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Abstract

The Orchidaceae family, which is one of the most species-rich flowering plant families,

includes species with highly diversified and specialized flower shapes. The aim of this study

was to analyze the MADS-box genes expressed in the inflorescence of Orchis italica, a wild

Mediterranean orchid species. MADS-box proteins are transcription factors involved in vari-

ous plant biological processes, including flower development. In the floral tissues of O. ita-

lica, 29 MADS-box genes are expressed that are classified as both class I and II. Class I

MADS-box genes include one Mβ-type gene, thereby confirming the presence of this type of

MADS-box genes in orchids. The class II MIKC* gene is highly expressed in the column,

which is consistent with the conserved function of the MIKC* genes in gametophyte devel-

opment. In addition, homologs of the SOC, SVP, ANR1, AGL12 and OsMADS32 genes are

expressed. Compared with previous knowledge on class II MIKCC genes of O. italica

involved in the ABCDE model of flower development, the number of class B and D genes

has been confirmed. In addition, 4 class A (AP1/FUL) transcripts, 2 class E (SEP) tran-

scripts, 2 new class C (AG) transcripts and 1 new AGL6 transcript have been identified.

Within the AP1/FUL genes, the sequence divergence, relaxation of purifying selection and

expression profiles suggest a possible functional diversification within these orchid genes.

The detection of only two SEP transcripts in O. italica, in contrast with the 4 genes found in

other orchids, suggests that only two SEP genes could be present in the subfamily Orchidoi-

deae. The expression pattern of the MIKCC genes of O. italica indicates that low levels at

the boundary of the domain of a given MADS-box gene can overlap with the expression of

genes belonging to a different functional A-E class in the adjacent domain, thereby following

a “fading borders” model.

Introduction

Among the flowering plants, the monocot family Orchidaceae is one of the most species-rich

and widespread; this family has adapted to different habitats and exhibits highly specialized

reproductive strategies [1]. The Orchidaceae family includes five subfamilies (Apostasioideae,

Cypripedioideae, Vanilloideae, Epidendroideae and Orchidoideae) and numerous tribes and

subtribes [2]. One of the most attractive orchid structures is the flower that assumes an
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enormous variety of shapes and colors among the species although it has a generally conserved

structural organization. Three outer tepals, two lateral inner tepals and an inner median tepal

(labellum or lip) define a zygomorphic perianth. Male and female reproductive tissues are

fused to form the gynostemium or column, and pollen grains are located at the top of this

structure. The ovary is located at the base of the column, and its maturation is triggered by pol-

lination [3].

MADS-box genes play a crucial role in the evolution of flower architecture. This family of

transcription factors is divided into two lineages, types I and II, that differ in genomic organi-

zation, developmental roles, evolutionary rate and level of functional redundancy [4].

Type I MADS-box proteins contain the MADS domain and are divided in Mα, Mβ and Mγ
based on sequence divergence at the C-terminus [4]. These proteins are involved in seed,

embryo and female gametophyte development [5]. Type II MADS-box proteins are the most

studied lineage of MADS-box genes given their involvement in different plant developmental

processes, including flower formation. These transcription factors are characterized by four

domains, including three variably conserved domains and one variable domain, that form the

MIKC structure. The highly conserved MADS domain has DNA-binding activity and recog-

nizes the CArG-box motifs in the target genes [6]. The less conserved I and K domains are

involved in protein-protein interactions and the formation of protein complexes [7, 8]. The

variable C domain has a role in the formation of protein complexes and confers specific func-

tional activity [8, 9].

A duplication event involving the 5’ region of the exon encoding for the K domain followed

by neofunctionalization gave rise to two classes of MIKC-type genes: MIKCC and MIKC� [10].

The MIKC� genes are involved in male gametophyte development [11], whereas the MIKCC,

the most studied MIKC genes, play different roles in various processes of plant growth and the

establishment and maintenance of floral organs [12].

The MIKCC genes involved in flower organ formation are divided into five functional clas-

ses (from A to E), and their activity is described by the ABCDE model of flower development.

The MADS-box genes involved in this model form homo- and heterodimers (floral quartets)

that regulate specific expression programs in different floral whorls [13].

The ABCDE floral quartet model is applicable to different plant species, where it is well

conserved [14–17]; however, analyses of non-model species have revealed differences related

to the different structures of the flower [18]. For example, in orchids, the class B MADS-

box genes exhibit an expression profile expanded to the first floral whorl, explaining the pres-

ence of petaloid sepals [19–21]. In addition, the orchid AP3/DEF lineage of the class B genes

underwent two subsequent duplication events that have played an important role in the evolu-

tionary origin of the current structure of the orchid flower described by the “orchid code” and

the “homeotic orchid tepal” (HOT) models [22–24]. The more recent “P-code” model inte-

grates the function of class B and AGL6 MADS-box genes to explain the formation of the

orchid perianth, particularly the lip [25].

Orchis italica is an orchid species belonging to the subfamily Orchidoideae. It is one of the

most widespread Mediterranean orchids with a white-purple cluster inflorescence and a lip

with flaps that assume an anthropomorphic form (Fig 1). Previous studies have analyzed the

structure, expression and evolution of some genes of O. italica involved in flower development.

In particular, the floral meristem identity gene LFY [26], the AP2/ERF gene AP2 (class A) [27]

and the MADS-box genes PI/GLO, AP3/DEF (class B), AG (class C), STK (class D) and AGL6
[20, 21, 27–33] have been assessed. However, the other MADS-box genes of O. italica have not

yet been studied in contrast to other orchid species belonging to different subfamilies, mainly

Epidendroideae [34–39]. Thus, the aim of this work was to identify the MADS-box genes

MADS-box genes of Orchis italica
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expressed in the inflorescence of O. italica, analyze their expression in floral tissues, evaluate

their evolutionary rate and compare the results with those reported in other orchids.

Materials and methods

Plant material

The Orchis italica plants used in this study (Fig 1A) are grown in the greenhouse at the Depart-

ment of Biology, University of Naples Federico II. After anthesis, single florets were collected

Fig 1. Orchis italica. A, inflorescence of O. italica; B, dissected outer and lateral inner tepals (Te_out and Te_inn,

respectively) and lip of O. italica.

https://doi.org/10.1371/journal.pone.0213185.g001
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and outer tepals, lateral inner tepals, lips (Fig 1B), column and ovary (before pollination) were

dissected and stored in RNALaterTM (Ambion) at −80˚C for subsequent RNA extraction. Tis-

sues from 10 flowers of two different plants were separately pooled and used for expression

analysis.

Isolation of the MADS-box transcripts of O. italica
To identify the transcripts encoding for the MADS-box proteins expressed in the floral tissues,

a TBLASTN search was conducted against the inflorescence transcriptome of O. italica [40]

using the MADS domain of the proteins PI/GLO, AP3/DEF, AG and STK of O. italica as que-

ries [20, 21, 30–32]. The transcripts with significant hits were virtually translated to exclude

those missing the domains downstream the MADS and/or containing premature stop codons.

The MADS-box coding sequences (CDSs) identified in the genome of the orchids Phalaenopsis
equestris (Epidendroideae) [36], P. aphrodite [37] and Apostasia shenzenica (Apostasioideae)

[35] were downloaded from GenBank and Orchidstra2 (http://orchidstra2.abrc.sinica.edu.tw/

orchidstra2/pagenome.php) along with MADS-box protein and nucleotide sequences of other

plant species (S1 Table).

To annotate the selected transcripts of O. italica, BLASTN and BLASTX searches were con-

ducted using the transcripts as queries against the Viridiplantae nucleotide and protein data-

base, respectively.

The nucleotide sequence of all the transcripts of O. italica analyzed in this study was verified

by PCR amplification and sequencing using the cDNA of inflorescence of O. italica as template

[33]. The sequences of the primers used are reported in S2 Table.

Phylogenetic and evolutionary analysis

The amino acid alignment of the MADS-box proteins of O. italica, Phalaenopsis and A. shenze-
nica was performed using MAFFT [41] and manually adjusted. The maximum likelihood

(ML) tree was constructed using PhyML [42], computing the branch support values with

approximate likelihood ratio tests.

The amino acid sequences of the MADS-box proteins of O. italica belonging to the AP1/

FUL, SEP and AGL6 subfamilies were separately aligned to the homolog proteins of different

orchids and other plant species (S1 Table), and phylogenetic trees were generated as described

above. Protein-based nucleotide alignment of the orchid AP1/FUL, SEP and AGL6 subfamilies

was produced using PAL2NAL [43].

The evolutionary rates of the AP1/FUL, SEP and AGL6 CDSs of O. italica and other orchids

were analyzed using CODEML program from PAML v.4.9 [44]. Branch and branch-sites evo-

lutionary models were tested, and the ratio between nonsynonymous and synonymous substi-

tution rates (ω) was measured. The branch models assume one (one-ratio) or different (two-

and three-ratios) ω values among the tree branches. The branch-site models test for positive

selection on individual codons in specific branches of the tree and are compared with the

respective null models that assume purifying or nearly neutral selection in the same branches.

To establish which model best fits the data, a likelihood ratio test was applied comparing the

alternative branch and branch-site models (allowing different ω or positive selection, respec-

tively) with the corresponding null models.

miRNA putative target analysis

The psRNATarget web server [45] was used to predict the presence of miRNA putative target

sites on the MADS-box transcripts of O. italica. The analysis (maximum expectation value 0.0)

MADS-box genes of Orchis italica
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was conducted using the miRNAs of O. italica [30] as small RNA library and all the transcripts

of O. italica analyzed in this study as target library.

Expression analysis

Total RNA was extracted from outer tepals (Te_out), inner lateral tepals (Te_inn), labellum

(Lip), column (Co), and ovary (Ov) of O. italica after anthesis using the PureLink RNA Mini

Kit (Invitrogen). Total RNA was also extracted from leaf tissue (Le). To evaluate the expression

profile of the MADS-box transcripts identified in O. italica, reverse transcription and real time

PCR reactions were conducted as previously reported [33, 46] using the specific primer pairs

listed in S2 Table. For each transcript and tissue, the mean relative expression and standard

error (SE) were calculated among three technical and two biological replicates. ANOVA fol-

lowed by Tukey’s post hoc test was performed to assess the statistical significance of the mean

relative expression differences among the tissues.

Results and discussion

The inflorescence transcriptome of O. italica [40] includes twenty-nine transcripts encoding

for MADS-box proteins. This number is lower than that of the MADS-box genes present in

the genome of P. equestris (51), D. catenatum (63) and A. shenzenica (36) [35, 36, 38] because

it does not include the transcripts specifically expressed in not-floral tissues (e.g., leaf, root,

stem, etc.). BLAST analysis and phylogenetic reconstruction (Fig 2) demonstrated that the

MADS-box genes expressed in the inflorescence of O. italica belong to both class I and II.

Excluding three class I and three class II genes (SOC, ANR and one class A), they show floral

specific expression or are expressed in floral tissues at levels higher than in leaves (Fig 3).

Phylogenetic and expression analysis of Class I MADS-box in O. italica
The four class I proteins of O. italica contain a conserved MADS domain (S1A Fig). Among

them, two belong to the Mα type, one to Mγ and one to Mβ (Fig 2), confirming the presence

of Mβ genes in orchids recently reported in P. aphrodite [37] and previously proposed to be

absent from the orchid genomes [35]. The class I MADS-box transcripts of O. italica are poorly

expressed in all the floral tissues (S2 Fig), as expected based on their role in embryo and endo-

sperm maturation [5] and consistent with the low expression in the floral organs of most of

the class I MADS-box genes in the orchid A. shenzenica [35]. Despite at low levels, all the class

I genes identified in O. italica (especially the two Mα) are expressed in the column (at whose

top are located the pollen grains) (Fig 3, S3 Fig). This pattern supports their involvement in

the development of the orchid pollinia, which is consistent with the results obtained in P. aph-
rodite, where two Mα and three Mγ genes are specifically expressed in the pollen [37]. Their

different expression in tepals, lip, ovary and leaf suggests a possible role also in other orchid

floral and vegetative organs.

Phylogenetic and expression analysis of Class II MADS-box in O. italica
MIKC�

The only MIKC� transcript found in the transcriptome of O. italica belongs to the P-subclade

(Fig 2). This transcript encodes for a MIKC protein exhibiting a K domain longer than that of

the MIKCC transcription factors (S1B Fig) as reported for the MIKC� proteins [10]. This

MIKC� gene is expressed at high levels in the column (Fig 3, S3 Fig), which is consistent with

the conserved function of the MIKC� genes in gametophyte development [10, 47], as hypothe-

sized for the orchid species Erycina pusilla [34] and P. aphrodite [37].

MADS-box genes of Orchis italica
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SOC, SVP, ANR1, AGL12 and OsMADS32

Among the twenty-four MIKCC transcripts identified in the inflorescence transcriptome of O.

italica, two are homologs of MADS-box genes involved in the regulation of flowering (SOC1
and SVP). Their expression in the floral tissues of O. italica is weak (S2 and S4 Figs), which is

consistent with the expression profile detected in the flowers of the orchids Dendrobium [48,

Fig 2. ML tree of the orchid MADS-box proteins. The different classes and groups of MADS-box proteins of O. italica, P. aphrodite, P. equestris and A.

shenzenica are highlighted with different colors. The accessions of O. italica are noted in pink.

https://doi.org/10.1371/journal.pone.0213185.g002
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49] and Erycina pusilla [34] and other plant species [50–52]. Two other transcripts only weakly

expressed in the inflorescence of O. italica are homologs of MADS-box genes involved in root

development (AGL12 and ANR1) [53, 54]. The AGL12 gene is present in the genome of terres-

trial orchids (e.g., Apostasia) and seems to be absent in epiphytic orchids [35]. Its presence in

O. italica, a terrestrial orchid species, supports its role in the formation of true roots typical of

terrestrial plant species. Another MIKCC transcript expressed at low levels in the floral tissues

of O. italica is a homolog of OsMADS32 (also named CFO1), a monocot-specific MADS-

Fig 3. Heatmap of the relative gene expression of the MADS-box genes in the floral tissues of O. italica. The scale

for each gene is independent of each other and set to 1 as the highest value. Te_out, outer tepals; Te_inn, lateral inner

tepals; Co, column; Ov, ovary; Le, leaf.

https://doi.org/10.1371/journal.pone.0213185.g003
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box gene that regulates flower organ identity [55, 56]. In rice and wheat, this gene is expressed

in the early stages of the inflorescence and late seed development [50, 57], which could explain

the low expression detected in the mature floral tissues of O. italica.

The MIKCC transcripts most expressed in the floral tissues of O. italica belong to the A-E

classes of MADS-box genes involved in the ABCDE model of flower development (S2 Fig).

PI/GLO and AP3/DEF

Six transcript homologs of the class B genes, including two PI/GLO and four AP3/DEF, have

been previously analyzed in O. italica [20, 21, 28–31]. Their expression (in particular of the

AP3/DEF genes) is not restricted to the second and third floral whorls. Indeed, their expression

is extended to the outer tepals (first whorl) (Fig 3), as described for orchids and other species

exhibiting petaloid tepals in the first floral whorl [58]. In addition, the orchid AP3/DEF genes

have been extensively studied from the evolutionary perspective and are considered the main

genes responsible of the diversification of the orchid perianth, as described in the “orchid

code” and HOT models [22–24].

AG and STK

Also class C (AG) and D (STK) MADS box genes of O. italica have been previously analyzed

[32]. However, in the present work, two additional transcripts belonging to class C have been

identified (Fig 2). Both these transcripts encode for proteins that contain AG-motifs I and II at

the C-terminus (S1C Fig) and share 69% of amino acid residues. The protein encoded by the

transcript OIcomp1784 exhibits 85% identity with the class C OitaAG (and 62% with the class

D OitaSTK), whereas the protein encoded by the transcript OIcomp16674 exhibits 71% iden-

tity with OitaAG (and 52% with OitaSTK). A transcript similar to OIcomp16674 (84% identity)

is also present in the transcriptome of Ophrys sphegodes, an orchid belonging to the Orchidoi-

deae subfamily, as O. italica. The expression of class C and D transcripts in O. italica is high in

the column and ovary (Fig 3, S5 Fig), and this pattern is consistent with the expression of the C

and D genes in other orchid species, as they are involved in development of the female repro-

ductive structure [59–61]. The newly identified transcript OIcomp16674 is also detectable in

the other floral organs albeit at low levels (S5 Fig). The presence of three AG genes and one

STK gene in O. italica is consistent with the copy number of class C and D MADS-box genes

of Erycina pusilla [34, 39], as well as their expression pattern [39].

Excluding two AGL6 transcripts [33], class A and E genes of O. italica have never been stud-

ied. In the inflorescence of O. italica, four class A, two class E, and three AGL6 transcripts are

expressed, increasing the number of AGL6 transcripts previously reported in O. italica.

AP1/FUL

The four class A transcripts of O. italica belong to the two monocot FUL-like lineages previ-

ously identified [62] (Fig 4). Within each FUL-like lineage, orchid-specific duplications

expanded the copy number of the AP1/FUL genes, defining four well supported orchid FUL

clades (1a, 1b, 2 and 3). Three AP1/FUL transcripts of O. italica encode for proteins exhibiting

the complete FUL-like motif LPPWML at the C-terminus (S1D Fig). The protein encoded by

the transcript OIcomp3679 lacks the FUL-like motif as observed in other AP1/FUL orchid pro-

teins of species belonging to Epidendroideae [59] and Apostasioideae (S1D Fig). This finding

suggests that the divergence of the C-terminus of some orchid AP1/FUL proteins is ancient

given that Apostasioideae are the most basal orchid subfamily [2]. The expression of the AP1/
FUL transcripts OIcomp3679, 9283 and 2508 is high in column and ovary, and the two latter

transcripts are also detectable in the outer and inner tepals (Fig 3, S5 Fig). This expression

MADS-box genes of Orchis italica
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profile is very similar to that of EpMADS10, 11 and 12 of E. pusilla [34, 39]. In contrast, expres-

sion of the OIcomp11046 transcript is increased in outer and inner tepals compared with col-

umn and ovary (Fig 3, S5 Fig). Although evolutionary analysis did not reveal positive selection

signals within the AP1/FUL coding sequences of orchids, relaxation of purifying selection is

strongly supported (Table 1, S3 Table). In fact, the ω value of the orchid AP1/FUL genes (0.23)

is significantly increased compared with orchid SEP (0.11) and AGL6 (0.14) genes. This result

together with a previous report of diversifying selection detected in the orchid AP1/FUL genes

[39], the divergence of the C-terminus sequence of some members of this clade in orchids and

the peculiar expression profile of OIcomp11046 suggest a possible functional diversification

after duplication within these orchid genes.

Fig 4. ML tree of the Class A MADS-box proteins. The orchid branches are highlighted in pink, and orchid FUL clades 1–3 are indicated. The accessions of

O. italica are noted in pink. The numbers indicate the statistical support of the branches.

https://doi.org/10.1371/journal.pone.0213185.g004
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SEP

Two transcripts expressed in the inflorescence of O. italica encode for SEP proteins that harbor

both the SEP I and II motifs (S1E Fig) and share 60% identity. In orchids, four clades of SEP
genes have been reported that were generated from orchid-specific duplications within mono-

cot SEP clades [34, 39, 59]. One SEP sequence of O. italica belongs to the clade that includes

EpMADS9 and PeSEP3 (SEP clade 3), whereas the other SEP sequence is grouped with

EpMADS7 and PeSEP4 (SEP clade 4) (Fig 5). BLAST search for SEP transcripts in the tran-

scriptome of Ophrys sphegodes (Orchidoideae) [63] produced two significant hits, both exhib-

iting high sequence identity with the SEP transcripts identified in O. italica. In addition, a

recent study identified two SEP transcripts expressed in the floral buds of Habenaria radiata
(Orchidoideae) [64]. This evidence suggests that only two SEP genes are present or that only

two SEP genes are expressed in the floral tissues in the subfamily Orchidoideae. Unfortunately,

genome data are not currently available for orchid species belonging to Orchidoideae, render-

ing it difficult to discriminate between the two hypotheses. In both cases, the expression of SEP
genes in O. italica is detectable in all floral organs (Fig 3, S6 Fig), and OIcomp1006 exhibits sig-

nificantly increased expression in lip. This pattern is similar to that reported in wild type H.

radiata [64] and other orchid species, such as the Epidendroideae P. equestris [59] and E.

pusilla [34, 39], and this finding is consistent with the expression pattern in all the floral whorls

of class E genes involved in the formation of all the organs of the flower.

Table 1. Models used and parameters estimated under different conditions for the evolutionary analysis of the orchid class A, AGL6 and class E MADS-box genes.

The parameter estimates of the branch and branch-site models were obtained from the CODEML analysis. Fore, foreground branch; back, background branch; param,

parameters. The results of the LRT are reported in S3 Table.

Branch models

Fore_branch ω_0 ω_1 ω_2 lnL #param

one-ratio // 0.15407 // // -25962.03 165

two-ratios A 0.11796 0.23284 // -25899.97 166

two-ratios AGL6 0.16162 0.13553 // -25958.58 166

two-ratios E 0.18707 0.10409 // -25919.46 166

three-ratios A (1) AGL6 (2) 0.10520 0.23278 0.13537 -25894.84 167

Branch-site models

Site class 0 1 2a 2b lnL #param

% sites 60.245 6.789 29.628 3.339

alternative_A_back_ω 0.1093 1 0.1093 1 -25506.04 168

alternative_A_fore_ω 0.1093 1 1 1

null_A_back_ω 0.1093 1 0.1093 1 -25506.04 167

null_A_fore_ω 0.1093 1 1 1

% sites 73.021 19.147 6.205 1.627

alternative_AGL6_back_ω 0.12294 1 0.12294 1 -25646.91 168

alternative_AGL6_fore_ω 0.12294 1 1 1

null_AGL6_back_ω 0.12294 1 0.12294 1 -25646.91 167

null_AGL6_fore_ω 0.12294 1 1 1

% sites 75.533 18.282 4.98 1.205

alternative_E_back_ω 0.12467 1 0.12467 1 -25643.73 168

alternative_E_fore_ω 0.12467 1 1 1

null_E_back_ω 0.12467 1 0.12467 1 -25643.73 167

null_E_fore_ω 0.12467 1 1 1

https://doi.org/10.1371/journal.pone.0213185.t001
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AGL6

The three AGL6 transcripts expressed in the inflorescence of O. italica encode for proteins har-

boring both conserved AGL6-motifs I and II at the C-terminus (S1F Fig). In orchids, two

main AGL6 clades have been reported: one includes other monocot species and one includes

only orchid species [25, 37]. The three AGL6 transcripts found in O. italica belong to these two

clades, and the tree topology clearly show a duplication within the orchid-specific AGL6 clade

that gave rise to two different, well supported paralog groups: AGL6 clades 2 and 3 (Fig 6).

Both the clades include basal orchid species (Apostasioideae, Cypripedioideae or Vanilloideae)

in addition to Epidendroideae and Orchidoideae, demonstrating the ancient origin of these

paralog groups. The newly identified AGL6 transcript OIcomp8204 is the paralog of

OIcomp1386 [33]. These genes have an overlapping expression profile (Fig 3, S6 Fig), suggest-

ing a redundant functional role. They are mostly expressed in lip and outer tepals, whereas

OIcomp4335 exhibits high expression in the ovary and outer tepals and lower expression in lip.

However, comparing the expression of these three AGL6 genes, similar levels are detected in

lips, whereas OIcomp4335 expression is significantly increased in tepals (Fig 7). Orchid AGL6
genes together with AP3/DEF genes drive the formation of the orchid perianth. In particular,

Fig 5. ML tree of the class E MADS-box proteins. The orchid branches are highlighted in pink, and the orchid SEP clades 1–4 are indicated.

The accessions of O. italica are noted in pink. The numbers indicate the statistical support of the branches.

https://doi.org/10.1371/journal.pone.0213185.g005
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the “P-code” model proposes the formation of SP and L protein complexes that include combi-

nations of different AGL6 and AP3/DEF proteins. The SP complex determines the formation

of the tepals, and the L complex determines the formation of lip [25]. Given that the AGL6
transcripts of O. italica are expressed at similar levels in lip, whereas the four AP3/DEF genes

exhibit different expression levels (Fig 7) [30], it is possible to hypothesize that the modulation

of the expression level of the genes encoding for the different AP3/DEF proteins is responsible

for the formation of the L or SP complex within the specific floral whorl.

The the presence of putative miRNA target sites on the twenty-nine MADS-box transcripts

of O. italica identified in this study was predicted using the psRNATarget web server with a

stringent parameter setting (maximum expectation 0.0). The analysis gave positive results only

for the transcripts DEF2 and DEF4, known targets of the O. italica miRNAs homologs of

miR5179 [30]. The other MADS-box transcripts do not have any putative target site, showing

that they are not regulated by miRNAs.

Conclusions

Current advances in transcriptome and genome sequencing are highlighting the molecular

programs that underlie floral evolution and development of non-model species. For many spe-

cies belonging to basal angiosperms, magnoliids and basal eudicots, the “fading borders

model” proposes a gradient of the expression levels of floral homeotic genes to explain flower

development [65]. In particular, low expression levels at the boundary of the domain of a given

Fig 6. ML tree of the AGL6 MADS-box proteins. The orchid branches are highlighted in pink, and the orchid AGL6 clades 1–3 are indicated.

The accessions of O. italica are noted in pink. The numbers indicate the statistical support of the branches.

https://doi.org/10.1371/journal.pone.0213185.g006
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MADS-box gene overlap with the expression of a different homeotic gene in the adjacent

domain. The analysis of all the MADS-box genes expressed in the inflorescence of O. italica
demonstrate that they follow a “fading borders” scheme and that their expression is generally

conserved among orchids of different subfamilies. Given that class I and MIKC� genes are

understudied compared with MIKCC genes, it will be interesting to focus forthcoming studies

on these classes of MADS-box genes in orchids to understand their developmental role and

evolution.

Supporting information

S1 Fig. Amino acid motifs of the orchid MADS-box proteins. The sequences of selected

orchid species are grouped according to the MADS-box type. A, class I MADS domain; B, I

domain and part of the K domain of the MIKC� proteins; C-F, C-terminus of AG/STK, AP1/

FUL, SEP and AGL6 proteins, respectively. The sequences of A and B are also aligned with the

Fig 7. Expression pattern of the AGL6 and AP3/DEF MADS-box genes in the perianth of O. italica. Each column of the

AGL6 genes indicates the relative expression of 10 floral organs in two cDNA pools (10 floral organs from two different plants),

both of which are amplified in triplicate. The error bars represent the standard error of the mean. Te_out, outer tepals; Te_inn,

inner tepals; Le, leaf.

https://doi.org/10.1371/journal.pone.0213185.g007
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corresponding region of one DEF protein of O. italica. The conserved motifs of each clade of

MADS-box proteins are indicated with a black line. The accessions of O. italica are noted in

bold.

(TIF)

S2 Fig. Relative expression of the MADS-box genes expressed in the inflorescence of O. ita-
lica. Each column of the MADS-box genes indicates the relative expression of 10 floral organs

in two cDNA pools (10 floral organs from two different plants), both of which are amplified in

triplicate. The error bars represent the standard error of the mean. Te_out, outer tepals;

Te_inn, inner tepals; Co, column; Ov, ovary.

(TIF)

S3 Fig. Relative expression of the class I and MIKC� MADS-box genes in floral tissues of

O. italica. Each column of the class I and MIKC� genes represents the relative expression of 10

floral organs in two cDNA pools (10 floral organs from two different plants), both of which are

amplified in triplicate. The error bars represent the standard error of the mean. Te_out, outer

tepals; Te_inn, inner tepals; Co, column; Ov, ovary.

(TIF)

S4 Fig. Relative expression of the SOC, SVP, ANR1, AGL12 and OsMADS32 genes in floral

tissues of O. italica. Each column of the SOC, SVP, ANR1, AGL12 and OsMADS32 genes rep-

resents the relative expression of 10 floral organs in two cDNA pools (10 floral organs from

two different plants), both of which are amplified in triplicate. The error bars represent the

standard error of the mean. Te_out, outer tepals; Te_inn, inner tepals; Co, column; Ov, ovary.

(TIF)

S5 Fig. Relative expression of the AG and class A MADS-box genes in floral tissues of O.

italica. Each column of the class C AG and class A AP1/FUL genes indicates the relative

expression of 10 floral organs in two cDNA pools (10 floral organs from two different plants),

both of which are amplified in triplicate. The error bars represent the standard error of the

mean. Te_out, outer tepals; Te_inn, inner tepals; Co, column; Ov, ovary.

(TIF)

S6 Fig. Relative expression of the AGL6 and class E MADS-box genes in floral tissues of O.

italica. Each column of the AGL6 and the class E SEP genes shows the relative expression of 10

floral organs in two cDNA pools (10 floral organs from two different plants), both of which are

amplified in triplicate. The error bars represent the standard error of the mean. Te_out, outer

tepals; Te_inn, inner tepals; Co, column; Ov, ovary.

(TIF)

S1 Table. List of sequences used in the alignments, phylogenetic and evolutionary analyses.

(XLSX)

S2 Table. List of the primers used in the present work.

(XLSX)

S3 Table. Likelihood ratio statistics for the comparison of the evolutionary models of the

orchid class A, AGL6 and class E coding regions. df, degrees of freedom; ns, not significant.

(XLSX)
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