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Abstract

Salt stress is one of the major adverse environmental factors limiting crop productivity. Con-

sidering Iran as one of the bread wheat origins, we sequenced root transcriptome of an Ira-

nian salt tolerant cultivar, Arg, under salt stress to extend our knowledge of the molecular

basis of salinity tolerance in Triticum aestivum. RNA sequencing resulted in more than 113

million reads and about 104013 genes were obtained, among which 26171 novel transcripts

were identified. A comparison of abundances showed that 5128 genes were differentially

expressed due to salt stress. The differentially expressed genes (DEGs) were annotated

with Gene Ontology terms, and the key pathways were identified using Kyoto Encyclopedia

of Gene and Genomes (KEGG) pathway mapping. The DEGs could be classified into 227

KEGG pathways among which transporters, phenylpropanoid biosynthesis, transcription

factors, glycosyltransferases, glutathione metabolism and plant hormone signal transduc-

tion represented the most significant pathways. Furthermore, the expression pattern of nine

genes involved in salt stress response was compared between the salt tolerant (Arg) and

susceptible (Moghan3) cultivars. A panel of novel genes and transcripts is found in this

research to be differentially expressed under salinity in Arg cultivar and a model is proposed

for salt stress response in this salt tolerant cultivar of wheat employing the DEGs. The

achieved results can be beneficial for better understanding and improvement of salt toler-

ance in wheat.

Introduction

Soil salinity is a major environmental factor which limits the growth and development of

plants, resulting in decrease in crop productivity and quality[1, 2]. It is estimated that salt stress

affects approximately 20% of the irrigated land worldwide and will lead to the loss of 50% of

cultivable land by the middle of the twenty-first century[3].

High soil salt concentrations reduce the capability of a plant to absorb water. Moreover,

when Na+ and Cl− are absorbed in large quantities by roots, both Na+ and Cl− adversely influ-

ence growth by ruining metabolic processes and reducing photosynthetic efficiency[4, 5].
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Therefore, salt stress limits the growth of plants through early-occurring osmotic stress and

slowly-occurring ion cytotoxicity[6]. Plants use mechanisms to relieve osmotic stress by

decreasing water loss and maximizing water uptake. In addition, plants minimize the adverse

consequences of ionic Na+ stress by excretion of Na+ from leaf tissues and by compartmentali-

zation of Na+ largely into vacuoles[7, 8]. Notwithstanding these tolerance mechanisms, salt

stress declines crop yields and results in continuous loss of arable land. Therefore, identifying

the main genes and mechanisms involved in salinity tolerance in order to engineer crops to

improve salt-tolerance mechanisms is necessary to address these challenges[6].

Clarifying the key components in the plant salt tolerance network is essential to engineer

more salt tolerant plants. Three kinds of genes are involved in salt stress response in plants

including the genes involved in sensing and signaling of the stress, transcriptional regulators

and salt-stress related genes. Under salt stress, Na+ enters the cell through non-selective cation

channels and other membrane transporters (that most of them are unknown) and inside the

cell, Na+ is sensed by an unknown sensory mechanism. At the next step, Ca2+, reactive oxygen

species (ROS) and hormones act as the secondary messengers. In the Ca2+ signaling pathway,

for example, kinases like Calcineurin B-like proteins (CBLs), CBL-interacting protein kinases

(CIPKs) and Calcium-dependent protein kinases (CDPKs) are present which can change the

transcriptional profile of the plant. Transcription factors families such as WRKY, MYB,

bHLH, bZIP, AP2/ERF and NAC had been shown to be engaged in salt stress response.

Finally, these early signaling pathways lead to expression and activation of cellular detoxifica-

tion mechanisms including Na+ transport mechanisms and osmotic protection strategies[6].

RNA-seq, having high accuracy and sensitivity is one of the most suitable techniques to

study the whole transcriptome[9, 10]. It has advantages such as the ability to identify novel

genes/transcripts, detect low abundance transcripts, identify genetic variants and detect more

differentially expressed genes with higher fold-change in comparison with microarray[10, 11].

Recently, a few RNA-seq studies was used to explore the transcriptome of bread wheat under

salt stress: Goyal et al. (2016) found genes involved in providing energy to form proton gradi-

ent to drive exceeding cytoplasmic Na+ into vacuoles (like V-ATPase gene), ROS scavengers,

genes engaged in energy metabolism adjustment (like ATP citrate synthase) and signaling

genes (like Cbl-interacting protein kinase) as the most important genes involved in salt toler-

ance in root transcriptome of Kharchia local variety[12]. Zhang et al. (2016) introduced some

genes such as a NAC transcription factor (homologous to Arabidopsis AtNAC025), a histone-

lysine N-methyltransferase (homologous to Arabidopsis AtSDG16), a MYB transcription fac-

tor (homologous to Arabidopsis AtMYB333) and TaRSL4 gene (positively associated with root

hair development) as necessary genes for salt stress tolerance in bread wheat root[13]. Xiong

et al. (2017) compared salt responsive transcriptome of shoot between a salt tolerant bread

wheat mutant and the salt sensitive wild type and showed that homeostasis of oxidation-reduc-

tion process is important for salt tolerance. They also found “Butanoate metabolism” as a new

pathway for salinity response. Moreover, they found key genes for salinity tolerance such as

arginine decarboxylase, polyamine oxidase and hormones-related genes to be more induced in

salt-tolerant genotype[14]. In spite of the precious insight into the molecular and cellular

mechanisms by which bread wheat responds to and tolerate salinity found by these recent

research studies, the regulatory mechanisms engaged in harmonizing salt stress tolerance and

plant growth are not completely perceived. Thus, a better understanding of salt-tolerance

mechanisms would be helpful for breeding salt-tolerant wheat cultivars, in order to stabilize

wheat production.

Wheat is the most important crop in Iran and the staple food for most of the people. Given

that Iran is known as one of the origins of bread wheat and its wild progenitors [15–18],

sequencing an Iranian salt tolerant wheat cultivar (such as Arg) can provide new and valuable
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information. Therefore, in this study, we used the Illumina sequencing to compare the tran-

scriptome of Arg under normal and salt-stressed conditions.

In order to analyze the bread wheat RNASeq data, TGACv1 reference genome of T. aesti-
vum was used. To date, this is the most complete and accurate sequence assembly and annota-

tion of the bread wheat reference accession, Chinese Spring[19]. To the best of our knowledge,

it is the first time that this reference genome is employed for RNASeq data analysis under salt

stress. The differential gene expression patterns and alternative splicing events were analyzed.

In addition, novel transcripts in response to salt stress were identified. Functional categoriza-

tion of the DEGs was also carried out to determine different metabolic pathways engaged in

salt stress response. Overall, this research provides a comprehensive overview of transcrip-

tional regulation in bread wheat under salt stress.

Materials and methods

Plant growth and salt stress treatment

Seeds of bread wheat cultivars of Arg (salt tolerant) and Moghan3 (salt sensitive) were col-

lected from Seed and Plant Improvement Institute, Karaj, Iran. Arg has been produced by the

hybridization between cymmit cultivar of Inia and the salt tolerant local line of 1-66-22 in the

Seed and Plant Improvement Institute (SPII) of Iran [20].

The seeds were surface sterilized in 1% Sodium hypochlorite (NaClO) for 10 min, then

washed in distilled water several times, and finally laid on moistened filter paper. After 2–3

days, the uniformly germinated seeds were grown hydroponically in half-strength Hoagland

solution in the green house. The 3-week old plants were salt treated using 150 mM NaCl solu-

tion for 12 h. The root samples were taken from both control and salt-treated plants with four

biological replicates, each containing three plants. The root samples were immediately frozen

in liquid nitrogen and stored at -80˚C until analysis.

RNA extraction and Illumina deep sequencing

Total RNA was isolated from the four biological replicates of normal and stressed roots (after

12 h exposure to salt stress) using RNeasy Plant Mini Kit (Qiagen) according to the manufac-

turer’s instructions (Qiagen). Equal amounts of total RNA of each two biological replicates

were pooled for the RNA sequencing. The purity and integrity of RNA was checked by nano-

drop, agarose gel electrophoresis and Agilent Bioanalyzer 2100 system (Agilent Technologies

Co. Ltd., Beijing, China). The samples with RIN value higher than 9.1 were used for

sequencing.

After quality control (QC) of the RNA samples, poly(A) enrichment, RNA fragmentation,

random hexamer-primed cDNA synthesis, linker ligation, size selection and PCR amplifica-

tion were done to prepare cDNA libraries for each sample. Finally, the qualified libraries were

fed into HiSeq sequencers after pooling according to its effective concentration and expected

data volume. The libraries were sequenced at the Novogene Bioinformatic Institute (Beijing,

China) on an Illumina Hiseq 2500 platform and 150bp paired end reads were generated. After

sequencing, reads containing adapters, reads with N > 10% (N indicates that the base cannot

be determined) and reads having low quality (Qscore< = 5) base, which was over 50% of the

total base, were removed.

Quality control and reference-based assembly

The quality of raw fastq data was checked using FastQC toolkit. The high quality reads were

submitted for mapping analysis against the release-34 version of wheat reference genome
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(ftp://ftp.ensemblgenomes.org/pub/release-34/plants/fasta/triticum_aestivum/dna/) using

Tophat with default parameters. Assembly was done through Cufflinks using the TopHat map-

ping files with default parameters. Cuffmerge with default options was used to merge the indi-

vidual assemblies and produce the final assembly. Furthermore, the novel transcripts were

identified by Cuffmerge[21]. The assembled sequences were aligned against the NCBI non-

redundant protein database through BlastX with an e-value cut-off of 1e-3 using Blast2GO

program.

Identification of differentially expressed genes (DEGs)

The FPKM method was used to calculate the gene/transcript expression in this research. Dif-

ferential gene expression was defined using Cuffdiff available in Cufflinks package utilizing

options,–upper-quartile-norm,–total-hits-norm and–frag-bias-correct. The genes with log2

fold change� 1 (up-regulated genes) and�(− 1) (down-regulated genes) with Q-value cut off

of� 0.01 were considered as significant differentially expressed transcripts.

Functional annotation and pathway analysis of DEGs

Classification of DEGs to GO terms was done using Blast2GO program at p-values < 0.05

[22]. Online KEGG Automatic Annotation Server (KAAS), http://www.genome.jp/kegg/kaas

[23], using single-directional best hit (SBH) method was used to assign KEGG pathways to the

DEGs. Furthermore, Mapman (version 3.5.1; http://mapman.gabipd.org/web/guest) [24] was

used for pathway analysis of DEGs with P-value cut-off of� 0.05. The DEGs were mapped on

Arabidopsis pathway genes to characterize the genes involved in specific pathways.

Alternative splicing analysis

Determination of alternative splicing events was done using AStalavista web tool (version 3;

http://genome.crg.es/astalavista/) with default parameters. The outputs prepared for all the AS

events were further analyzed manually.

Quantitative Real Time PCR (qRT-PCR) validation

Three replicates were used for quantitative Real-Time PCR. cDNA was synthesized using

qScript cDNA Synthesis Kit (Quantabio, USA) according to the manufacturer’s instruction.

qRT-PCR was performed for three biological replicates using a LightCycler 96 Real-Time PCR

System (Roche Life Science, Germany) and SYBR Premix EX TaqII (Takara Bio Inb,Japan)

according to the manufacturer’s instructions. Normalization was done using Actin as an inter-

nal control gene as reported in previous studies[12, 24].

The gene specific primers are listed in S1 Table. The relative expression levels of the selected

genes were calculated from cycle threshold values using the 2−ΔΔCt procedure [25].

Results and discussion

Sequencing statistics

To obtain a better understanding of the mechanism underlying salt tolerance of Arg cultivar at

global transcriptional level, the transcriptome of Arg plants grown in control and NaCl supple-

mented media were surveyed by RNA-Seq. In total, more than 113.34 million reads were pro-

duced. After trimming adapters and filtering out low quality reads, more than 111.73 million

clean reads remained for further analysis. Among all the reads, more than 91.3% had Phred-

like quality scores at the Q30 level (an error probability of 0.1%) (S2 Table). These results indi-

cated that the quality of sequencing data is high enough for subsequent analysis. The
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transcriptome raw data of the present research have been submitted at SRA (Sequence Read

Achieve) of NCBI with the accession numbers of SRR7755529, SRR7755530, SRR7755531 and

SRR7755532.

Reference-based transcriptome assembly was accomplished via TopHat-Cufflinks pipeline

[21] utilizing the wheat genome sequence as reference. The high quality reads were mapped to

the release-34 version of wheat reference genome (ftp://ftp.ensemblgenomes.org/pub/release-

34/plants/fasta/triticum_aestivum/dna/) and the alignment results showed that 85.4–86.4% of

the total reads mapped to the wheat reference genome including 74.73–81.03% are uniquely

matched (Table 1). The assembly of mapped reads led to the identification of a total of 203080

transcript isoforms and 104013 genes.

Identification of novel transcripts

One of the major advantages of RNA-seq analysis is to identify novel genes/transcript isoforms

[9, 10, 26]. In this study, 26171 novel transcript isoforms and 15060 novel genes were identi-

fied. It was found that the average length of novel transcripts was lesser (1690 bp) than that of

known (annotated) transcripts (2285bp) similar to what was reported in other plants such as

rice and maize[27, 28]. Around 74% of the total assembled transcripts and more than 49.4% of

the novel transcripts were assigned with a putative function (S3 Table).

GO analysis of novel transcripts revealed that in biological process category, the novel

genes were involved in cellular process, biological regulation, localization, single organism

process, metabolic process, cellular component organization or biogenesis, response to stimu-

lus and regulation of biological process (S4 Table). In the molecular function category, most of

the novel transcripts were involved in heterocyclic compound binding, small molecule bind-

ing, hydrolase activity, ion binding, transferase activity, carbohydrate derivative binding,

organic cyclic compound binding, nucleotide binding, hydrolase activity, transferase activity

and kinase activity (S5 Table). Furthermore, novel transcripts belonged to cytoplasm, cyto-

plasmic part, integral component of membrane, intracellular membrane-bounded organelle,

plastid, nucleus and mitochondrion cellular component GOSlim categories (S6 Table).

Identification of DEGs

A total of 5128 genes were differentially expressed between salt treated and control bread

wheat (Arg cultivar) root samples (S1 Fig). Among these DEGs, 1995 genes were up-regulated

and 3133 genes were down-regulated under salt stress. In addition, 109 and 210 genes were

unique in salt treated and control plants, respectively (Fig 1A). Among the genes exclusively

expressed under salt stress, some important genes were observed which are known to be

engaged in abiotic stress response such as transcription factors (e.g. AP2/ERF and MYB), LEA

proteins, dehydrins, BURP domain-containing proteins and the genes involved in cell redox

Table 1. Summary of Illumina transcriptome reads mapped to the reference genes (The numbers listed in the table are the sum of left and right reads).

Reads mapping Reads number (%)

Control-rep1 Control-rep2 Salt-stressed-rep1 Salt-stressed-rep2

Total reads 55051964 50888292 59933654 57599222

Total mapped reads 47295192(85.9%) 43513604(85.5%) 51183812(85.4%) 49765796(86.4%)

Unique match 44609343(81.03%) 40473327(79.53%) 47943836(79.99%) 43045674(74.73%)

Multi-position match 2685849(4.87%) 3040277(5.97%) 3239976(5.41%) 6720122(11.67%)

Total unmapped reads 7756772(14.1%) 7374688(14.5%) 8749842(14.6%) 7833426(13.6%)

https://doi.org/10.1371/journal.pone.0213305.t001
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homeostasis (S7 Table). Assessing fold change distribution of the DEGs showed that most of

the genes had a fold change between 2 and 3 and the least number had a fold change of 6–7

(Fig 1B).

As mentioned in the introduction, three kinds of genes are involved in salt stress response.

The first group contains salt responsive genes, which are involved in sensing and signaling of

the (S8 Table) were discovered among the up-regulated DEGs which may act as candidate

osmosensors in T. aestivum under salt stress[29]. The molecular nature of Na+ sensors is yet

unclear, the plasma membrane Na+/H+ antiporter Salt Overly Sensitive1 (SOS1) can be a pos-

sible candidate because its cytoplasmic end is assumed to be involved in Na+ sensing. The gene

encoding SOS1 (S8 Table) was found among the up-regulated DEGs which may function as

Na+sensor[30].

Fluctuation in the cytosolic calcium concentration is one of the primary responses to differ-

ent stimuli, and elements involved in Ca2+ transport actively take part in retaining this flux

and homeostasis[31]. Among the DEGs, there were 3 genes coding for calcium-transporter

ATPases. One of them is the up-regulated novel gene which locates in TGACv1_scaf-

fold_641741_U:17189–17824. Orthologue of the mentioned gene in rice is Os.ACA7
(Os10g0418100), which locates in Golgi apparatus and is activated by Calmodulin[31]. Up-

regulation of the Ca2+-ATPases in different plant species such as tomato, tobacco, soybean

[32–35]and Arabidopsis has been reported under salt stress and they may help in dropping the

cytosolic calcium level, that was elevated by NaCl stress, and the maintenance of Ca2+ homeo-

stasis[31]. Also, overexpression of N-terminal modified ACA4 in Arabidopsis seedlings

resulted in increased salt tolerance in comparison with wild-type plants[36]. Annexins consti-

tute another group of Ca2+ transporters[31]. Annexin D4 is one of the Ca+2 transporters found

in this study. Annexins operate downstream of the plasma membrane NADPH oxidases that

produce extracellular hydroxyl radicals, which are able to activate Ca+2 influx through annex-

ins [37]. Another Ca2+ transporter discovered in this study was a Na+/Ca2+ exchanger coded

by a novel gene, located in GACv1_scaffold_571144_7AS:15506–18943 (Ta.NCL2). It has been

reported that AtNCL localizes in the cell membrane, binds Ca2+ and takes part in Ca2+ homeo-

stasis under abiotic stresses in Arabidopsis[38]. Ta.GLR, which encodes a Glutamate receptor,

is another gene involved in Ca2+ transport in this study. Glutamate receptors are non-selective

cation channels [31]and are responsive to abiotic stresses[39, 40].
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Following increase in Ca2+concentration under salt stress, kinases like Calcium-dependent

protein kinases (CDPKs)[41], calcineurin B-like proteins (CBLs) and CBL-interacting protein

kinases (CIPKs)[42] may become activated, which are able to transduce the signal to down-

stream protein activity and gene transcription[6]. 19 DEGs encoding CIPKs were discovered

(S8 Table), among which 6 genes had been demonstrated to be engaged in salt stress response

based on the information available about their orthologues in Arabidopsis [43–45] (S9 Table).

Six genes encoding Calmodulin were also found among the DEGs (S8 Table). One of the

Ca2+-sensing proteins is Calmodulin (CaM) and it has been shown that CaM is involved in

transduction of Ca2+signals. After interacting with Ca2+, CaM is subjected to conformational

changes and affects the activities of CaM-binding proteins. A number of CaM-binding pro-

teins were supposed to be involved in stress responses in plants, indicating the central role

played by CaM in adaptation to detrimental environmental conditions[46].

Among the DEGs, many transcription factors (TFs) were discovered, proposing that TFs

play important roles in salt stress response via regulating transcription of the downstream

genes responsible for plant tolerance to salt stress. Transcription factors such as AP2/ERF,

bZIP, Zn-finger, NAC, MYB and WRKY had been observed to be engaged in the regulation of

abiotic stress tolerance in plants and a subset of these transcription factors are discussed in this

study[47].

NAC genes are a class of plant-specific transcription factors containing a highly conserved

N-terminal domain known as the NAC domain. In this study, 53 NAC domain containing

genes were discovered among the DEGs, of which 29 NAC genes were up-regulated and 24 of

them were down-regulated under salt stress (S8 Table). Some of these NAC genes have been

defined to be involved in salt stress response based on the previous studies in wheat or on the

basis of the information regarding their orthologues in Arabidopsis [48–51](S9 Table).

Another class of transcription factors are zinc finger proteins (ZFPs), among which four

ZFP families of C2H2, CCCH, C3HC4 and C4 play many important regulatory roles in devel-

opment, growth, stress response and phytohormone response in plants[52]. In this study,

about 30 differentially expressed ZF transcription factors were identified which, based on their

orthologues in the Arabidopsis, seven salt responsive members were predicted (S9 Table).

Among these genes, AtSZF2 (orthologue of TRIAE_CS42_3AL_TGACv1_196305_AA0659290

in Arabidopsis) negatively regulate the expression of salt-responsive genes and play key roles

in modulating salt stress tolerance in Arabidopsis plants.[26]

The MYB family, found in all eukaryotes, includes a large and functionally diverse classes of

proteins. Most of the MYB proteins function as transcription factors and have been proved to

be engaged in regulating different cellular processes, including biotic and abiotic stress response

[53]. Based on the achieved results, 48 MYB transcription factors are induced by salt stress.

The third group of salt stress responsive genes are those involved in stress adaptation.

Among the DEGs, there were genes coding for Aquaporins (controlling transport of water and

ions)[54], LEA proteins, dehydrins and organic osmolytes such as proline in response to

osmotic stress. Late-embryogenesis-abundant (LEA) proteins are induced by osmotic stresses

in vegetative tissues and cause dehydration tolerance in vegetative tissues of plants[55]. Twenty

seven genes coding for LEA proteins were discovered in the DEGs identified in this study. Pro-

duction of LEA proteins alongside accumulation of organic osmolytes plays key roles in sus-

taining the low intracellular osmotic potential of plants and thereby attenuates the detrimental

effects of salinity stress[56, 57]. Furthermore, peroxidases, catalases, glutaredoxins and Glutha-

tione-S- transferases were differentially expressed in response to oxidative stress caused by

salinity.

For dealing with the ionic stress arising from salinity, the genes coding for plasma mem-

brane Na+/H+ antiporter SOS1, K+ transporters and ABC transporters were available among
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the up-regulated DEGs. The ABC transporter, Ta.ABAC15, found among the up-regulated

DEGs is involved in K+ uptake, and K+ / Na+ homostasis, based on the information about its

Arabidopsis orthologue (At1g04120)[58].The genes coding for HAK potassium transporters

were also discovered among the DEGs in this study. Horie et al. showed that overexpression of

rice Na+-impermeable K+ transporter (OsHAK5) led to salinity tolerance in tobacco bright yel-

low 2 (BY2) cells[59]. Ion homeostasis during salinity stress needs the preservation of stable

K+ attainment and distribution[60] given that K+ accumulation in plant cells equilibrates the

poisonous effects of Na+ accumulation.

The gene coding for salt overly sensitive 1 (SOS1) was also discovered among the up-regu-

lated DEGs in this research. Plasma membrane-localized SOS1 Na+/H+ antiporter[2], which

exports Na+ out of the cell, besides tonoplast-localized NHX1 Na+/H+ antiporter[61] are the

two main factors that sustain low cytoplasmic Na+ concentrations in plant cells[6]. As men-

tioned above, SOS1 besides functioning as antiporter to export Na+ out of the cell, may act as

Na+ sensors, too. At the present study, SOS2 was not observed among the DEGs but the CIPK

gene which its Arabidopsis orthologue is SOS2-like protein kinase PKS12 was available among

the up-regulated DEGs which is engaged in salt stress response in Arabidopsis[44]. It is likely

that this gene controls the activity of the Na+/H+ antiporter SOS1. Although the gene coding

for Na+/H+ antiporter NHX1 was not available among the DEGs, but hexokinase1 which is

able to phosphorylate NHX1 and increase its stability was discovered among the up-regulated

DEGs. In fact, this gene increases salt tolerance through increasing compartmentalization of

Na+ into vacuole[62].

Gene ontology enrichment analysis for DEGs

In order to study the functions of DEGs, GO terms were extracted utilizing Blast2GO tool and

then were exposed to GO enrichment analysis[22]. Annotation of DEGs revealed that a total of

4056(out of 5028) genes were assigned GO terms.

The dominant terms were ‘cell’, ‘cell part’ and ‘membrane’ in cellular component category

while ‘catalytic activity’ and ‘binding’ were the most dominant terms in molecular function

category. In biological process category, most of the DE genes were classified in metabolic pro-

cess and cellular process followed by single organism process, biological regulation and

response to stimulus (Fig 2). The transcriptional changes of genes categorized in metabolic

and cellular processes were previously reported under different environmental conditions[63,

64] proposing that extensive metabolic activities occur in the stress treated plants.

Not surprisingly, the most enriched biological process terms for over-presented DEGs were

electron transport, response to oxidative stress, response to chemical stimulus, carbohydrate meta-

bolic process, plant-type cell-wall organization, transport and establishment of localization which

acted as indicators of significant biological processes underlying the specific salinity-stress

responses of plants and are in agreement with those reported in salt stress response in previous

studies[12, 28, 65].The most enriched molecular function terms for over-presented DEGs were

catalytic activity, iron ion binding, tetrapyrrole binding, cation binding, oxidoreductase activity

and antioxidant activity. Meanwhile, with regard to the over-representation of cellular component

terms among the DEGs, we found extracellular region, membrane, intrinsic to membrane, inte-

gral to membrane and intrinsic to plasma membrane to be the most enriched (S10 Table).

Functional annotation and classification of novel DEGs

Blast2GO was used to compare the functional annotation of novel DEGs against the NCBI

non redundant (nr) protein database with a cut-off E-value of 1.0 E−3. Of the 544 novel DEGs,

405 genes (74.4%) aligned to nr protein database whereas the remaining 139 genes (25.6%) did
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not show homology to any sequence in the database. Sequence homology based on GO catego-

rization utilizing Blast2GO tool indicated that out of all the novel DEGs, 259 genes (47.6%)

were assigned GO terms and 229 genes (42%) were classified in significant GO terms (S2A

Fig). In biological process category, the majority of genes were engaged in metabolic process

and cellular process followed by single-organism process, localization, response to stimulus

and biological regulation. With respect to the cellular component, cell part, cell and membrane

were the dominant groups, followed by membrane part, organelle, organelle part and extracel-

lular region. With regard to molecular function, the top three categories were catalytic activity,

binding and transporter activity (S2B Fig).

It is expected that some of the novel DEGs play potential roles in salt stress tolerance such

as the genes coding for peroxidase[66], Glutathione S-trasferase[67], Phosphatase 2C[68],

Na+/Ca2+ Exchanger-like Protein[38], pathogenesis-related protein[69], salt stress-induced

hydrophobic peptide ESI3(Early Salt stress Induced 3)[70], ATP synthase subunit beta[71],

Late Embryogenesis Abundant protein[72], WRKY[73], MADS-box[74] and bHLH transcrip-

tion factors[75] and cytochrome P450 monooxygenase[76] (S11 Table).
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Fig 2. GO classification of DEGs based on sequence homology to 3 main categories of cellular component, molecular function and biological process.

https://doi.org/10.1371/journal.pone.0213305.g002
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KEGG pathway classification of DEGs

For a better understanding of the active biological pathways in the DEGs under salt stress, a

single-directional BLAST search against KEGG protein database was done using KAAS server

[23, 77]. This is a method to classify gene functions with emphasis on the biochemical path-

ways. The results indicated that 1744 of the 5128 DEGs could be classified into 227 KEGG

pathways, covering the five main KEGG categories of metabolism, environmental information

processing, genetic information processing, organismal systems and cellular processes (Fig

3A). These genes belonged mainly to the following KEGG pathways: Transporters, phenylpro-

panoid biosynthesis, transcription factors, glycosyltransferases, glutathione metabolism, plant

a
Metabolism

Genetic Information
Processing

Enviornmental
Information Processing

Cellular Procresses

Organismal Systems

05 01 00 1502 00 250

Transporters
Phenylpropanoid biosynthesis

Transcription factors
Glycosyltransferases

Glutathione metabolism
Plant hormone signal transduction

Cytochrome P450
MAPK signaling pathway - plan

Plant-pathogen interaction
Exosome

b

Fig 3. KEGG classification of the DEGs. (a) KEGG distribution of the annotated genes into 5 main categories.(b) The top 10

pathways with the highest number of genes.

https://doi.org/10.1371/journal.pone.0213305.g003
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hormone signal transduction, cytochrome P450, MAPK signaling pathway–plant, plant-pathogen

interaction and exosome (Fig 3B and S12 Table) that are significant pathways in abiotic and biotic

stress response in plants and have been reported in previous studies[12, 65, 78]. Phenylpropanoid

pathway with the second highest number of genes is a metabolic pathway liable for the synthesis

of different plant secondary metabolites having roles in developmental and stress–related pro-

cesses[79]. In this study, genes such as peroxidases, shikimate O-hydroxycinnamoyl transferases,

caffeic acid 3-O-methyltransferases and beta-glucosidases were up-regulated in this pathway.

Beta-Glucosidases are known to play a role in abiotic stresses via accumulation of reactive oxygen

species (ROS) scavenging flavonols[80]. Plants use accumulation of lignin or alteration of the

monomeric composition of lignin in the cell wall to overcome salt stress[81]. Up-regulation of shi-

kimate hydroxycinnamoyl transferase and caffeic acid 3-O-methyltransferase, both engaged in lig-

nification, have been reported under salt stress in previous studies [82, 83].

Alternative splicing analysis

Alternative splicing (AS) is a fundamental molecular mechanism increasing transcriptome

and proteome complexity and diversity in higher eukaryotes. It is reported that alternative

splicing is involved in a range of functions in plants, such as growth, development, signal

transduction, and responses to biotic and abiotic stress[84–89].

In this study, 37% of the multi exonic genes were alternatively spliced at the whole tran-

scriptome level. Alternative splicing has been reported in 61% of Arabidopsis thaliana genes

and 21.2 to 33% of rice (Oryza sativa) genes[90, 91]. Our results revealed that 120668 alterna-

tive splicing events occurred in our assembly, of which the highest number belonged to intron

retention (IR) with 43719 (36%) events, followed by alternate 3 acceptor (AA), alternate 5

donor (AD) and exon skipping (ES) represented by 20578 (17%), 13119 (11%) and 8124 (7%)

events, respectively. Intron retention was the most dominant alternative splicing event in our

assembly which was in line with the studies in other plants such as sorghum, rice, brachypo-

dium and Arabidopsis.

Functional categorization of the transcripts created via IR AS event indicated their involve-

ment in biological processes such as metabolic process, regulation of biological process,

response to stimulus, localization, cellular component organization, developmental process

and signaling (S3 Fig).

In addition, alternative splicing analysis was performed on control and salt-treated samples

separately. Results showed that 89456 and 87606 alternative splicing events were obtained in

salt-treated samples while 86882 and 86721 alternative splicing events were observed in control

samples. Therefore, there is an increase in alternate splicing frequency under salt stress condi-

tions, in accordance with the relevant report in Arabidopsis (S4 Fig). [92]. This indicates on

the possible roles of AS in plant response to salt stress.

Alternative splicing in DEGs

In this study, we identified 3884 alternative splicing events in the DEGs under salt stress. In

total, 30% of DEGs (1482 genes out of 5128 genes) were alternatively spliced and produced 4041

different isoforms. Among the different alternative splicing types, intron retention events pre-

dominated (1706), followed by AA (552), AD (372) and ES (197) events. In addition, 1057 events

were classified as complex alternative splicing events. The ratio of different AS events in DEGs

was similar to the ratio of different AS events at the whole transcriptome assembly (Fig 4).

Functional categorization of the alternatively spliced DEGs revealed their involvement in

different pathways related to stress responses. Genes related to the biological processes of

transport, nucleic acid metabolic processes, localization, response to stimulus, response to
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stress, metal ion transport, response to oxidative stress, signaling process, regulation of RNA

metabolic process and transcription were enriched in the alternatively spliced DEGs (S5 Fig).

We discovered alternative splicing events in many important genes engaged in salt stress

response such as CBL-interacting kinases, serine-threonine kinases, different transcription fac-

tors (MYBs, NACs, bZIPs, HSTFs and WRKYs), phosphatases 2c, peroxidases, Gluthatione S-

transferases, LEA proteins, Calcium transporting ATPases, Calcium binding proteins, antipor-

ters, salt tolerant-related proteins, salt response proteins etc. (S13 Table).

Metabolic pathways involved in salt stress response

As a complementary approach to the GO analysis, we searched the putative functions of the salt

responsive genes identified using MapMan[24], allowing the visualization of salt induced

changes in different metabolic processes. The results of mapping the DEGs to the metabolic

pathway overview revealed that lipid and sucrose metabolism pathways were among the

enriched pathways (Fig 5 and S14 Table). In sucrose metabolism pathway, genes encoding for

hexokinase, cell wall invertase and sucrose synthase are up-regulated under salt stress. Abiotic

stresses usually lead to sugar accumulation [93]. Acumulation of glucose, sucrose and fructose

under high salinity plays a key role in carbon storage, osmotic regulation, homeostasis and ROS

scavenging[94]. Sun et al.[62] reported that exogenous application of glucose enhanced salt tol-

erance in apple and hexokinase1, acting as glucose sensor, contributed to Glc-mediated salinity

tolerance. Hexokinase1 interacted with Tonoplast-localized Na+/H+ exchanger (NHX1) and

phosphorylated it. Phosphorylation improved the stability of Na+/H+ exchanger and enhanced

its Na+/H+ transport activity in transgenic apple overexpressing NHX1. Overexpression of the

cell wall invertase gene from Chenopodium rubrum improved drought tolerance in tomato.

This gene critically acts at the integration point of metabolic, hormonal, and stress signals, pre-

paring a novel strategy to conquer drought-induced limitations to crop yield[95].
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Other Events

Differentially Expressed Genes Whole Tascriptome Assembly
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Fig 4. Analysis of alternative splicing. Bar chart showing the percentage of different types of alternative splicing events at the whole trascriptome assembly

and differentially expressed genes AD: Alternate-50Donor; AA: Alternate-30-Acceptor, IR: Intron Retention and ES: Exon Skipping.

https://doi.org/10.1371/journal.pone.0213305.g004
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The cellular overview pathway showed that genes coding for abiotic stress related miscella-

neous enzyme families (misc) and glutaredoxins were up-regulated in T. aestivum under salin-

ity stress (S6 Fig and S14 Table). Glutaredoxins (GRXs) are small redox proteins, which use

glutathione to catalyze the reduction of disulfide bonds of substrate proteins to maintain cellu-

lar redox homeostasis. Furthermore, diverse functions such as transcriptional regulation of

defense responses, flower development, oxidative stress response, redox signaling, hormonal

regulation, iron homeostasis, and environmental adaptation have been reported for various

plant GRXs[96].

The secondary metabolite pathway overview revealed that the genes involved in terpenoid,

lignin, phenols and isoflavonoid metabolic pathways were significantly enriched in this salinity

tolerant bread wheat variety under salinity stress (S7 Fig and S14 Table). Terpenoids are the

largest and most diverse group of chemicals produced by plants. Plants employ terpenoids in

basic functions such as growth and development but the majority of terpenoids are used

for protection against the abiotic and biotic stresses. Increase in the expression of genes encod-

ing terpenoids and their role in coping with salt stress have been reported in Mangrove plants

[97].

Fig 5. Metabolic pathways overview of DEGs in T.aestivum under salt stress using Mapman. blue: up-regulated genes and red:

down-regulated genes.

https://doi.org/10.1371/journal.pone.0213305.g005
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In addition, the stress response pathways indicated that the genes involved in ethylene sig-

nalling pathways and genes coding for transcription regulators and peroxidases were found to

be enriched in T. aestivum under salinity stress (S8 Fig and S14 Table).

Validation of differential gene expression using qRT-PCR

To further validate the RNA-Seq expression profiling, nine salt responsive genes were selected

for qRT-PCR (Fig 6). The qRT-PCR results were highly consistent with those of RNA sequenc-

ing (R2 = 0.98). Therefore, the DEGs identified in this study can be considered to have a high
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https://doi.org/10.1371/journal.pone.0213305.g006
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accuracy. To achieve further insight, the expression pattern of these genes was compared

between two cultivars. The results of qRT-PCR analysis showed that there was no significant

difference in the expression of the selected genes between Arg and Moghan3 cultivars or

weaker response was observed in the susceptible (Moghan3) cultivar except for SOS1 which

showed higher expression in Moghan3 (Fig 6). It is probable that the sensitive genotype has

not been able to reduce the sodium level using other approaches, so up-regulation of this anti-

porter might diminish the sodium level via sodium excretion.

In summary, this study prepares a comprehensive overview of the transcriptome changes of

an Iranian salt tolerant bread wheat cultivar under salt stress. Using TGACv1 reference

genome of the bread wheat for analysis, more than 85% of the total reads were mapped to this

reference genome. Moreover, around 26171 novel transcripts were identified which can

improve the genome annotation of T. aestivum. Multiple genes and several key pathways were

recognized to be involved in salt tolerance. In addition, 3884 alternative splicing events were

identified in the salt responsive genes and IR was the most dominant event. Overall, the

achieved results could improve the current understanding of salt stress response in root tissue

of bread wheat, but further research studies will be required to examine the application of the

detected genes as biomarkers for marker-assisted breeding or cadidates for genetic engineering

in order to obtain salt tolerant plants.

Conclusion

This study presents a comprehensive overview of the transcriptome changes of an Iranian salt

tolerant bread wheat cultivar, Arg, under salt stress, which can help understanding the molecu-

lar basis of salinity tolerance in T. aestivum. A model is proposed for salt stress response in Arg

cultivar employing the DEGs (Fig 7) (S15 Table and. S9 Fig). Based on the achieved results,

salinity-induced osmotic and ionic stress might be sensed by mechanosensitive ion channels

(e.g. Ta.Msc) and membrane Na+/H+ antiporter (Ta.SOS1), respectively. After sensing the

stress, signaling cascades are triggered[6]. To this end, Ca+2 has been reported to serve as a sec-

ondary messenger, so an increase in cytosolic Ca+2 concentrations is expected[98]. In this

study, the genes coding for Ca2+ transporters such as Ta.ANN4, Ta.ACA7 and Ta.NCL2 were

appeared to be up-regulated, which may adjust the Ca+2 cytosolic concentrations. Ta.GLR,

which encodes a non-selective cation channel were also induced in Arg under salt stress, and

is supposed to be involved in Ca2+ transport. The genes coding for CaM, CIPK and CPK were

also up-regulated, which are involved in Ca+2 signaling pathway [41, 42, 46]. The genes coding

for transcription factors such as MYB, NAC, bHLH, WRKY, bZIPs and AP2/ERF were

observed among the DEGs. Some of these genes have been proved to be involved in salt stress

response based on the information about their orthologues in Arabidopsis (S1 Table). These

transcription factors can regulate the expression of the genes engaged in dealing with osmotic,

ionic and oxidative stresses arising from salinity[6]. The genes coding for Aquaporins (Ta.

TP4-1-like and Ta.NIP1-1-like), LEA proteins (Ta.Wrab18, Ta.LEA1, Ta.LEA3, Ta.LEA-D34--
Like and Ta.LEA14-A) and dehydrins (Ta.DHN3, Ta.DHN4, Ta.DHN7 and Ta.DHN9), P5CS

(involved in proline synthesis) (Ta.P5CS) with increased expression and proline oxidase (Ta.

ProDH) (involved in proline degradation) with decreased expression can alleviate the osmotic

stress. In order to deal with the ionic stress, plasma membrane Na+/H+ antiporter SOS1, K+

transporters (such as Ta.HAK25) and ABC transporters (such as Ta.ABAC15) were signifi-

cantly up-regulated under salt stress. The gene coding for SOS2-like protein kinase PKS12 is

likely to control the activity of the Na+/H+ antiporter SOS1. Although the transcript level of

Na+/H+ antiporter NHX1 was not increased under salinity in this study, but the protein

encoded by up-regulated Ta.HXK1 is able to phosphorylate Ta-NHX1, leading to higher
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compartmentalization of Na+ into vacuole. In addition, the genes coding for catalases (Ta.

CAT), glutaredoxins (Ta.GRXC1) and Gluthatione-S- transferases (Ta.GST) appear to deal

with oxidative stress (Fig 7). We hope the attained results could be useful toward achieving salt

tolerant cultivars through molecular breeding or genetic engineering.
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