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Abstract

Objective

To determine if corneal confocal microscopy can identify corneal nerve and endothelial cell

abnormalities and may be useful in the prognostication of patients with transient ischemic

attack [1] or minor ischemic stroke (IS).

Methods

Thirty-six patients admitted with TIA (n = 14) or minor IS (n = 22) underwent transcranial

Doppler evaluation and corneal confocal microscopy and were compared with 18 healthy

controls.

Results

Corneal nerve fiber density (P = 0.002), branch density (P = 0.004) and fiber length (P =

0.004) were significantly lower in patients with TIA or minor IS compared to controls, with no

difference between patients with TIA and minor IS. Endothelial cell density (P = 0.003) was

lower and endothelial cell area (P = 0.003) and perimeter (P = 0.006) were significantly

higher in patients with TIA or minor IS compared to controls, with no difference between

patients with TIA and minor IS. There were no differences in corneal nerve or endothelial

cell morphology between patients with and without abnormal cerebrovascular reactivity.

HbA1c was independently associated with CNFL, and endothelial cell polymegathism and

pleomorphism were associated with both HbA1c and total cholesterol.

Conclusion

Corneal confocal microscopy identifies corneal nerve fiber loss and endothelial cell abnor-

malities in patients with TIA and minor IS and independent associations with HbA1c and

cholesterol.
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Introduction

Stroke is associated with high fatality rates and major disability in survivors [2]. Transient

Ischemic Attack [1] and minor ischemic stroke (IS) share similar pathophysiology to stroke

[3]. Although, the ABCD2 score has been used to prognosticate the risk of subsequent stroke

[4], a meta-analysis showed that it does not reliably discriminate patients at low or high risk of

recurrent stroke [5]. Similarly, neuroimaging may enhance the prognostic ability following

TIA and minor stroke. However, recent analyses of patients with TIA or minor IS show that

white matter lesions are associated with disability at 90 days, but not with stroke progression

or stroke recurrence [6], and micro bleeds predict neither 90-day outcome or recurrence [7].

Cerebral auto-regulation assures hemodynamic integrity of the cerebral circulation [8] and

maintains cerebral blood flow (CBF) [9]. In addition to arterial blood pressure, intracranial

pressure and cerebral venous pressure may affect auto regulation and CBF [10]. Whilst

impaired cerebral auto regulation is associated with poor functional and prognostic outcomes

in patients with ischemic stroke [9], only a third of patients with acute ischemic stroke have

impaired cerebral auto regulation and it does not relate to stroke type or severity [11].

Corneal confocal microscopy (CCM) is a noninvasive ophthalmic imaging technique,

which allows rapid, high-resolution imaging of the cornea. We have pioneered this technique

to identify axonal loss in patient with diabetes [12], impaired glucose tolerance [13, 14] and

other peripheral neuropathies [15]. CCM can also detect corneal nerve loss in Parkinson’s dis-

ease [16], amyotrophic lateral sclerosis [17] and multiple sclerosis [18]. Recently, in patients

with major ischemic stroke we have shown a significant reduction in corneal nerves [19] and

abnormalities in endothelial cells [20].

Hypothesis

We hypothesize that patients with TIA and minor IS will have evidence of corneal nerve and

endothelial cell abnormalities which will aid in prognostication of patients with TIA and

minor stroke.

Methods

Forty patients with TIA or minor IS, aged between 18-80-year-old and able to provide consent

were enrolled in the study. The diagnosis of TIA or minor ischemic stroke was confirmed clin-

ically and radiologically by neurologists and neuroradiologists using AHA criteria [21].

Patients with craniocerebral trauma, hypertensive encephalopathy, brain tumor, atrial fibrilla-

tion or taking anticoagulants were excluded. Three patients were excluded as they were found

to be TIA mimics and one had cerebral venous sinus thrombosis. Thirty-six patients under-

went Transcranial Doppler Ultrasound (TCD) and Corneal Confocal Microscopy (CCM). Eth-

ical approvals were obtained from the Institutional Review Boards of Hamad General Hospital

and Weill Cornell Medicine in Qatar.

Corneal confocal microscopy

All patients underwent CCM (Heidelberg Retinal Tomograph III Rostock Cornea Module;

Heidelberg Engineering GmbH, Heidelberg, Germany). To perform the CCM examination,

local anesthetic (0.4% benoxinate hydrochloride; Chauvin Pharmaceuticals, Chefaro, United

Kingdom) was used to anesthetize both eyes, and Viscotears (Carbomer 980, 0.2%, Novartis,

United Kingdom) was used as the coupling agent between the cornea and the CCM [22]. The

examiners captured central sub-basal nerve plexus images using the section mode (Fig 1). On

the basis of depth, contrast, focus, and position, 6 images per patient were selected [23].

Corneal nerve and endothelium in TIA/IS
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Corneal nerve fiber density (CNFD), corneal nerve branch density (CNBD), corneal nerve

fiber length (CNFL) and corneal nerve fiber tortuosity (CNFT) were analysed manually using

CCMetrics (M. A. Dabbah, ISBE, University of Manchester, Manchester, United Kingdom)

[12] and the investigator was blinded to the diagnosis. Corneal endothelial cell density, area,

perimeter and degree of polymegathism (cell size variability) and pleomorphism (cell shape

variability) were quantified using automated CEAS software [24].

Transcranial doppler ultrasound

Blood flow in the right and left middle cerebral arteries [25] was measured using a trans-tem-

poral approach. Basal and peak flow velocities and cerebrovascular reactivity to hypercapnia

was measured by the Breath-Holding Index (BHI) [26].

Mean MCAV � Mean MCAV baseline
Mean MCAV at baseline

�
100

Seconds of breath holding
� 0:69

Statistical analysis

Statistical analyses were performed using IBM SPSS Statistics software Version 25. Normality

of the data was assessed using the Shapiro-Wilk test and by visual inspection of the histogram

and a normal Q-Q plot. Data are expressed as mean and SD for the normally distributed vari-

ables and as median and range for the skewed variables. Inferential analyses were conducted

for the corneal nerve and endothelial cell outcomes using both parametric (T-test and

ANOVA) and non-parametric (Mann-Whitney U and Kruskal–Wallis) tests, with Bonferroni

adjustment. To investigate the association between risk factors for corneal nerve and

Fig 1. Schematic of the corneal layers indicating the level at which corneal nerve and endothelial cell images are captured.

https://doi.org/10.1371/journal.pone.0213319.g001
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endothelial cell parameters, Pearson and Spearman correlation were performed as appropriate.

Multiple linear regression analysis was conducted to evaluate the independent association

between corneal nerve and endothelial cell parameters and their covariates. Significance level

was set at α = 0.05. Prism 6 (version 6.0g; Graphpad software Inc, CA) was used to plot the

charts.

Results

Clinical and metabolic characteristics

The clinical and metabolic characteristics are summarized in Table 1. Thirty-six patients with

TIA (n = 14) and minor IS (n = 22) were compared with 18 age-matched healthy controls

without diabetes, hypertension or previous TIA/stroke. Of the 36 patients with TIA and IS,

based on HbA1c and history, 13 had no diabetes; 9 had pre-diabetes and 14 had Type 2 diabe-

tes. There was no significant difference in age (P = 0.241), HbA1c (P = 0.243), total cholesterol

(P = 0.092); LDL-C (P = 0.309); HDL-C (P = 0.105); TG (P = 0.192) or body mass index

(P = 0.195) between control subjects and patients with TIA or minor IS. Systolic blood

Table 1. Clinical, metabolic and CCM parameters in patients with TIA, minor IS and healthy controls.

Control TIA Minor IS P-Value
Clinical characteristics

Age (years) 43.39 ± 13.73 47.36 ± 8.71 48.84 ± 8.77 0.241

NIHSS N/A 1 ± 1 2 ± 2 0.001�

Mean BHI N/A 0.52 ± 0.57 0.47 ± 0.55 0.787

HbA1c (%) 5.6 ± 0.30 6.0 ± 1.10 7.0 ± 2.70 0.243

Total cholesterol (mmol/L) 3.95 ± 1.93 4.32 ± 1.02 5.13 ± 1.40 0.092

LDL-C (mmol/L) 2.96 ± 1.07 2.51 ± 0.93 3.12 ± 1.23 0.309

HDL-C (mmol/L) 1.12 ± 0.21 0.91 ± 0.21 0.97 ± 0.23 0.105

TG (mmol/L) 1.2 ± 0.70 2.1 ± 1.50 2.3 ± 1.80 0.192

SBP (mmHg) 120.9 ± 12.40 147.57 ± 24.83† 143.45 ± 23.02† 0.012�

DBP (mmHg) 75.1 ± 7.29 85.0 ± 14.81 88.23 ± 13.90 0.040

BMI (kg/m2) 25.97 ± 1.84 26.46 ± 2.35 28.34 ± 4.61 0.195

CCM

CNFD (fibers/mm2) 38.18 ± 7.85 30.12 ± 8.32† 28.86 ± 8.05† 0.002�

CNBD (branches/mm2) 69.79; 87.50 44.79; 119.79 37.5; 108.33† 0.004‡

CNFL (mm/mm2) 21.55 ± 4.19 16.80 ± 5.07† 16.41 ± 5.20† 0.004�

CNFT (TC) 0.04; 0.10 0.03; 0.07 0.03; 0.09 0.186

ECD (cells/mm2) 3633 ± 176.00 3411 ± 408.00 3366 ± 229.00† 0.003�

ECA (μm2) 222 ± 11.00 240 ± 30.00† 241 ± 18.00† 0.003�

ECP (μm) 53.0 ± 1.00 55.0 ± 4.00† 55.0 ± 2.00† 0.006�

EC polymegathism (%) 52.0 ± 5.00 51.0 ± 3.00 52.0 ± 5.00 0.825

EC pleomorphism (%) 34.0 ± 5.00 34.0 ± 4.0 35.0 ± 6.0 0.894

All results were expressed as mean ± SD, except CNBD and CNFT expressed as median; range. TIA: Transient ischemic attack; IS: Ischemic Stroke; LDL-C: Low-density

lipoprotein-cholesterol; HDL-C: High-density lipoprotein-cholesterol; TG: Triglycerides; SBP: Systolic blood pressure; DBP: Diastolic blood pressure; BMI: Body mass

index; CNFD: Corneal nerve fiber density; CNBD: Corneal nerve branch density; CNFL: Corneal nerve fiber length; CNFT: Corneal nerve fiber tortuosity; ECD:

Endothelial cell density; ECA: Endothelial cell area; ECP: Endothelial cell perimeter; EC: Endothelial cell. NIHSS and mean BHI were not assessed for the control group.

� Statistically significant differences between groups using ANOVA.

‡ Statistically significant difference between groups using Kruskal-Wallis test.

†Post hoc results differ significantly from the control group after adjustment for multiple comparisons using Bonferroni correction (P<0.02).

https://doi.org/10.1371/journal.pone.0213319.t001
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pressure (SBP) was significantly higher (P = 0.012) in patients with TIA or minor IS compared

to controls.

Corneal confocal microscopy

CNFD (P = 0.002), CNBD (P = 0.004) and CNFL (P = 0.004) were significantly lower in

patients with TIA or minor IS compared to controls, with no difference between patients with

TIA or minor IS (Table 1, Figs 2 and 3). Endothelial cell density (P = 0.003) was lower and

endothelial cell area (P = 0.003) and perimeter (P = 0.006) were significantly higher with no

difference in the degree of polymegathism (P = 0.825) and pleomorphism (P = 0.894) between

patients with TIA or minor IS compared to controls and no difference between patients with

Fig 2. Corneal nerve fiber parameters in control subjects and patients with TIA and minor IS. (A) CNFD: Corneal nerve fiber density; (B) CNBD: Corneal

nerve branch density, (C) CNFL: Corneal nerve fiber length; Data are expressed as mean ± SD. TIA: Transient Ischemic Attack; IS: Ischemic stroke.

https://doi.org/10.1371/journal.pone.0213319.g002
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TIA or minor IS (Table 1, Figs 4 and 5). There was no difference in CNFD (P = 0.77), CNBD

(P = 0.08), CNFL (P = 0.45), endothelial cell density (P = 0.44), endothelial cell area (P = 0.41),

perimeter (P = 0.42), polymegathism (P = 0.95), and pleomorphism (P = 0.90), between partic-

ipants without diabetes, pre-diabetes and diabetes.

Cerebrovascular reactivity

64% of patients with TIA (n = 14) and 68% with minor IS (n = 22) had abnormal BHI. Com-

paring patients with normal and abnormal BHI there was no significant difference in: CNFD

Fig 3. Images of corneal sub-basal nerve plexus. Control subject (A), patient with TIA (B) and a patient with minor IS (C).

https://doi.org/10.1371/journal.pone.0213319.g003
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(30.52 ± 7.10; 28.80 ± 8.49; P = 0.58); CNBD (33.85 and 64.58; 41.93 and 127.08; P = 0.36);

CNFL (16.71 ± 4.11; 16.49 ± 5.51; P = 0.91); CNFT (0.03 and 0.09; 0.03 and 0.07; P = 0.93);

ECD (3399.84 ± 344.58; 3371.92 ± 274.36; P = 0.80); ECA (239.58 ± 24.89; 241.02 ± 21.19;

P = 0.86); ECP (55.23 ± 2.78; 55.3 ± 2.56; P = 0.94); percentage with polymegathism

(52.49 ± 4.68; 51.32 ± 4.14; P = 0.47) and pleomorphism (35.03 ± 7.01; 34.14 ± 4.90; P = 0.67).

Correlation. NIHSS at presentation correlated with CNFD (r = 0.364, P = 0.031) and

CNFL (r = 0.345, P = 0.046). There was no correlation between corneal nerve and endothelial

cell parameters and BHI or age.

Multiple linear regression. There were independent associations between some corneal

nerve and endothelial cell parameters with age, HbA1c and total cholesterol (Table 2). There

was a significant association between HbA1c with CNFL (B = -0.768, P = 0.04) and endothelial

Fig 4. Corneal endothelial cell parameters in control subjects and patients with TIA and minor IS. (A) ECD: Endothelial cell density; (B) ECA: Endothelial

cell area; (C) ECP: Endothelial cell perimeter. Data are expressed as mean ± SD. TIA: Transient Ischemic Attack; IS: Ischemic stroke.

https://doi.org/10.1371/journal.pone.0213319.g004
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cell pleomorphism (B = -1.261, P = 0.001). Total cholesterol was associated with endothelial

cell polymegathism (B = -1.628, P = 0.016) and pleomorphism (B = 2.637, P = 0.001). Age was

significantly associated with endothelial cell pleomorphism (B = 0.412, P =<0.001). BHI was

not associated with CNFL (B = -0.137, P = 0.217); CNFD (B = 2.1, P = 0.456); endothelial cell

density (B = -124.545, P = 0.306); endothelial cell area (B = 9.607, P = 0.295); endothelial cell

perimeter (B = 1.309, P = 0.228), polymegathism (B = 1.758, P = 0.272) or pleomorphism (B =

-1.829, P = 0.321). CNBD and CNFT were skewed, therefore they were not included in the

multiple regression analysis.

Fig 5. Images of corneal endothelium. Control subject (A), patient with TIA (B) and a patient with minor IS (C).

https://doi.org/10.1371/journal.pone.0213319.g005
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Table 2. Independent risk factors for altered corneal nerve and endothelial cell parameters in patients with TIA and minor IS.

B 95% CI SE P-Value
CNFD (fibers/mm2)

Age (years) -0.199 (-0.551–0.153) 0.1795 0.268

Mean BHI 2.1 (-3.42–7.619) 2.8162 0.456

HbA1c (%) -1.038 (-2.222–0.147) 0.6044 0.086

Total cholesterol (mmol/L) 1.514 (-0.908–3.936) 1.2359 0.22

TG (mmol/L) -1.315 (-2.914–0.284) 0.8157 0.107

CNFL (mm/mm2)

Age (years) -0.137 (-0.36–0.08) 0.1113 0.217

Mean BHI 0.61 (-2.81–4.03) 1.746 0.727

HbA1c (%) -0.768 (-1.50 - -0.03) 0.3747 0.04
�

Total cholesterol (mmol/L) 0.681 (-0.82–2.18) 0.7662 0.374

TG (mmol/L) -0.558 (-1.55–0.43) 0.5057 0.270

ECD (cells/mm2)

Age (years) -9.881 (-25.172–5.41) 7.8018 0.205

Mean BHI -124.545 (-363.039–113.949) 121.6829 0.306

HbA1c (%) 14.899 (-33.596–63.395) 24.7431 0.547

Total cholesterol (mmol/L) -13.324 (-113.824–87.175) 51.2761 0.795

TG (mmol/L) 14.665 (-51.387–80.717) 33.7005 0.663

ECA (μm2)

Age (years) 0.704 (-0.45–1.858) 0.5888 0.232

Mean BHI 9.607 (-8.392–27.606) 9.1834 0.295

HbA1c (%) -0.879 (-4.539–2.781) 1.8673 0.638

Total cholesterol (mmol/L) 1.223 (-6.361–8.808) 3.8698 0.752

TG (mmol/L) -0.758 (-5.743–4.227) 2.5434 0.766

ECP (μm)

Age (years) 0.051 (-0.086–0.187) 0.0696 0.468

Mean BHI 1.309 (-0.818–3.436) 1.085 0.228

HbA1c (%) 0.002 (-0.431–0.434) 0.2206 0.994

Total cholesterol (mmol/L) 0.01 (-0.886–0.906) 0.4572 0.982

TG (mmol/L) -0.108 (-0.697–0.481) 0.3005 0.72

EC Polymegathism (%)

Age (years) -0.198 (-0.399–0.003) 0.1027 0.054

Mean BHI 1.758 (-1.381–4.896) 1.6012 0.272

HbA1c (%) 0.637 (-0.001–1.275) 0.3256 0.050

Total cholesterol (mmol/L) -1.628 (-2.951 - -0.306) 0.6747 0.016
�

TG (mmol/L) 0.628 (-0.241–1.497) 0.4435 0.157

EC Pleomorphism (%)

Age (years) 0.412 (0.18–0.643) 0.118 0.001
�

Mean BHI -1.829 (-5.437–1.78) 1.841 0.321

HbA1c (%) -1.261 (-1.995 - -0.527) 0.3743 0.001
�

Total cholesterol (mmol/L) 2.637 (1.116–4.157) 0.7758 0.001
�

TG (mmol/L) -0.321 (-1.32–0.679) 0.5099 0.529

BHI: Breath holding index; HbA1c: Glycated hemoglobin; TG: Triglycerides; CNFL: Corneal nerve fiber length; CNFD: Corneal nerve fiber density; ECD: Endothelial

cell density; ECA: Endothelial cell area; ECP: Endothelial cell perimeter; EC: Endothelial cells.

https://doi.org/10.1371/journal.pone.0213319.t002
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Discussion and conclusions

This is the first study to demonstrate corneal nerve and endothelial cell pathology in patients

with TIA or minor IS, extending our previous findings in patients with major stroke [19, 20].

Diabetes, hypertension, smoking, dyslipidemia [27–29], obesity [25] and metabolic syndrome

[30] are known risk factors for stroke and are linked to cerebral white matter lesions and silent

lacunar brain infarcts [31], but have limited prognostic value for recurrent stroke in patients

with TIA and minor IS [4]. Impaired cerebral reactivity has been associated with the risk of

subsequent stroke in patients with TIA [32, 33], and smoking, hypertension, diabetes and cho-

lesterol are related to altered CBF in patients with TIA and minor stroke [31, 34]. Endothelial

dysfunction is involved in the pathophysiology of TIA [35] and lacunar stroke [36] and has

been implicated in the development of silent lacunar infarcts and white matter lesions [37]. It

may also act as an independent predictor for a recurrent ischemic event [38, 39].

The corneal endothelium has traditionally been thought to play a role in primarily regulat-

ing the passage of nutrients and metabolic waste to and from the cornea [40], however, it also

shows thrombogenic potential after exposure to extracellular matrix and collagen [41]. We

have previously demonstrated a reduction in corneal endothelial cell density in patients with

diabetes [42, 43]. We have also recently developed an automated image analysis system to

quantify corneal endothelial cell morphology and shown reduced corneal endothelial cell den-

sity and hypertrophy in patients with diabetes [24]. Given that we found corneal nerve and

endothelial cell abnormalities in patients with TIA and minor stroke, we assessed for associa-

tions with cerebrovascular reactivity and risk factors for stroke. We show no difference in cor-

neal endothelial cell and nerve morphology between patients with and without abnormal

cerebrovascular reactivity, suggesting alternate mechanisms driving these two abnormalities in

patients with cerebrovascular disease.

Contrary to our previous studies in subjects with impaired glucose tolerance and diabetes

(12, 13), we failed to demonstrate a difference in corneal nerve and endothelial cell pathology

between participants without diabetes, pre-diabetes and diabetes. This was despite an associa-

tion between endothelial cell polymegathism and pleomorphism with total cholesterol and

HbA1c and between CNFL and HbA1c. Indeed, we have previously shown a loss of corneal

nerves in subjects with impaired glucose tolerance (IGT) and type 2 diabetes with a major

stroke compared to controls, but no difference between participants with IGT and T2DM,

despite an association between corneal nerve morphology with HbA1c and triglycerides [19].

We can only attribute this lack of difference to an as yet unidentified confounding bias in this

population with cerebrovascular disease, the relatively small cohort size and the influence of

concurrent medication. CNFL and CNFD correlated directly with the severity of stroke at pre-

sentation, arguing that alterations in corneal nerve morphology are not related to the acute

event. Age correlated with CNFL, which agrees with a number of previous studies [44, 45].

A limitation of this study is the small sample size of younger, predominantly South Asian

patients, which might limit the generalizability of our study findings. However, this is the first

study to show an abnormality in corneal nerves and endothelial cells in patients with TIA and

minor stroke, and extend our recent findings in patients with major stroke. There is a need for

larger, longitudinal studies to assess the prognostic value of corneal nerve and endothelial cell

imaging in relation to recurrent TIA or stroke.
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