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Abstract

Background

Functional data is data represented by functions (curves or surfaces of a low-dimensional

index). Functional data often arise when measurements are collected over time or across

locations. In the field of medicine, plasma lipoprotein particles can be quantified according

to particle diameter by ion mobility.

Goal

We wanted to evaluate the utility of functional analysis for assessing the association of

plasma lipoprotein size distribution with cardiovascular disease after adjustment for estab-

lished risk factors including standard lipids.

Methods

We developed a model to predict risk of cardiovascular disease among participants in a

case-cohort study of the Malmö Prevention Project. We used a linear model with 311 coeffi-

cients, corresponding to measures of lipoprotein mass at each of 311 diameters, and

assumed these coefficients varied smoothly along the diameter index. The smooth function

was represented as an expansion of natural cubic splines where the smoothness parameter

was chosen by assessment of a series of nested splines. Cox proportional hazards models

of time to a first cardiovascular disease event were used to estimate the smooth coefficient

function among a training set consisting of one half of the participants. The resulting model

was used to calculate a functional risk score for the remaining half of the participants (test

set) and its association with events was assessed in Cox models that adjusted for traditional

cardiovascular risk factors.

Results

In the test set, participants with a functional risk score in the highest quartile were found to

be at increased risk of cardiovascular events compared with the lowest quartile (Hazard
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ratio = 1.34; 95% Confidence Interval: 1.05 to 1.70) after adjustment for established risk

factors.

Conclusion

In an independent test set of Malmö Prevention Project participants, the functional risk

score was found to be associated with cardiovascular events after adjustment for traditional

risk factors including standard lipids.

Introduction

Functional data can be represented by functions that describe curves or surfaces of a low-

dimensional index[1]. Examples of functional data are measurements collected over time,

across locations, or, as in the present analysis, across a vector of particle diameters. Functional

data analysis exploits these data attributes by imposing structure: for example, smoothness on

regression coefficients, as a function of the same index[2]. Regression modelling of functional

data has been, and continues to be, an active area of methodological development and has

been used in a variety of applications[3, 4]. A previous publication provided several examples

of functional data analysis within the field of medical science in order to increase awareness of

the challenges and possibilities involved, and to encourage scientists to explore the robustness

of functional approaches in additional applications[5]. While some aspects of functional data

analysis may be common across a wide range of applications, it is likely that each application

will also have unique challenges worthy of exploration. The current paper explores a functional

data analysis approach to assess the association between size-fractionated lipoprotein particles

and cardiovascular disease (CVD).

CVD is the most common cause of morbidity and mortality in the US[6]. Established risk

factors for CVD—such as hypertension, high levels of low-density-lipoprotein cholesterol

(LDL-C), low levels of high-density-lipoprotein cholesterol (HDL-C), smoking, male gender,

and old age—do not entirely account for CVD risk [7]. Since treating modifiable risk factors is

known to reduce the risk of CVD[8, 9], improving CVD risk stratification would enable a bet-

ter allocation of prevention resources [10]. And one approach to improving risk prediction

is to consider risk of CVD associated with the size distribution of a patient’s lipoprotein

particles.

Lipoproteins comprise proteins and lipids (e.g., cholesterol and phospholipids) assem-

bled into particles with a hydrophilic exterior and hydrophobic interior. These particles

transport hydrophobic lipids through the circulatory system. Depending on their composi-

tion, lipoproteins vary in both size (from 7nm to several hundred nm) and density[11].

Although lipoproteins have a continuous size distribution, they are typically categorized as

high density (HDL), low density (LDL), intermediate density (IDL), and very low density

(VLDL) lipoproteins; HDL are the smallest and VLDL are the largest. These classes have

been further characterized into finer size and/or density subclasses[12]. Clinical studies

have provided evidence that patients whose total lipoprotein particle burden is comprised

of a relatively greater proportion of smaller, denser LDL particles may be at increased risk

compared with patients whose burden is comprised mostly of larger, less dense LDL parti-

cles[13].

The size or density of lipoprotein particles can be determined by a variety of methods,

including ion mobility[14], nuclear magnetic resonance [15], and ultracentrifugation [16, 17].
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Analysis of ion mobility (a type of gas phase electrophoresis) data typically proceeds by first

combining the lipoprotein particle abundance measures into predetermined regions defined

by particle diameter (e.g. LDL-small, LDL-medium, LDL-large) [18]. However, the diameter

boundaries used to define these regions are somewhat arbitrary, and information about risk of

CVD could potentially be lost or diminished if, for example, a defined region contained a mix-

ture of risk-increasing and risk-decreasing species of particles.

The data produced by ion mobility analysis for a particular sample are a vector of parti-

cle abundance measures associated with a corresponding (one to one) vector of particle

size diameters of a range known to include HDL, LDL, IDL, and VLDL particles. To avoid

the arbitrary nature of defining size regions, it may be preferable to use the complete vec-

tor of size specific particle abundance measures of each sample in the analysis. Since abun-

dance values of particles with similar diameters are highly correlated, it is reasonable to

assume that the risk of CVD would vary as a smooth function of the abundance measures.

The data generated from ion mobility analysis can be considered functional data and func-

tional data analysis could be a useful approach to model the association of such data with

CVD.

In this paper, we use functional data analysis to model the association of the ion mobility

data and traditional risk factors with CVD. The advantages of this approach include summa-

rizing this association with a single patient functional risk score and graphing the smoothed

regression coefficients according to particle diameter to help identify the most informative size

regions. First, the methods and general functional approach to modeling the ion mobility data

are described. Next, the results applying the approach to subjects collected by the Malmö Pre-

vention Project (MPP) study are summarized. Finally, the type I error and power of the

approach are evaluated through simulations.

Materials and methods

Description of data

For each of N subjects, the data consists of CVD event status, time to event or last follow-up, a

vector of lipoprotein particle abundance at each of J particle diameters, and possibly other

covariates including demographic characteristics and traditional risk factors for CVD such as

HDL-C and LDL-C. Particle abundance, measured at each diameter value, can be recorded as

particle number concentration (number/mL), particle mass concentration (mass/mL), or as in

the applied example, an arbitrary mass unit using the formula: mass = density × volume
(assuming a density of 1.0 for all lipoprotein particles)[14].

Creating the functional model

Suppose for subject i, xi is a vector of particle mass, with xij being the mass at size sj, and j run-

ning from 1,� � �,J. While there are many ways one could reduce this variable to a single score or

number, we choose to use a linear functional:

f ðxjÞ ¼
XJ

j¼1

bðsjÞxij ¼
XJ

j¼1

bjxij

Here, β(s) is a coefficient function, a function of particle size (s). Since one might expect the

contributions of particle mass for neighboring sizes to be similar, it is reasonable to assume β
(s) is smooth as a function of s. We can achieve this by representing β(s) in a basis of smooth
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functions, such as natural cubic splines of order M with suitably placed knots:

bðsÞ ¼
XM

m¼1

hmðsÞym

An advantage of the linear functional is that it can be incorporated within standard regres-

sion models, such as a Cox model. For the current example, we wish to model:

loglit ¼ at þ xi
0βþ zi

0γ

where λit represents the hazard of a CVD event for subject i at time t, αt is a baseline hazard at

time t, xi is the vector of particle mass and zi a vector of r covariates for the ith subject, γ is an r
by 1 vector of regression coefficients corresponding to the covariates, and β is defined below.

With our above definition of β(s), we can now write the vector β = (β(s1),β(s2),� � �,β(sJ))0 as:

β = Hθ where H is the J by M matrix of basis vectors with Hjm = hm(sj), and θ an M by 1 vector

of regression coefficients. In subsequent text, we refer to H as a “filter”.

Substituting back in the original model,

loglit ¼ at þ xi
0ðHθÞ þ zi

0γ

However, we can use the filter H on x first,

loglit ¼ at þ ðxi
0HÞθ þ ziγ

Thus, we obtain XH, a matrix with N rows and M columns, that can be entered as M vari-

ables in a Cox regression model in order to estimate θ.

Since the estimated reduced set of coefficients, θ̂, are not easily interpretable, we can subse-

quently back transform using H to get our desired estimate:

β̂ðsÞ ¼
XM

m¼1

hmðsÞθ̂m

A likelihood ratio test with M degrees of freedom is performed to test whether the particle

mass data, represented by XH, results in a significant improvement when compared with a

model having only covariates Zγ. A covariance matrix, Σ̂ , for β, is calculated from the covari-

ance matrix of θ̂ (determined from the Cox model) and the filter H:

Σ̂ ¼ Hðcovðθ̂ÞÞH0

The variance for β̂ðsÞ at any s is:

varðβ̂ðsÞÞ ¼ hðsÞ0covðθ̂ÞhðsÞ where h(s) = (h1(s),h2(s),� � �,hm(s))0

Approximate 95% confidence intervals are then obtained as:

β̂ðsÞ � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

varðβ̂ðsÞÞ
q

β̂ðsÞ and corresponding 95% confidence intervals can be plotted versus size (s), highlighting

regions of the profile where the confidence interval does not contain zero.

Selecting the degrees of freedom

We use a basis of natural cubic splines with knots chosen at uniformly spaced values of s. For

natural splines with M knots, one gets M basis functions, and hence the "degrees of freedom"

are M.

Functional data analysis to assess the association of cardiovascular events and lipoprotein particle size
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It is unknown how smooth the function needs to be to result in good prediction of the out-

come. We use a “nested spline” procedure that allows only a small number of choices for

smoothness. Specifically, we evaluate a series of degree of freedom (df) choices that result in

nested regression models and apply likelihood ratio tests to determine the best choice of df
from the series. A nested series of splines occurs when the knots of a more complex spline

include the identical knots of a less complex spline with additional knots that further subdivide

the space (S1 Fig). For natural cubic splines with an intercept, and k + 1 being the lowest num-

ber of df desired, a series of df choices resulting in q nested models was obtained by the equa-

tion:

dfq ¼ kð2j� 1Þ þ 1 for j in 1; 2; . . . ; q

After simulating a variety of potential functional effects, we determined that degrees of free-

dom in the range of 7 to 16 typically provided a reasonable fit to the function (S2 Fig) and thus

explore two possible series: “7 and 13” and “8 and 15”. In the case of two choices for M, the less

complex of the two models is selected unless a likelihood ratio test comparing the two models

is significant. The chosen model is then compared to a null model (or a model having only

covariates) while adjusting for multiple testing using standard methods (e.g. Bonferroni). Sim-

ilar methods could be devised if more than 2 choices for M are desired.

Calculation of functional risk scores for new subjects

Functional risk scores for new subjects are determined as scorei ¼ ðxi 0HÞθ̂ þ zi 0γ̂ if covariates

are available on the new subjects, or as scorei ¼ ðxi0HÞθ̂
In the current paper, the latter equation with θ̂ representing the M regression coefficients

from the Cox model fit to the training set was used to calculate functional risk scores for test

set subjects in order to assess the effect of the ion mobility data (represented by the functional

risk score) and covariates separately. The functional risk score is subsequently assessed in the

test set using a Cox models that include both the ion mobility specific functional risk score as

well as traditional CVD risk factors.

Ethics statement

All study participants in the Malmö Prevention Project provided written informed consent.

The Ethics committee of the Medical Faculty of Lund University approved the study.

Results

Example: The Malmö Prevention Project (MPP)

The study population was a case-cohort study of 5768 participants derived from the Malmö

Prevention Project (MPP), a prospective study of 18,240 participants who were followed for

CVD events over a median of 8 years and who had lipoprotein sub-fraction data measured

from blood samples drawn at their baseline visit[19, 20]. The data consists of a vector of parti-

cle mass measurements for each of 311 particle diameters ranging from 7.65 nm to 54.7 nm as

well as CVD event status, time to event, and the following additional baseline covariates: age

(years), sex, smoking status, hypertension status, diabetes status, HDL-C, LDL-C, triglycerides,

body mass index (BMI), current physical activity (1 = mainly sedentary, 2 = moderate leisure

time exercise, 3 = regular leisure time exercise, 4 = hard exercise/competitive sports), and

weekly alcohol consumption (total centiliters of pure alcohol assuming alcohol by volume is

5% for beer, 13% for wine and 40% for liqour). The lipoprotein data span size regions that
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include particles classified as HDL, LDL, IDL, and VLDL respectively, as well as a region

denoted as the midzone that comprises particles larger than HDL but smaller than LDL. Each

of these regions can be further subdivided into size classes, for example, VLDL-small,

-medium and -large. Typical features of a lipoprotein mass profile include a tall, narrow peak

in the LDL region (18 to 23 nm) and a short, broad peak in the HDL region (7.65 to 14.5 nm)

as shown in a representative sample profile (Fig 1).

The participants were randomly divided into equal sized training and test sets (N = 2884

each) containing 857 and 898 events respectively. Demographic and clinical characteristics of

the training and test sets did not differ significantly (Table 1).

An evaluation of the power to detect a variety of potential true coefficient functions through

simulations (S2 Fig) showed that high power and low false positive rates often co-occurred

when degrees of freedom ranged between 7 and 16. We therefore chose the nested spline series

with 8 and 15 degrees of freedom for determining smoothness. Natural cubic splines with 8

and 15 degrees of freedom as a function of particle diameter were applied to the matrix of lipo-

protein particle mass measurements from the training set (2884 subjects each having 311 parti-

cle measurements), resulting in matrices of reduced dimension (2884 subjects by 8 or 15 basis

vectors) to represent the particle measurements for modeling purposes. Cox models to predict

time to CVD event as a function of the dimension reduced particle matrix were fit to the train-

ing set, along with other covariates including age, sex, smoking, hypertension, prevalent diabe-

tes, and baseline levels of LDL-C, HDL-C, and triglycerides. The model with 15 degrees of

freedom was selected based on a likelihood ratio test (p = 0.009) comparing the models with 8

and 15 degrees of freedom. A plot (Fig 2) of the estimated coefficient function, β̂ðsÞ, and corre-

sponding 95% confidence interval versus particle diameter showed that particles with the

0
2

4
6

8
10

S L   VS S M S L S M LSize

HDL MZ LDL IDL VLDLRegion

7.65 14.50 23.33 29.60 54.70

Diameter (nm)

M
as

s

Fig 1. Example profile. Solid line represents particle mass for a representative sample lipoprotein profile. Sizes: (VS = very small; S = small; M = Medium;

L = Large). Regions: HDL = High Density Lipoprotein; MZ = Midzone; LDL = Low Density Lipoprotein; IDL = Intermediate Density Lipoprotein;

VLDL = Very Low Density Lipoprotein.

https://doi.org/10.1371/journal.pone.0213172.g001
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following diameter ranges were associated with increased risk: 9.375 to 9.525 nm (HDL small),

12.85 to 14.55 nm (HDL Large) and 18.65 to 19.75 nm (LDL very small); particles with diame-

ters ranging from 10.95 to 11.05 nm (HDL large) and 15.55 to 17.15 nm (midzone) were asso-

ciated with decreased risk.

A natural cubic spline with 15 degrees of freedom as a function of particle diameter was then

applied to the matrix of lipoprotein particle mass measurements from the test set (2884 subjects

each having 311 particle measurements), resulting in a matrix of reduced dimension (2884 sub-

jects by 15 basis vectors) to represent the particle measurements for test set subjects. A func-

tional risk score for each test set subject was then calculated based on a linear combination of

the 15 particle mass specific regression coefficients estimated from the training set Cox model

and the row of the dimension reduced particle matrix corresponding to the test set subject. The

time to CVD event in the test set subjects was analyzed in a Cox model (Model 1) that included

the functional risk score as well as age, sex, smoking, hypertension, prevalent diabetes, and base-

line levels of LDL-C, HDL-C, and triglycerides. The functional risk score was associated with

increased CVD risk (HR per SD = 1.22 (95% CI: 1.12 to 1.33); p< 0.0001). In a similar model

where time to CVD was modeled as a function of quartiles of the functional risk score, being in

a higher risk quartile was also associated with a higher risk of a CVD event. Since measurements

of BMI, physical activity, and alcohol consumption were not available for all subjects, a second

model (Model 2) that included these variables as well as all Model 1 variables was fit to the test

set subjects having no missing data (N = 2611). The functional risk score remained associated

with increased CVD risk after additional adjustment for BMI, physical activity, and alcohol con-

sumption (HR per SD = 1.21 (95% CI: 1.10 to 1.32); p< 0.0001) (Table 2).

To visualize how subject lipoprotein profiles might vary over differing levels of the func-

tional risk score, profiles from five test set subjects having low(< 2nd percentile), median (49th

to 51st percentile), or high (> 98th percentile) functional risk scores were randomly selected

and plotted (Fig 3). Profile peaks in the LDL region of the low-risk group appear to be both

Table 1. Subject characteristics in train and test set.

Train Test P value�

N 2884 2884

Age, years (SD) 69.2 (6.0) 69.2 (6.1) 0.88

Male, n (%)" 1949 (67.6) 1993 (69.1) 0.22

CVD Event, n (%) 857 (29.7) 898 (31.1) 0.25

Smoking, n (%) 570 (19.8) 575 (19.9) 0.89

Hypertension, n (%) 2103 (72.9) 2133 (74.0) 0.39

Prevalent Diabetes, n (%) 418 (14.5) 450 (15.6) 0.25

Triglycerides, mmol/L (SD) 1.26 (0.64) 1.25 (0.62) 0.80

HDL-C, mmol/L (SD) 1.38 (0.40) 1.38 (0.40) 0.96

LDL-C, mmol/L (SD) 3.73 (0.96) 3.72 (0.96) 0.62

BMI, kg/m2 (SD) 27.1 (4.1) 27.1 (4.1) 0.88

Physical Activity, n (%) 0.39

Mainly sedentary 267 (10.3) 278 (10.6)

Moderate leisure time exercise 1888 (72.9) 1884 (72.2)

Regular leisure time exercise 432 (16.7) 442 (16.9)

Hard exercise/competitive sports 2 (0.1) 7 (0.3)

Weekly Alcohol, cl (SD) 12.6 (15.9) 12.2 (14.8) 0.36

Values are means when SD is provided

�T-test for numeric variables and Chi-square test for categorical variables

https://doi.org/10.1371/journal.pone.0213172.t001
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taller and centered at a larger diameter (~23 nm vs. ~21 nm) than those in the high-risk group.

In addition, a peak in the IDL region was more apparent in the low-risk profiles than among

high-risk profiles. Differences among the peaks in the HDL region across risk groups were also

apparent but tended to be more variable across samples.

Simulations

Simulations were performed under a null model to evaluate type I error and under a variety of

alternative hypotheses to evaluate power for four different sample sizes: N = 500, 1000, 2500,

and 5000. For each N, results are summarized for K = 500 iterations.

N random profiles of particle mass were generated from a multivariate normal distribution

using the observed vector of means and variance covariance matrix among the MPP training set

as parameters. The random profiles demonstrated features similar to the MPP profiles (S3 Fig).

The log hazard of an event occurring for each generated profile i, (i = 1,� � �,N), was calcu-

lated as:

loglit ¼ at þ
XJ

j¼1

bjðxij � x:jÞ

−
0.

10
−

0.
05

0.
00

0.
05

0.
10

S L   VS S M S L S M LSize

HDL MZ LDL IDL VLDLRegion

7.65 14.50 23.33 29.60 54.70

Diameter (nm)

C
oe

ffi
ci

en
t

Fig 2. Estimated Cox regression coefficients across ion mobility profile. Solid line represents estimated regression coefficients. Dashed lines represent

upper and lower 95% confidence intervals for regression coefficients. Points indicate regions of significance (95% CI does not include zero). Sizes:

(VS = very small; S = small; M = Medium; L = Large) Regions: HDL = High Density Lipoprotein; MZ = Midzone; LDL = Low Density Lipoprotein;

IDL = Intermediate Density Lipoprotein; VLDL = Very Low Density Lipoprotein.

https://doi.org/10.1371/journal.pone.0213172.g002
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where αt is a baseline hazard, βj is the value of an assumed true coefficient function, β(sj), at

size sj, and (xij−x.j) is the particle mass for profile i centered around the mean of the N gener-

ated profile values at size sj x:j ¼
PN

i¼1

xij
N

� �
.

Event times were randomly generated assuming an exponential distribution based on the

individual specific log-hazards with at ¼ � log :9

10

� �
such that the expected cumulative incidence

of events within a 10-year time period among “mean profiles” (i.e.(xij−x.j) = 0 for all j = 1,� � �,J) =

10%. Event times greater than 10 years were censored.

Given a set of N randomly generated profiles and event times, analysis proceeded as

described in the methods: Cox models for two choices of degrees of freedom were fit and com-

pared by likelihood ratio test and the selected model was then evaluated by likelihood ratio test

versus a null model with Bonferroni adjustment for assessment of two models. If the null

model was rejected, 95% confidence intervals for β̂ðsÞ were determined and compared with

the assumed function, β(s).
Type I error was assessed by two metrics: the proportion of iterations in which the Bonfer-

roni adjusted p-value from a likelihood ratio test comparing the selected model to a null model

was significant (< 0.05), and the proportion of size bins, sj, for which the 95% confidence

interval for β̂ðsjÞ did not contain zero. Power was defined as the proportion of iterations in

Table 2. Cox model results of time to CVD event among test set subjects.

Model 1 Model 2

Model Variable Hazard Ratio 95% CI P value Hazard Ratio 95% CI P value

Continuous Functional Risk Score (SD) 1.22 1.12 1.33 < 0.0001 1.21 1.10 1.32 < 0.0001

Age (years) 1.04 1.03 1.05 < 0.0001 1.04 1.02 1.05 < 0.0001

Male 1.43 1.22 1.68 < 0.0001 1.47 1.23 1.77 < 0.0001

Smoker 1.33 1.13 1.56 0.0006 1.21 1.01 1.45 0.04

HTN 1.30 1.1 1.53 0.002 1.32 1.11 1.58 0.002

Diabetes 1.48 1.25 1.76 < 0.0001 1.44 1.19 1.74 0.0002

HDL-C 0.88 0.72 1.08 0.22 0.93 0.74 1.17 0.54

LDL-C 1.26 1.17 1.37 < 0.0001 1.26 1.15 1.37 < 0.0001

Triglycerides 0.91 0.8 1.03 0.14 0.92 0.80 1.05 0.21

BMI 1.00 0.98 1.02 0.74

Physical Activity 0.87 0.76 1.00 0.05

Alcohol 1.00 0.99 1.00 0.27

Quartiles Q2 vs. Q1 1.25 1.03 1.53 0.026 1.23 1.00 1.52 0.05

Q3 vs. Q1 1.25 1.02 1.54 0.033 1.24 1.00 1.54 0.05

Q4 vs. Q1 1.48 1.18 1.86 0.0006 1.34 1.05 1.70 0.02

Age (years) 1.04 1.03 1.05 < 0.0001 1.04 1.02 1.05 < 0.0001

Male 1.44 1.23 1.69 < 0.0001 1.49 1.24 1.79 < 0.0001

Smoker 1.32 1.12 1.55 0.0009 1.20 1.00 1.43 0.05

HTN 1.30 1.1 1.54 0.002 1.33 1.11 1.59 0.002

Diabetes 1.50 1.26 1.78 < 0.0001 1.46 1.21 1.76 < 0.0001

HDL-C 0.86 0.7 1.06 0.15 0.91 0.72 1.14 0.40

LDL-C 1.23 1.13 1.33 < 0.0001 1.21 1.11 1.31 < 0.0001

Triglycerides 0.95 0.84 1.07 0.41 0.97 0.85 1.11 0.66

BMI 1.00 0.98 1.02 0.73

Physical Activity 0.86 0.75 0.99 0.04

Alcohol 1.00 0.99 1.00 0.31

https://doi.org/10.1371/journal.pone.0213172.t002
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which the Bonferroni adjusted p-value from the likelihood ratio test rejected the null model

(< 0.05), and among those size bins, sj, where the assumed β(sj)> 0, we required at least 50%

of size bins to have both β̂ðsjÞ in the same direction as β(sj) and a 95% confidence interval for

β̂ðsjÞ that excluded zero.

A function with true effects chosen to have features somewhat similar to those observed in

the applied example was chosen as a representative example for summarizing the operating

characteristics of the method. Specifically, a function having four regions with effects on risk

was generated. Two regions, centered at 13.6 and 19.05 nm, increased risk by log(1.03) and log

(1.025) per SD of particle mass at their peak and an additional two regions, centered at 11.35

and 16.3 nm, decreased risk by log(1.025) and log(1.05) per SD of particle mass respectively.

The four regions with true effects were generated assuming the log hazard follows a Gaussian

distribution centered at the peak and with standard deviations of 0.5, 0.5, 0.75 and 0.5 respec-

tively. Effects of specific distributions were forced to zero at +,- 3 SD from the mean. In cases

where more than one defined distribution overlapped a particular size bin, the total log hazard

of the size bin was calculated as the sum of the effects of the overlapping distributions. The

profile of the true effect size for simulations can be visualized by the thick black line in Figs 4

and 5.
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functional risk scores.
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Type I error was close to the expected 5% (range: 2% to 5%) for the 7 and 13 as well as the 8

and 15 series. Power was poor (< 25%) for simulations where the average number of events

was�100. However, it increased with increasing sample size in simulations averaging 500

events: to 83% for the 7 and 13 series and 99% for the 8 and15 series. The median proportion

of false positive bins was in a generally acceptable range (7% to 15% for the 7 and 13 series and

2% to 5% for the 8 and 15 series). As sample size increased, the estimated function approached

the true function, particularly for the 8 and 15 series, as demonstrated visually (Figs 3 and 4),

and by the increasing proportion of true-positive size bins. In simulations averaging 50 events,

the median proportion of true positive bins were 25% for the 7 and 13 series and 23% for the 8

and 15 series; in simulations averaging 500 events, these proportions increased to 67% for the

7 and 13 series and 73% for the 8 and 15 series (Table 3).

Discussion

A high resolution size distribution of lipoprotein particles can be measured by ion-mobility

and other methods. However, lipoprotein measurements are typically reported as particle con-

centration in a small number of large regions with broad size range. In this study, we devel-

oped and assessed methods that can assess the association of the entire lipoprotein size

spectrum as a single score. This approach has the advantage that it does not arbitrarily discard
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or collapse information generated by ion mobility measurement of lipoprotein size distribu-

tion. In principle, this approach can also be applied to other methods that analyze lipoprotein

size or density in a continuous manner.
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Fig 5. Simulated coefficient profiles under an alternative hypothesis for nested spline series with 8 and 15 degrees of freedom. N = 500 (Panel A) and

N = 5000 (Panel B). Thick (black) line is true profile. Thin (colored) lines are representative simulated profiles.
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Table 3. Simulation results.

Null Model Alternative Model

Nested Series N Events Type I error� False Positive Rate�� Power��� False Positive Rate�� True Positive Rate����

7, 13 500 50 0.042 0 (0 : 0) 0.030 0.07 (0 : 0.21) 0.25 (0.04 : 0.31)

1000 99 0.028 0 (0 : 0) 0.116 0.15 (0.06 : 0.31) 0.35 (0.29 : 0.42)

2500 249 0.024 0 (0 : 0) 0.406 0.12 (0.06 : 0.23) 0.46 (0.4 : 0.60)

5000 502 0.028 0 (0 : 0) 0.836 0.15 (0.1 : 0.21) 0.67 (0.57 : 0.70)

8, 15 500 50 0.054 0 (0 : 0) 0.100 0.02 (0 : 0.13) 0.23 (0.05 : 0.36)

1000 100 0.042 0 (0 : 0) 0.248 0.05 (0 : 0.12) 0.37 (0.28 : 0.50)

2500 249 0.034 0 (0 : 0) 0.794 0.03 (0 : 0.10) 0.62 (0.53 : 0.68)

5000 500 0.040 0 (0 : 0) 0.996 0.02 (0 : 0.09) 0.73 (0.69 : 0.75)

� Based on likelihood ratio test for selected degrees of freedom (alpha = 0.05)

�� Median (IQR) of the proportion of true negative bins with 95% CI of beta coefficients excluding zero

��� Based on a likelihood ratio test p-value < 0.05 AND at least 50% of true positive bins with 95% CI excluding zero

���� Median (IQR) of the proportion of true positive bins with 95% CI of beta coefficients excluding zero

https://doi.org/10.1371/journal.pone.0213172.t003
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In the applied example, the functional model fit to the training set allowed calculation of a

functional risk score for test set subjects. Evaluation of the score in the test set confirmed that

the model differentiated subjects according to risk of CVD events. When ranked by quartile of

functional risk score, the hazard for CVD among the highest quartile of the risk score was 48%

higher than among subjects in the lowest quartile.

In addition, two types of graphs assisted with interpretation of the model. A plot of the esti-

mated coefficient function indicated that after accounting for effects of traditional risk factors

such as age, sex, smoking, diabetes, hypertension, LDL-C, HDL-C and triglycerides, higher

levels of large HDL particles (12.85 to 14.55 nm) and very small LDL particles (18.65 to 19.75

nm) were associated with increased CVD risk. In contrast, higher levels of particles in a region

of unknown classification, termed the midzone (15.55 to 17.15 nm), were associated with

decreased CVD risk. Visual inspection of lipoprotein mass profiles among patients selected

from the high and low extremes of the functional risk score, indicate that the peak diameter

size in the LDL region among the high risk profiles is shifted towards somewhat smaller parti-

cle diameters. The association of the small LDL particles and large HDL particles with higher

risk of CVD is consistent with trends found in previous studies[13, 21]. The effects found for

the particles of unknown classification (midzone) appear to be novel and should be followed

up in additional cohorts.

The simulated results demonstrate that type I error was well controlled for the 7 and 13 as

well as the 8 and 15 series of splines when evaluating a null model. Furthermore, the functional

model converged toward the underlying true functional form under both a null model as well

as a fairly complex model having four regions with true effects. Under the alternative hypothe-

sis, the proportion of bins with true effects that the models correctly identified increased with

sample size and power was greater than 80% for both spline series in simulations averaging

500 events. Thus, the MPP training set (857 events) is of sufficient size to detect similar under-

lying true effects with good power.

There are several advantages of the functional analysis approach when compared to a previ-

ous publication of the same MPP study population that assessed the association of CVD with

each of 15 pre-defined diameter subclasses separately [18]. That study reported that two adja-

cent subclasses of very small LDL particles (19.9 to 20.49 and 20.49 to 20.82 nm) were associ-

ated with increased risk of CVD events: hazard ratios for subjects in the highest vs lowest

quartiles of these subclasses were 1.33 and 1.26, respectively. The first advantage is that estima-

tion of the coefficient function corresponding to each diameter precludes the need to define

size regions. Or, in this example where regions had already been defined, estimation of the

coefficient function allows assessment of whether the magnitude and direction of the esti-

mated effects are consistent throughout a defined region. For example, the functional model

suggests that effects within the HDL-large region change from risk-decreasing to risk-increas-

ing as diameter increases, whereas these opposite effects likely cancel each other out when a

single risk estimate for the entire region is estimated. Second, the functional approach

accounts for correlations among the different size regions and provides each subject with a sin-

gle functional risk score that incorporates risk from the entire range of particle diameters. For

example, in the previous analysis, the risk estimates for the two significant very small LDL

regions are adjusted for traditional risk factors but are not adjusted for each other or for other

lipoprotein regions leaving the reader unsure how to estimate risk for a particular subject.

Finally, by plotting the lipoprotein profiles of subjects with very low and very high functional

risk scores, it was possible to discern distinguishing features of such profiles.

Disadvantages of the functional analysis include the need to choose the smoothness param-

eter for the functional model (degrees of freedom). We initially explored a bootstrap approach

but found it had inflated type I error. Instead, we proposed the nested spline method which
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allowed proper control of type I error in exchange for somewhat reduced power. Power will

depend on the underlying true function, the particular series of nested splines chosen, and the

number of choices for degrees of freedom allowed in the chosen series. To select series that

appeared to have robust operating characteristics, we first simulated a variety of potential true

functions and evaluated results over a wide range of degrees of freedom. For data analysis, we

limited to two the number of choices for degrees of freedom in the selected series in order to

reduce the penalty of multiple testing as well as to simplify the choice of the best model in the

series.

A limitation of the model in the MPP cohort is that we assume relative changes in the haz-

ard of CVD among males and females are of equal magnitude. Since more than 70% of events

in the MPP sample occurred in males, the functional model is heavily weighted towards males

and may not be equally effective among females, particularly given known gender differences

with respect to CVD risk.

Future work in modeling the effect of lipoprotein profiles on risk of CVD includes evalua-

tion of gender specific effects as well as attempting to replicate our proposed functional model

from the MPP cohort in additional cohorts. Future methodological work includes investigat-

ing additional methods for choosing the degrees of freedom and estimating confidence limits

for the functional model that control the false positive rate while maintaining good power.

In conclusion, we have demonstrated the potential utility of a functional model for data

generated by methods such as ion mobility. Clinical practice could potentially be improved in

several ways by the study results. First, the analysis provided a graphical representation of the

coefficient function that may result in improved understanding of the underlying diameter

regions most associated with risk of CVD. Second, the functional model provides a single mea-

sure of risk due to lipoprotein particle abundance (and possibly other covariates) that could

simplify reporting of risk. Finally, in the MPP test set, high functional risk scores were associ-

ated with increased risk of CVD after adjustment for established risk factors, indicating that

this approach, if validated in additional cohorts, has the potential to improve CVD risk

assessment.
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