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Abstract

The Huajian gold deposit is one of the largest hydrothermal intrusion-related gold deposits

in eastern Hebei Province, located in the northern margin of the North China Craton (NCC).

The mineralization in this district displays a close spatial association with the shoshonitic

Niuxinshan intrusive complex (NIC), which contributes to the characterization of the metallo-

geny associated with convergent margin magmatism. In the current study, new geochrono-

logical and geochemical data are combined with previously published isotopic data,

obtained from the granitic rocks in the NIC, to constrain the timing of the district’s tectonic

setting transformation and determine its bearing on regional metallogeny. The new geochro-

nological data constrain the timing of the tectonic transformation between 155 and 185 Ma.

The NIC’s granitic rocks can be geochemically subdivided into two groups. One group’s

geochemical signature exhibits steep rare earth element (REE) patterns with negligible Eu

anomalies, lower Yb, higher Sr, and negative Nb–Ta–Ti (NTT) anomalies, which indicate a

volcanic-arc environment with a thickened crust in a convergent setting. The other group

exhibits flat REE patterns with obvious negative Eu anomalies, higher Yb, lower Sr, and

weak NTT anomalies, which indicate an intra-plate extensional environment with a thinning

crust. Combining geochronologic and isotopic data, the mineralization is Late Jurassic

(~155 Ma). This is interpreted to be genetically related to the crystallization of the shallow

crustal-sourced portions of this complex. Additionally, a tectonic model is presented that

provides a plausible explanation for the abundant polymetallic mineralization that occurs in

the northern margin of the NCC after 155 Ma.

Introduction

The association of mineralization with shoshonitic magmatism is a characteristic feature of the

northern part of the North China Craton (NCC) [1–4]; however, this has not been previously

described in detail for Huajian gold deposit (Fig 1).
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Recently, dates for some deposits of the Middle Triassic-aged intrusive rocks, located in the

northern part of the NCC, were obtained [5–12]. Particular tectonic environments are closely

connected with the emergence and distribution of these deposits [5] [6–10], [11, 12], [13].

Therefore, the identification of varying tectonic settings in an area is useful for locating min-

eral deposits, also for identifying different metallogenic belts and their metallogenetic potential

[14, 15].

These deposits are distributed along belts in the northern margin of the NCC and have a

close spatial association with shoshonitic intrusions. The formation of these granitic rocks is

due to the collision of northern NCC with a continental orogenic belt at the end of the Perm-

ian, which occurred during the final closure of the Paleo-Asian Ocean [2, 3, 16–19]. However,

the tectonic regime transitioned after the Triassic, it changed from a volcanic arc to an intra-

plate setting [20–23]. Subduction of the paleo-Pacific plate beneath the NCC altered the stress

from NS- to EW-trending, and the lithosphere transitioned from thickening to thinning.

There is considerable debate surrounding (i) the time at which the tectonic setting started its

transition and (ii) its effect on regional magmatism and metallogeny [16, 21, 22, 24–27].

The current study presents new zircon U–Pb age and bulk-rock geochemistry analyses of

several granitic rocks that were collected from the Huajian gold deposit. The evaluation of

these data along with the authors’ published H–O–S–Pb isotopic data[28, 29], from parage-

nous sulfide and quartz in the mineralization zone contributes to the study’s objectives of (i)

developing the tectonic evolution of the eastern Hebei Province, (ii) constraining the timing of

the tectonic regime’s transition in the northern margin of the NCC from a volcanic arc to an

intra-plate setting, and (iii) determining the effect of the tectonic regime’s transition on mag-

matism and mineralization.

Geological setting and deposit styles

Geological setting

The Huajian gold deposit is hosted by a Mesozoic-aged volcanic-intrusive complex that forms

a part of a larger orogenic belt that is related to the volcanic and associated intrusive rocks that

are observed in the northern margin of the NCC (Fig 1). The NCC is a Precambrian block that

is assumed to have stabilized ~1.85 Ga [30, 31]. The Mesozoic-aged volcanic-intrusive com-

plexes are part of the three main components of the northern margin of the NCC. The other

components are the basement of the NCC and the thick sedimentary cover. The basement of

the NCC is divided into highly metamorphosed Neoarchean (Zunhua Group) and Paleopro-

terozoic (Qianxi Group) rocks. The thick sedimentary cover includes marine clastic and car-

bonate, platform sediments of Mesoproterozoic–Neoproterozoic age, and Cambrian–

Ordovician and Middle Carboniferous-Permian and Jurassic fluvial and deltaic sediments

[32–35]. The structural framework of east Hebei is characterized using the following four fault

systems: (1) the EW-trending basement fractures, which played a key role in controlling the

sedimentation and magmatism; (2) the NE-trending faults with strike lengths ranging from

tens of meters to several kilometers, which controlled the Yanshanian magmatism; (3) the

NNE- to N-trending faults with strike lengths ranging from hundreds of meters to several kilo-

meters which controlled the Mesozoic magmatic activities and mineralization; and (4) the

NW-trending faults developed during the Indosinian (Triassic)–Yanshanian (Jurassic–Creta-

ceous) period. The Nappe structures that are located in east Hebei generally trend in a NE–

NNE direction and thrust from the SE to the NW [36–38] (Fig 1).

The Huajian gold deposit area is divided into three ore bodies that are as follows: the Niux-

inshan, Huajian, and Maweigou ore bodies. Surface rocks in this area are dominated by the

Zunhua Group, which mainly comprises a sequence of amphibolite, itabirite, and gneiss,

Geochronology and geochemistry: Niuxinshan intrusive complex, northern North China Craton

PLOS ONE | https://doi.org/10.1371/journal.pone.0213156 March 6, 2019 2 / 24

https://doi.org/10.1371/journal.pone.0213156


including amphibolite, biotite plagioclase gneiss, hornblende gneiss, magnetite quartzite, and

two-pyroxene granulite. The southwest portion of the ore deposit is hosted by Mesoprotero-

zoic sedimentary rocks (Changcheng Group) that include the Dahongyu Formation (quartz

sandstone and feldspathic quartz sandstone) and Gaoyuzhuang Formation (limestone and

chert-nodule bearing dolomitic limestone) (Fig 2).

The Niuxinshan intrusive complex (NIC) is a small (1 × 0.4 km) composite stock that

intruded the Zunhua Group (Fig 2). It comprises two granitoid phases. The first-phase is

coarse porphyritic granite located on the edge-phase of the NIC (Fig 3A and 3C). The remain-

der of the complex contains fine-grained granitic rocks (Fig 3B and 3D). The second-phase

granitoid intruded into the center of the first-phase granite, and mineralization occurred in

the central part of the NIC (Fig 3B and 3D). Swarms of diabase, diorite, diorite-porphyritic,

orthophyre, and lamprophyre dykes that are located on the rim of the NIC’s main exposure

are interpreted to be unrelated to the NIC, which indicates the presence of an extensive

magma chamber at depth as well as different regional tectonic processes.

Emplacement of the NIC was probably facilitated and localized by the development of a

major dilation zone, which contained regional faults that were oriented E-W, NNE and NNW;

they constitute the complex structural pattern in this area. The NNE-trending faults are the

main ore-forming structures to the northwest. The EW-trending faults control the central

area, and the NNW-trending faults constrain the northeastern area. The prevailing tectonic

stress that created the structures exerted effects during and after mineralization because they

represent the predominant orientations of the mineralized quartz veins in the Niuxinshan,

Huajian, and Maweigou ore bodies (Fig 2).

Fig 1. Regional geological sketch map of the northern part of the North China Craton (modified after[28]).

https://doi.org/10.1371/journal.pone.0213156.g001
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Mineralization styles

Mineralization in this deposit comprises quartz vein-type and fracture-zone altered rock. The

quartz vein-type gold mineralization mainly occurs in the gneissic rocks, which are extensively

distributed throughout the ore blocks of Niuxinshan and Huajian. The quartz veins are con-

trolled by fractures, which are oriented in various directions; however, they are observed to

mainly trend NE and NNE. Mineralization has been discovered in more than 200 auriferous

quartz veins over a length of 100–700 m with a width of 0.3–1.5 m. They form a broadly tabu-

lar envelope that dips 30˚–45˚ to the northwest and strikes to the northeast. The veins are

observed to often swell, pinch-out, and branch along the strike and dip. Majority of the veining

is controlled by the NNE- and NW-trending fractures, and it occurs as parallel quartz veins,

sheeted quartz veins, and quartz stockworks in the fracture zones.

The fracture-zone altered rock type is pervasively developed in the NIC and is distri-

buted along the contact of the two intrusions. Gold is observed, especially, within the contact

zone.

The ore mineralogy is relatively simple. Metallic minerals account for ~10% of the total

minerals, whereas metal sulfides account for ~60%–70% of the metallic minerals. Pyrite is the

main component of the metallic minerals; the others are galena, chalcopyrite, native gold,

native silver, and electrum with occasional chalcocite, siderite, and scheelite. The gangue min-

erals are dominantly quartz, plagioclase, sericite (60–70 vol%), K-feldspar, chlorite, kaolinite,

and calcite with minor fluorite and epidote. The texture of the ore is dominantly euhedral- to

subhedral-granular and allotriomorphic-granular. The ore structure is banded, disseminated,

and brecciated (Fig 3).

Fig 2. Geological sketch map of the Huajian gold deposit. (modified after[28]).

https://doi.org/10.1371/journal.pone.0213156.g002
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Samples and analytical methods

Samples used for the Zircon U–Pb dating and geochemistry analyses were collected from the

NIC located in the Huajian deposit (S1 and S2 Tables), China Geological Survey issued the

permission for each location. Fig 2 depicts the distribution and the locations of the granitic

rock samples. The detailed mineralogical characteristics of the analyzed samples have been

presented in[28], and photomicrographs of the typical samples have been presented in [39]

LA-ICP-MS U-Pb dating

Zircon U–Pb isotopes were dated using an inductively coupled plasma mass spectrometer

(ICP-MS) (Neptune Plus multicollector; Thermo Scientific) at the Geological Lab Center,

China University of Geosciences, Beijing. The zircons were separated using a magnetic separa-

tor and heavy liquids and were carefully selected based on their turbidity, color, shape, and

size. Cathodoluminescence (CL) images were obtained using a microprobe microanalyzer

(JXA-8100; JEOL Ltd.) at the Key Laboratory of Orogenic Belt and Crustal Evolution, Peking

University. The data reduction, apparent age calculations, and isotopic ratios were processed

using the ICPMS DataCal software [40]. The data processing used IsoplotEx 3 [41]. Secondary

reference zircon of standard samples was using GJ-1 (~599 Ma) [42, 43]. The analytical proce-

dure that was used to perform the analyses is described in detail in [44]

Fig 3. Representative photograph of NIC, the middle-coarse porphyritic granite (a, c) and the middle-fine grain granite (b, d).

https://doi.org/10.1371/journal.pone.0213156.g003

Geochronology and geochemistry: Niuxinshan intrusive complex, northern North China Craton

PLOS ONE | https://doi.org/10.1371/journal.pone.0213156 March 6, 2019 5 / 24

https://doi.org/10.1371/journal.pone.0213156.g003
https://doi.org/10.1371/journal.pone.0213156


Major- and trace-element analyses

Major and trace elements (including REE) were measured at the Geological Lab Center, China

University of Geosciences, Beijing. The major elements were analyzed on fused-glass discs

using inductively coupled plasma optical emission spectrometry (ICP-OES) equipped with

Prodigy (Thermo Scientific iCAP 7000 Plus). The trace elements were analyzed using ICP-MS

(Agilent 7500a) fitted with a 193 nm laser sampler. The sample preparation and analytical pro-

cedures are described in [45]. Monitor analyses followed the GSR-1 Chinese national standard

[45]. Most of the major-element analytical errors were within 1%, except for P2O5 (5%),

whereas those for the trace elements were within 10%.

Results and discussion

Results

Zircon U-Pb age. The results of LA-ICP-MS zircon U–Pb analyses are listed in S1 Table.

All the data points were located on or close to the concordia, indicating minimal Pb-loss after

zircon crystallization. The zircon grains were transparent to semi-transparent, colorless or

light brown, and euhedral. They were generally 100–150 μm long with ~2:1–3:1 length to

width ratios. The CL images indicated that most of the zircons contained no inherited cores

and that they exhibited good oscillatory zoning (Fig 4). Many of the zircon analysis plot to the

right of the Concordia line, this is due to the participation of the common Pb, but it is still

within reasonable limits and has little effect on the 206Pb/238U age [46]

Twenty-four spots on 28 zircon grains were analyzed from HNK103-4, collected from the

central part of the NIC. 13 inherited grains were observed; most of them were concordant (Fig

5). The weighted mean 206Pb/238U age of these 13 analyses was 185.4 ± 1.6 Ma (mean square of

weighted deviates [MSWD] = 0.55, 95% confidence). The weighted mean 206Pb/238U age of the

remaining 11 spots was 154.9 ± 1.5 Ma (MSWD = 0.55, 95% confidence) (Fig 5A–5C). The

high Th/U ratios (ranging from 0.37 to 0.96), oscillatory zoning, and euhedral-shaped prisms

indicated that they were magmatic zircons.

Twenty-seven spots on 28 zircons were analyzed from HNK103-7, collected from the cen-

tral part of the NIC; most of these were reasonably concordant (Fig 5). The high Th/U ratios

(ranging from 0.40 to 1.72), oscillatory zoning, and euhedral shape indicated a magmatic

Fig 4. The cathodoluminescence (CL) images for zircons of Sample HNK103-4(a), HNK103-7(b), HNK103-16(c).

https://doi.org/10.1371/journal.pone.0213156.g004
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origin. Two of these spots (HS7-02 and HS7-04) were interpreted as zircons that were inher-

ited from the surrounding rocks. The remaining spots generated a weighted mean of

186.1 ± 1.9 Ma for nine spots (MSWD = 1.6, 95% confidence) (Fig 5C) and 154.8 ± 1.6 Ma for

16 spots (MSWD = 2.2, 95% confidence) (Fig 5D–5F). These ages were very similar to those

that were obtained from the HNK103-4 sample.

In the HNK103-16 sample, from the NIC’s margin, 29 spots on zircon grains were analyzed,

and most of these were concordant (Fig 5). Excluding the disconcordant analyses (the ages of

the inherited zircons (HS16-08, HS16-18, and HS16-27), the remaining 26 analyses exhibited a

weighted mean 206Pb/238U age of 184.6 ± 1.2 Ma (MSWD = 0.41, 95% confidence) (Fig 5G and

5H). The high Th/U ratios and well-developed oscillatory zoning indicate that the grains are

magmatic.

Fig 5. Representative zircon U–Pb concordia and diagrams of the samples’ weighted averages.

https://doi.org/10.1371/journal.pone.0213156.g005
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Major- and Trace-Element geochemistry. Representative analyses of the NIC samples

are presented in S2 Table. According to the classification by Peccerillo and Taylor (1976), the

Early Jurassic granites on a total alkali-SiO2 (TAS) diagram, exhibit a well-defined trend mov-

ing from the granite to the quartz monzonite and monzonite fields (Fig 6) and belonged to the

shoshonitic series (Fig 7). A molecular Al2O3/(Na2O + K2O) (A/NK) versus a molecular

Al2O3/(CaO + Na2O + K2O) (A/CNK) diagram shows that all of the samples are peraluminous

(A/CNK>1 and A/NK>1) except for one sample, which is metaluminous (A/CNK<1 and A/

NK>1) (Fig 7). The Late Jurassic granites, on a TAS diagram, exhibit a well-defined trend

through the granite field (Fig 6). The high total alkali to SiO2 ratio also defined the central NIC

granites as shoshonitic (Fig 7).

Fig 6. SiO2-(K2O+Na2O) (TAS) Diagram showing samples from the NIC (after [47]).

https://doi.org/10.1371/journal.pone.0213156.g006

Fig 7. Plots of (a) SiO2 versus K2O (after Le Maitre et al., 1989, Rickwood et al., 1989); (b) A/NK versus A/CNK; A/

NK = Al2O3/(Na2O + K2O), A/CNK = Al2O3/(CaO + Na2O + K2O), molecular ratio; (after [48]). Symbols are same as Fig 6.

https://doi.org/10.1371/journal.pone.0213156.g007
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The Early Jurassic granitic rocks exhibit moderate REE content with negligible Eu anoma-

lies; they are depleted in heavy rare earth elements (HREEs) and enriched in light rare earth

elements (LREEs) (Fig 8A) with La/Lu ratios ranging from 9.50 to 17.97. The Early Jurassic

granitic rocks are enriched in large-ion lithophile elements (LILEs), such as Cs, Rb, Ba, Th, U,

and Pb; however, they are depleted of high field strength elements (HFSEs), depicting negative

Ta, Nb, P, and Ti anomalies (Fig 8C).

The Late Jurassic granitic rocks exhibit relatively flat REE patterns with prominent negative

Eu anomalies (0.16–0.21). They show a marked depletion of Ti; however, they are only weakly

depleted in Ta and Nb as compared with the Early Jurassic rock samples (Fig 8B and 8D).

Discussion

Geochronologic feature of the Mesozoic granitic rocks of the NIC

The formation of NCC can be mostly explained by the evolving orogenic processes that span

the Precambrian to Mesozoic eras, which were connected to ocean-formation, including

Fig 8. Chondrite-normalized REE and primitive mantle-normalized trace element patterns for Early Jurassic (a, c) and Late Jurassic (b, d) granitic rocks in the study

area. Normalization values for chondrite and primitive mantle are from[49], and[50], respectively.

https://doi.org/10.1371/journal.pone.0213156.g008
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subduction and closure, terrain patching, continental collision, and crustal extension [2, 3, 16,

18, 27, 51–58]. Numerous studies have suggested that the tectonic history of the northern mar-

gin of the NCC, especially from the Late Paleozoic to Early Mesozoic, includes the final closure

of the Paleo-Asian Ocean [2–4, 17, 24, 59–63].

However, the tectonic regime transitioned after the Triassic in the northern margin of the

NCC, and the tectonic history and geological setting of this area are still under debate [16, 20,

22, 23, 27]. Engebretson (1985) [64] proposed that, in Early Jurassic (180 Ma), the paleo-Pacific

plate exhibited a velocity of 47 mm/a and began to be subducted relative to the NCC. In Late

Jurassic (~145 Ma), the paleo-Pacific plate’s velocity increased rapidly to 300 mm/a, resulting

in an increasing dip angle of the subducted plate. In the Early Cretaceous (~120 Ma), the sub-

duction velocity slowed to ~207 mm/a. At ~60 Ma, the subduction of the paleo-Pacific plate

was completed. Mao (2005) [21] suggested that large-scale mineralization in the northern mar-

gin of the NCC during the Mesozoic period occurred in the following three stages: (i) a post-

collisional process at approximately 200–160 Ma, (ii) a tectonic transitional process at ~140

Ma, (iii) and a lithospheric thinning process at ~120 Ma.

In this study, for the samples HNK103-4 and HNK103-7, it contains zircon crystals with

two age populations. This is because the sampling location for age samples from the second-

phase granitoid was near the junction between the two phases of granitic rocks (Fig 9C); there-

fore, we collected a piece of the 155 Ma granite that had a xenolith from the 186 Ma granite

within it. And then during crushing these two distinct samples became mixed. As a result, the

mean age of 185 Ma, Early Jurassic, was interpreted to be the age of the first emplacement

stage of the NIC. In addition, the geochemical samples from the second-phase granitoid are

Fig 9. Profile of the mine structure in the Huajian deposit. Revised from [39].

https://doi.org/10.1371/journal.pone.0213156.g009
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closer to the center part and away from the junction, so the two different features of two phases

of granitic rocks do not interfere with each other (Fig 9D). The new zircon U–Pb dating of the

NIC indicates that the Late Mesozoic magmatic events in the research region can be divided

into two periods: (i) Early Jurassic (~185 Ma) with a volcanic-arc setting due to the initiation

of the paleo-Pacific plate’s subduction and (ii) Late Jurassic (~155 Ma) with an intra-plate

extensional setting due to the increasing velocity and dip angle of the subducting plate. There-

fore, ~185 Ma is the probable timing of the tectonic regime beginning to enter the transition

stage, whereas ~155 Ma is the feasible timing of metallogenesis. The reasons will be discussed

in detail below.

Geochemistry of the Mesozoic granitic rocks of the NIC

The Early Jurassic granites that intruded into the northern margin of the NIC exhibit steep

HREE patterns and contain relatively low contents of Y and HREE (Fig 8A and 8C), indicating

that garnet rather than amphibole was the residual mineral in the source region. The Early

Jurassic granites exhibit slight or no obvious negative Eu anomalies along with relatively low

contents of Sr (88.02–168.80 ppm) (Fig 8A and 8C); this indicates a stability field condition for

plagioclase in the source rocks during melting. Patiño Douce (1995) [65] indicated that plagio-

clase maintains stability at a pressure of less than 15 kbar; as pressure increases to become

greater than 12.5 kbar, garnet will be formed as the typical residual phase during the melting-

dehydration process of the metasedimentary protoliths. If plagioclase and garnet both exist in

the residual phase, this indicates that the granitic rocks’ source region was probably under

pressures of 12.5–15 kbar and was relatively deep, ~40–50 km.

In contrast to the Early Jurassic granites, the Late Jurassic granites exhibit flat HREE pat-

terns (Fig 8B and 8D) and displayed high contents of Yb, Y, and HREE (Fig 8B and 8D). These

characteristics suggest that garnet was not a residual phase during melting in the source region

[66–70]. Intensive negative Eu anomalies and relative depletion of Sr require the same stability

field as required by plagioclase in the source rocks during melting, which can be achieved at

relatively shallow levels in the crust (~20–30 km). Experimental petrology indicates that pla-

gioclase is the main residual phase of hornblende-bearing granites during dehydration melting

at a relatively shallow level of less than 30 km in the crust with a 20% to 40% fraction melt at a

pressure of 4 kbar.

As depicted in Fig 10, the granite samples from the NIC evolved from lower Yb-higher Sr

to higher Yb-lower Sr during the Early to Late Jurassic. This indicates that the source region

changed from deep to shallow and that the residual phase changed from garnet and plagioclase

to only plagioclase. This evolution indicates a tectonic transition regime that changed from a

compressional environment to an extensional environment that was accompanied by a thin-

ning crust.

Various tectonic discrimination diagrams [72] have been used to discriminate the tectonic

setting of the Early and Late Jurassic granitoid samples from the NIC. Early Jurassic rocks fall

into the region of volcanic-arc granite in Rb vs. Yb + Ta, Ta vs. Yb, and Rb vs. Y + Nb diagrams

(Fig 11A, 11C and 11D) and volcanic-arc granite and syn-collisional granite in Nb vs. Y dia-

grams (Fig 11B), whereas Late Jurassic granites fall into the region of within-plate granite in all

the discrimination diagrams that are given below.

Additionally, the Early Jurassic granites depict negative NTT anomalies, referred to as the

depletion of Nb, Ta, and Ti. Despite this being a typical indicator of a subduction setting, Ring-

wood (1990) indicated that such negative anomalies could also be produced by the retention of

rutile during partial melting in source regions and fractional crystallization of rutile and/or

titanite during magma evolution. However, the retention or fractional crystallization of rutile
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and titanite will not only cause the depletion of NTT and but also produce negative anomalies

of Hf and Zr, and an increased ratio of Nb/Ta [73, 74]. This does not correspond with the obvi-

ous positive Hf and Zr anomalies and the high Hf and Zr contents that are reported in this

study (Fig 8A).

Previous studies have suggested that, if basement rocks comprise protoliths connected by a

paleo-arc, such as the magmatic rocks in the Zunhua Group, they will undergo remelting, and

the NTT anomalies will be inherited[72, 75]. However, because the Zunhua Group represents

only a series of the greenschist facies, 2–7-kbar low-grade metamorphic rocks, it is impossible

to form igneous rocks with negligible Eu anomalies and REE patterns enriched of LREEs and

depleted of HREEs by remelting, which requires pressures that are larger than 12.5 kbar.

Therefore, subducted sediments or slab-derived fluids would more feasibly produce the nega-

tive NTT anomalies that are observed in NIC’s igneous rocks [76, 77].

In contrast, Late Jurassic granites only contain relatively weak negative NTT anomalies,

which precludes an arc-related origin. However, they exhibit some characteristics of A-type

granites in their field and geochemical features such as their relatively high contents of Rb, Th,

Nb, Ta, Zr, Hf, Ga, and Y. In the (a) (K2O+Na2O) (b) Y, (c) Nb, and (d) Zr vs. 10,000 Ga/Al

classification diagrams proposed by Whalen et al. (1987) [78], most of the granites are

observed to fall into the A-type granite area (Fig 12). The enrichment of Ga relative to Al and

the depletion of CaO, Al2O3, Eu, and Sr may have been caused due to the plentiful plagioclase

fractional crystallization that was observed during an earlier stage. High Ga/Al ratios are

Fig 10. Sr vs Yb diagram for Jurassic granitic rocks in NIC[71].

https://doi.org/10.1371/journal.pone.0213156.g010
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observed to be a characteristic of several A-type granites, which indicates an extensional setting

in Late Jurassic [79, 80].

The S and Pb isotopic compositions of the paragenous sulfide of Late Jurassic granitoids

and the H-O isotope compositions of fluid inclusions in the paragenous quartz in NIC

(authors’ published H–O–S–Pb isotopic data [28, 29]) indicate that the ore fluids mainly origi-

nated from magmatic hydrothermal fluids with the participation of small amounts of meteoric

water (Fig 13A). The δ34S value of pyrite in the main orebody ranges from 1.5‰ to 5.8‰, hav-

ing characteristics of crustal-sourced magmatic rock (Fig 13B). The Pb isotope 206Pb/204Pb

composition ranged from 16.02 to 16.25, the 207Pb/204Pb composition ranged from 15.16 to

15.21, and the 208Pb/204Pb composition ranged from 35.95 to 36.12. These ranges reflect the

typical characteristics of the lower crust lead isotope (Fig 13C and 13D). In the current study,

the ore-forming materials were considered to be mainly derived from the Mesozoic-aged mag-

matic hydrothermal activities. Combining the geochronologic and isotopic features, the

Fig 11. Trace element discrimination diagram of the tectonic setting after [72]. Rb vs. Yb+Ta,(a), Nb vs. Y (b), Ta vs. Yb (c), Rb vs. Y

+Nb (d). VAG, volcanic-arc granites; ORG, ocean-ridge granites; WPG, within-plate granites; Syn-COLG, syn-collisional granites; Late or

Post-COLG, late or syn-collisional granites. Symbols are same as Fig 6.

https://doi.org/10.1371/journal.pone.0213156.g011
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mineralization at Huajian was considered to be spatially and temporally related to Late Jurassic

(~155 Ma) stage of the NIC and was causatively connected to the emplacement and crystalliza-

tion of the shallower crustal-sourced part of the intrusive complex.

Regional tectonic evolution of easten Hebei Province

By combining geochemistry with the new age data of the NIC, we infer that easten Hebei Prov-

ince, which includes the Huajian metallogenic district, was generated in a geodynamic envi-

ronment controlled by the subduction of the Paleo-Pacific Plate beneath the NCC. A two-stage

tectonic model is distinguished for the occurrence of the Early to Late Jurassic intrusions in

the study area i.e., the thickened crust with compressional setting and the thinned crust with

extensional setting (Fig 14). ~185–155 Ma has been constrained as the timing of tectonic

regime transition stage on account of the geochronology of NIC. The intense NTT anomalies,

high Ba/Th and La/Sm ratios in Early Jurassic igneous rocks are related to the compression by

the subduction of the Paleo-Pacific Plate. The negligible NTT anomalies and A-type granites

in Late Jurassic igneous rocks are ascribed to the extension by the asthenosphere upwelling.

Fig 12. (K2O+Na2O) (a), Y (b), Nb (c), Zr (d)-10000 Ga/Al diagram(after [78]) of the granites from the NIC. Symbols are same as Fig 6.

https://doi.org/10.1371/journal.pone.0213156.g012
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Prior to ~185 Ma, because of the flat or low angle of the initial subduction of the paleo-

Pacific plate, the compressional regime was observed to reoccur in the eastern part of the

NCC. The juvenile mafic lower crust was metamorphosed into garnet-bearing gneiss and

underwent tectonic thickening. Thickening of the lower crust during the compressional stage,

resulting from the partial melting of the lithospheric mantle, generating magma with high Ba:

Th and La:Sm and intense NTT anomalies (Fig 14A).

As the velocity and dip angle of the subducted slab increased after ~155 Ma, there were

inadequate subducted sediments and fluids to generate magma following the detachment and

rollback of the subducted slab. Instead, the upwelling asthenosphere led to the partial melting

of the subducted slab, which was then mixed with the ancient lower crust. The hybrid magma

ascended to the upper crust, and intensive fractional crystallization or, potentially, upper-

crustal assimilation resulted in low Ba:Th and La:Sm, weak NTT anomalies, and A-type

Fig 13. H-O-S-Pb isotope feature of Late Jurassic stage of the NIC. (a)Base map is cited from [81]. Organic water field revised after [82]. (c),

(d) Base map from [83].

https://doi.org/10.1371/journal.pone.0213156.g013
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Fig 14. Three-dimensional schematic illustrations of tectonic reconstruction of the northern part of the North China Craton

during Early Jurassic (c.185Ma) and Late Jurassic (c.155Ma). (a) Due to the continuous compressing between the NCC and Paleo-
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granites; the eastern Hebei region was under an extensional tectonic setting with a thinning

crust (Fig 14B).

Effect of tectonic transformation and potential of polymetallic

mineralization

The NIC is the pre-eminent example of the connection between hydrothermal-style gold min-

eralization and shoshonitic magma. It contains all the features that are considered to be opti-

mal for the formation of economic, hydrothermal-style gold deposits, which contain shallowly

emplaced high potassium calc-alkaline magmas with petrographic and chemical proof for

abundant internal fractionation and depict differentiation that affords the build-up and reten-

tion of volatiles and metals in a fraction of the residual melt before volatile exsolution.

The close spatial connection of gold mineralization with the NIC’s A-type granites in the

Huajian district suggests a genetic relation. A similar relation is observed in the northern mar-

gin of the NCC during the late Mesozoic with A-type granites containing large-scale polyme-

tallic mineralization [84–87]. It is generally assumed that specific tectonic settings are

associated with gold–copper–molybdenum mineralization; intra-plate setting related deposits

depict similar mineral associations in northeastern NCC [1, 88–90]. The generation of these

deposits is assumed to be the result of crustal extension and lithospheric thinning during the

Late Jurassic in NE China [19, 32, 36–38, 62, 91, 92].

Many studies have indicated that crustal thickening and shortening with a compressional

regime occurred in the NE China during Jurassic time [37, 38, 93, 94]. They are suggested by

large-scale contractional deformations and other thrusts along the Solonker–Xar Moron–

Changchun–Yanji suture (e.g., [27, 31, 62, 63, 95]), especially the intense widespread Jurassic

magmatism–Yanshan orogeny in the northern part of the NCC [96–103]. During Early Creta-

ceous time, the tectonic regime transformed from compressional to extensional as evidenced

by large-scale emergence of the early Cretaceous metamorphic core complexes (MCCs; e.g.,

[104–106]), and by a lot of volcanic rocks and extensional basins (e.g.,[107–109]). The initial

time of crustal thinning is usually considered to be at 155–140 Ma, interpreted to be related to

the subduction of Paleo-Pacific Plate, with peak time at 130–120 Ma ([104, 106]). Moreover,

early Cretaceous granites were widespread in northern part of the NCC, indicating extension

predominantly occured in early Cretaceous (S3 Table) [23, 105, 110]). These features provide

robust proof that Late Jurassic was the transition time of the crustal from thickening to

thinning.

Therefore, the newly obtained Zircon U–Pb ages for the NIC indicate that mineralization

occurred during Late Jurassic (~155 Ma), which corresponds to an intra-plate extensional

environment with a thinned crust in the northern margin of the NCC. As stated previously,

the occurrences of the mineralization and the zircon U–Pb ages of the A-type granites indicate

that the mineralization was likely be formed by hydrothermal replacement during lithospheric

thinning due to hybrid magma ascending to the upper crust, which caused the formation of

the A-type granites [67, 68, 78, 80, 92]. Because of the spatial and temporal relations of the Au–

Cu–Mo mineralization and the tectonic settings in which it occurs, we consider that the Au–

Cu–Mo mineralization of Late Jurassic age along the northern margin of the NCC was likely

to be related to lithospheric thinning after the continuing subduction of the paleo-Pacific plate

[111–114]. Recent mapping indicates that granites of the Mesozoic age are widespread

Pacific Plate, the Paleo-Pacific Plate subducted far from the coastal area, and gave rise to dehydrated and melted, and generated

magma. (b) As the slab dip angle increased, the detachment of the subducted slab and preceding collision between Paleo-Pacific

Plate and North China Craton, the upwelling mantle lead to the partial melting of lower crust and generated ore-bearing magma.

https://doi.org/10.1371/journal.pone.0213156.g014
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throughout this region [21, 115–117] S3 Table. Among the mineralization ages along the

northern margin of the NCC, the establishment of a Late Jurassic age should stimulate

renewed exploration to discover new Au–Cu–Mo resources.

Conclusions

1. The timing of tectonic regime transition from volcanic arc to intra-plate setting during Late

Mesozoic occurred between ~185 to ~155 Ma on account of the geochemistry and the geo-

chronology of NIC and combined isotope data, ~155 Ma magmatism is connected with the

mineralization.

2. Geochemical characteristics of two dated granites can be distinguished two types. The first

group is characterized by relatively steep REE patterns with slight Eu anomalies low Yb-

high Sr. The second group contains flat REE patterns with obvious Eu anomalies, high Yb-

low Sr, and weak NTT anomalies.

3. Before ~185 Ma, the volcanic arc convergent setting was probably attributed to subduction

of the Paleo-Pacific Plate. After ~155 Ma, due to the increased velocity and dip angle of sub-

ducted slab, its main tectonic setting changing to intra-plate extension and lithosphere

varying thickening to thinning.
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