. In the following discussion,

we looked at classes corn-notill and soybean-min from the AVIRIS image (Fig 9). To show the

major influence of MDRRL, we averaged 20 random pixels from each class of corn-notill and

soybean-min and manually computed the values of the optimized MDRRL from the generated

curves (Fig 10). Notice the visually similar spectral characteristics of the two curves, especially
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their forms, such as locations of dips and peaks within the red and NIR regions (Fig 10A).

Spectral indices, such as NDVI and EVI, could result into similar values for corn-notill and

soybean-min when computed from these types of curves. But, for MDRRL, differences in

absorption features were magnified to highlight the shape differences of each curve. To check,

we fixed the RP at the right side of the curve (longer wavelength) and computed moment dis-

tances starting from the left (shorter wavelength) and moving forward to the right. We called

the result MD-RP, or summation of moment distance from right pivot. We repeated the same

procedure, but this time, we started in the opposite side. We fixed LP at the left side of the

curve (shorter wavelength) and computed moment distances starting from the right (longer

wavelength) and moving forward to the left. For this result, we called it MD-LP, or summation

of moment distance from left pivot. Fig 10C showed the plots of the two summations. Clearly,

differences in MD values were largest starting in the green region and moving towards the

NIR. The divergences in MD values occurred at a wavelength range where curve shapes for

corn-notill and soybean-min varied the most upon reaching 500 nm. Interpreted plainly, the

difference between the two shapes corresponds to the unique spectral behaviors of corn-notill

and soybean-min curves that were detected by MD. Maximum MD difference between corn-

notill and soybean-min within 500 nm and 900 nm was higher for MD-RP (MD = 172) than

MD-LP (MD = 94). With regards to ratio, MDRRL resulted in a value thrice larger than

MDRLR (0.60 vs 0.20) when compared to corn-notill and soybean-min, which explains greater

discrimination between the two classes. The difference in value between corn-notill and

Fig 6. Encircled and magnified sample portion of AVIRIS Indian Pines classification maps, showing the difference of

the performances of using a dataset (A) without MDI, (B) with MDIN, (C) with MDRLR, and (D) with MDRRL for

classes soybean-min and corn-notill.

https://doi.org/10.1371/journal.pone.0213356.g006
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soybean-min reflected how the shape of the curve as viewed from reference RP varied from the

one viewed from reference LP. With respect to classes grass and tree (Fig 10B) from the

HYDICE Washington DC Mall image, we observed the same trend of the superiority of

MDRRL over MDRLR. Differences in MD values showed the largest beginning in the red and

towards the NIR regions (Fig 10D). These wavelength regions are also important for photosyn-

thetic activity of plants [57]. Maximum MD difference between grass and tree within 705 nm

and 953 nm was higher for MD-RP (MD = 650) than MD-LP (MD = 218). In terms of ratio,

MDRRL resulted in a value twice larger than MDRLR (0.60 vs 0.30) when compared to grass

and tree. We conclude that these minor differences in the absorption features detected by our

method in the spectral shapes formed the basis for discriminating between tillage systems and

landcover classes during classification.

Important variables for mapping agricultural fields

While our analysis showed that the inclusion of the optimized MDI exhibited considerable

improvement in the classification accuracy, there was no single object feature that dominated

the variable importance during landcover mapping for both images. For AVIRIS Indian Pines

data that was dominated by crop fields, the presence of EVI as a highly important predictor in

the classification was justifiable. EVI has been effective in classifying regions with cultivated

agricultural fields [29]. However, for the HYDICE Washington DC Mall image, EVI was not

Fig 7. Encircled and magnified sample portion of AVIRIS Indian Pines classification maps, showing the difference of

the performances of using a dataset (A) without MDI, (B) with MDIN, (C) with MDRLR, and (D) with MDRRL for

classes grass/pasture and grass/trees.

https://doi.org/10.1371/journal.pone.0213356.g007
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as effective as the other variables since the image was mostly composed of class grass and few

patches of trees. All three optimized indices have the potential to be useful for image classifica-

tion. However, among them, MDRRL and MDRLR showed the most potential. It ranked on

top for both image classifications for sets 3 and 4, respectively. MDRRL reduced the overall

confusion between classes grass and pasture for AVIRIS, and grass and trees for HYDICE. The

less robust discrimination between these classes using the other optimized indices could be

attributed to the shape of the spectral curves. We conclude that, although the classification

accuracies for sets with MDIN were not at par with MDRRL and MDRLR, MDIN could be an

important optical metric for classification of woods.

Fig 8. Encircled and magnified sample portion of HYDICE Washington DC Mall classification maps, showing the

difference of the performances of using a dataset (A) without MDI, (B) with MDIN, (C) with MDRLR, and (D) with

MDRRL for classes tree and grass.

https://doi.org/10.1371/journal.pone.0213356.g008

Fig 9. Sample ground reference photo for (A) corn-notill and (B) soybean-min taken at the AVIRIS image field site.

Notill = no tillage; min = minimum tillage.

https://doi.org/10.1371/journal.pone.0213356.g009
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Overall, the advantage of the optimized MDIs against other spectral metrics could be

summed up into three remarks. First, the optimized MDIs did not require us to select the best

bands for mapping agricultural management systems to make them work, as they utilize the

available bands of the AVIRIS and HYDICE products. It showed us the possibility of looking

at and analyzing hyperspectral dataset in a different way. Second, all three algorithms charac-

terized the untransformed shape of the spectral curve, such that a change of shape through the

detection of minute peaks and troughs could mean distinction between classes. Third, the opti-

mized MDIs could be unaffected by variance of soil reflectance [12] and could perform well in

highly cultivated agricultural fields.

Textural features had lesser importance among variables when MDRRL and MDRLR were

introduced into the classifications. However, we caution the complete exclusion of these fea-

tures. Texture angular second moment (ASM) performed well in some sets and was also in the

top 5. The use of all five image textures altogether may not be advisable since some of them

have ranked with lesser importance. However, adding one or two in the classification, for

instance ASM and ENT, could improve accuracy. Combining appropriate spectral indices,

multivariate texture images, and a couple of optimized MDIs in the object-based RF classifica-

tion algorithm, could lead into land use classes being accurately extracted.

With regards to the scale parameter in OBIA during our initial model runs, a finer coarse

image segmentation scale (@5) was ideal for the AVIRIS image, while a much coarser image

segmentation scales (@20) fit better for HYDICE image. A scale of 5 facilitated in differentiat-

ing the complex and much smaller patches of agricultural classes in AVIRIS, while a scale of 20

was sufficient to provide information on larger objects and more distinct classes in HYDICE.

The results we found were consistent with the findings of other studies. For instance, the high-

est classification accuracy for agricultural land cover mapping was produced by a lower scale

[58], guaranteeing high internal homogeneity in the segmented objects [59]. However, one of

the constraints of our methodology was that, we did not incorporate a scale much finer than 5

or much coarser than 20. This could be one source of possible error in our analysis. Changing

the scales could have effects on low performing optimized indices.

Fig 10. MD algorithm applied to the spectral responses of corn-notill and soybean-min for (A) AVIRIS, and grass and

tree for (B) HYDICE, and how MDI values varied moving the pivot from left to right, and vice versa for (C) AVIRIS

and (D) HYDICE images. Maximum values are observed at maximum shape differences, usually occurring at the

inclusion of a curve peak or dip. Note that differences in curve shape could mean discrimination between classes.

https://doi.org/10.1371/journal.pone.0213356.g010

Optimized shape index for mapping agricultural systems using airborne hyperspectral datasets

PLOS ONE | https://doi.org/10.1371/journal.pone.0213356 March 7, 2019 18 / 22

https://doi.org/10.1371/journal.pone.0213356.g010
https://doi.org/10.1371/journal.pone.0213356


Agricultural mapping implication of optimized MDIs

Although our main goal was to develop an improved shape index method, the results from this

study presented an important implication for mapping agricultural management systems. Pre-

vious studies like that of Huggins and Reganold [60], Derpsch et al. [61], and Figuerola et al.

[62] highlighted how sustainable agricultural management, such as no-tillage or minimum till-

age, could play a vital role in reducing soil erosion and improving water quality, soil fertility

and quality. There have been alternative spectral indices designed to map tillage [63] [64]

based upon the 2100 nm cellulose absorption region. Nonetheless, authors of these indices

found effects of variation of soil background and emerging green vegetation to be of critical

concern. These concerns could be instigated by the fact that only two to three spectral bands of

the hyperspectral data were chosen to design the indices.

The robustness of the optimized MDIs toward the use of all available bands of a hyperspec-

tral image provides an exciting possibility and option for the identification of agricultural

tillage practices. As opposed to other mapping methods [65][66] that may have lesser discrimi-

native ability to differentiate spatial features between tillage systems, our approach of integrat-

ing the optimized spectral MDIs with other spatial features (e.g., textures) revealed minor

spectral variance among different tillage environments. As we have shown, differences in

absorption features from two tillage systems became magnified and highlighted the shape dif-

ferences of each spectral curve. By not limiting the number of spectral bands, we demonstrated

a viable strategy for agricultural tillage practice mapping that could easily discern a spectral

response of one tillage system from another, thereby improving class separability.

Conclusions

We developed and proposed a new and optimized moment distance index to improve the spa-

tial-spectral classification of hyperspectral data for agricultural management systems. We con-

clude, based on our goal to obtain better classification accuracies not only for vegetation

classes but for other landcover types, that it is worth integrating optimized MDIs for object-

oriented classification of hyperspectral images. However, it is still unknown how optimized

MDIs would perform when hyperspectral bands are limited, say for instance limiting the dis-

tance between LP and RP near the 2100 nm cellulose absorption region, which other existing

indices had utilized in mapping tillage systems. This is something worth looking into in the

future. One thing that is certain, however, that with proper selection of variables—spectral

indices, textural variables, and optimized MDIs—we could obtain relatively high classification

accuracies for individual landcover classes.

Our findings suggest that the use of object-based random forest classification, which effec-

tively combines spectral information from input variables including optimized MDI, could

allow the full potential of machine learning procedures for hyperspectral image classification.

We highly recommend to conduct auxiliary studies on the uncertainties of object-based image

classification, specifically applying our methods on various scale levels for different land

features.
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