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Abstract

New approaches are needed for understanding and treating acute myeloid leukemia (AML).

MicroRNAs (miRs) are important regulators of gene expression in all cells and disruption of

their normal expression can lead to changes in phenotype of a cell, in particular the emer-

gence of a leukemic clone. We collected peripheral blood samples from 10 adult patients

with newly diagnosed AML, prior to induction chemotherapy, and 9 controls. Two and a half

ml of whole blood was collected in Paxgene RNA tubes. MiRNA was purified using RNeasy

mini column (Qiagen). We sequenced approximately 1000 miRs from each of 10 AML

patients and 9 controls. In subset analysis, patients with NPM1 and FLT3 mutations showed

the greatest number of miRNAs (63) with expression levels that differed from control with

adjusted p-value of 0.05 or less. Some of these miRs have been described previously in

association with leukemia, but many are new. Our approach of global sequencing of miRs

as opposed to microarray analysis removes the bias regarding which miRs to assay and has

demonstrated discovery of new associations of miRs with AML. Another strength of our

approach is that sequencing miRs is specific for the 5p or 3p strand of the gene, greatly nar-

rowing the proposed target genes to study further. Our study provides new information

about the molecular changes that lead to evolution of the leukemic clone and offers new

possibilities for monitoring relapse and developing new treatment strategies.

Introduction

One area of research that has grown explosively in the past 15 years is the study of non-coding

RNA. MiRNAs are 19–22 nucleotide long non-coding RNAs which regulate the expression of

genes by sequence-specific binding to mRNA to either promote or block its translation [1].

This is a powerful level of epigenetic control for gene expression that can influence the pheno-

type of a cell [2]. Several authors have examined the role of miRNA in the transformation of

hematopoietic stem cells into leukemic cells [3–8]. It is now well established that miRNAs play
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a role in blocking differentiation of leukemic cells and promoting their unchecked cell division

[9,10].

To date, researchers have analyzed miRNA expression in leukemic cells using arrays or

RT-PCR. Our work is the first quantitative sequencing of miRNAs found in peripheral blood

from patients with newly diagnosed acute myeloid leukemia (AML). We demonstrate here

proof of principle for this relatively simple method. We compare the expression levels to nor-

mal controls to find statistically significant increase or decrease in levels of expression of

approximately 1000 miRNAs. Subset analysis of AML patients with FLT3 or NPM1 mutations

yields further information regarding statistically significant changes in expression of specific

miRNAs.

Materials and methods

This protocol was reviewed and approved by the Upstate Medical University Institutional

Review Board. Blood was obtained following written informed consent from patients at Uni-

versity Hospital with newly diagnosed AML, prior to start of induction chemotherapy. Blood

was also obtained following written informed consent from healthy volunteers involved in

patient care at Upstate. 2.5 ml of whole blood was collected into Paxgene RNA preparation

tubes and stored at -80C for batch processing. miRNA was purified using a Qiagen miRNA

purification kit. The yield and quality of the RNA samples was assessed using the Agilent Bioa-

nalyzer prior to library construction using the Illumina TruSeq Small RNA Sample Prep proto-

col (Illumina; San Diego, California). Multiplexed samples of RNA that exceed quality control

metrics (RIN > 6.0) were run on an Illumina NextSeq500 instrument at a targeted depth of 10

million reads per sample. After filtering and trimming of index and adapter sequences, whole

genome alignment of the miR FASTQ reads was performed using the Homo sapiens/hg21 ref-

erence genome in the SHRiMPS aligner included in the miRNAs analysis application available

in BaseSpace (Illumina), as well as the sRNA Toolbox application suite.

Statistical method

The analysis of the RNA-seq data was performed following the pipeline available from the

limma packages [11] in the Bioconductor project [12]. Log2counts per million (logCPM)

transformation was applied before normalization and linear model fitting. Empirical Bayes

moderation was carried out to obtain robust estimates of gene-wise variability and the final p-

values from the linear model with appropriately designed contrasts were adjusted by the Benja-

min–Hochberg procedure for a targeted false discover rate of 0.05. Volcano plots and boxplots

were used to graphically examine the differences between groups.

Results

We sequenced all miRNAs in peripheral whole blood from ten patients with newly diagnosed

AML and nine normal controls. Table 1 shows the characteristics of the ten patients who

entered the study. There were five males and five females, ages ranged from 42 to 87. Initial

white blood cell (WBC) count ranged from 1.1 x 103/ul to 88 x 103/ul, with blast percentage of

3.8 to 73. Phenotype was determined by standard hematopathology staining for surface mark-

ers. For all ten patients, we recorded presence (pos) or absence (neg) of NPM1 or FLT3 muta-

tions and cytogenetic analysis.

We obtained sequence for 996 miRNAs and averaged the amount of each miRNA for the

ten AML patients and the nine controls. Levels of expression were compared with a t-test and

the adjusted P-value was calculated for each miRNA. In our first analysis of all ten patients

miRNAs in acute myeloid leukemia by Nextgen sequencing
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versus controls, we identified only thirteen miRNAs with expression levels that showed a sta-

tistically significant difference (adjusted P-value less than 0.05) [13].

We then performed subset analysis of our data and found that patients who were double

negative for mutations (NPM1- and FLT3-) had only one miRNA with adjusted P-value less

than 0.05, while patients who were double positive for mutations (NPM1+ and FLT3+) had 63

miRNAs with adjusted P-value less than 0.05 [14]. Results are shown in Fig 1 (volcano plots).

In Fig 1, the volcano plot for the comparison of all ten AML patients versus control is shown

in panel A. Log2 Fold Change is shown on the x-axis and–log10 adjusted p-value is shown on

the y-axis. Points in dark font indicate miRNAs with statistically significant log fold change and

adjusted p-value (four are increased in AML, nine are decreased in AML). Panel B shows the

volcano plot for the subset of patients who were double positive (NPM1+/FLT3+, n = 3), with

63 miRNAs having statistically significant change in expression. Similarly, panel C shows the

volcano plot for the subset of AML patients who were double negative (NPM1- /FLT3-, n = 5)

with only one statistically significant change in miRNA expression. Clearly, the subset analysis

identified a greater number of miRNAs with statistically significant change in expression in the

AML patients with NPM1 and FLT3 mutations (double positive).

Table 2 shows the first twenty (out of 996) miRNAs that were identified, listed by rank

order of adjusted P-value, lowest to highest, in comparison of AML versus control samples.

The center list is from all ten AML patients versus nine controls. The first 13 show statistically

significant difference with adjusted p-value less than 0.05. The list on the left is from the

Table 1. Characteristics of patients in study.

Age Gender Initial WBC x 1000/ul Blast % Phenotype NPM1 FLT3 Cytogenetics

55 M 1.5 73 Acute biphenotypic T/myeloid neg pos normal

42 F 9 17 Erythroleukemia from CML neg neg complex

55 F 29 13 Acute monocytic leukemia pos pos normal

87 F 88 18 Acute myelomonocytic leukemia pos pos normal

57 M 10.9 35 Acute myeloid leukemia pos pos trisomy 8

72 M 28 4.5 Acute myeloid leukemia pos neg normal

59 M 1.8 4 Acute erythroid leukemia neg neg normal

72 M 30 23 Acute myeloid leukemia neg neg normal

87 F 2.3 42 Acute myeloid leukemia neg neg normal

49 F 1.1 3.8 Acute promyelocytic leukemia neg neg 15:17

https://doi.org/10.1371/journal.pone.0213078.t001

Fig 1. Volcano plots showing differences in miRNAs expressed in leukemia versus control peripheral blood. X-axis: log2 Fold Change Y-axis: -log10(p-

value). A. AML versus Normal (n = 10) B. FLT3+/NPM1+ AML versus Normal (n = 3) C. FLT3-/NPM1- AML versus Normal (n = 5).

https://doi.org/10.1371/journal.pone.0213078.g001

miRNAs in acute myeloid leukemia by Nextgen sequencing

PLOS ONE | https://doi.org/10.1371/journal.pone.0213078 March 20, 2019 3 / 8

https://doi.org/10.1371/journal.pone.0213078.t001
https://doi.org/10.1371/journal.pone.0213078.g001
https://doi.org/10.1371/journal.pone.0213078


comparison of double negative patients (NPM1-/FLT3-) (n = 5) to nine controls. Only hsa-

miR-328-3p shows a statistically significant difference with adjusted p-value less than 0.05.

Interestingly, some of the other miRNAs in the top twenty do show a statistically significant

change in the double positive patients (identified by color bars). The list on the right is from

the comparison of double positive patients (NPM1+/FLT3+) (n = 3) to nine controls. There

are 63 (out of 996) miRNAs with statistically significant difference in expression and adjusted

p-value less than 0.05, but only the top twenty (lowest adjusted p-values) are shown here. The

color bars are used to demonstrate which miRNAs are found in two out of the three, or all

three samples sets.

Fig 2 shows boxplots of the relative expression levels for the ten miRNAs showing greatest

increase or greatest decrease when comparing NPM1+/FLT3+ AML to controls. The boxplots

show the average expression level (log2 counts per million) for each of ten miRNAs in controls

versus NPM1+/FLT3+AML blood samples.

Table 3 shows all 63 miRNAs that had statistically significant differences in expression

between NPM1+/FLT3+ patients and controls, listed in decreasing order of log2Fold Change

(log2FC). Positive values of log2FC indicate increased expression in the AML patients, while

negative values of log2FC indicate decreased expression in the AML patients. MiRs that have

not previously been associated with AML are indicated with asterisks.

Discussion

Rather than analyze by microarray which would identify only 300–400 miRNAs, we chose to

sequence all miRNAs that were obtained in whole blood samples from patients with newly

diagnosed AML and controls. We quantified expression of 996 miRNAs from each patient and

control and performed statistical analyses to determine which miRNAs were increased or

decreased in AML patients versus normal controls. Subset analysis revealed the most

Table 2. Differential expression of miRNAs in patients versus controls ranked by adjusted P-value.

NPM1- FLT3- (n = 5) adj.P.Val AML (N = 10) adj.P.Val NPM1+ FLT3+ (n = 3) adj.P.Val

hsa-miR-328-3p 0.014 hsa-miR-328-3p 0.007 hsa-miR-10a-5p 1.24E-05

hsa-miR-24-3p 0.078 hsa-miR-106b-3p 0.011 hsa-miR-146b-5p 7.79E-05

hsa-let-7i-5p 0.078 hsa-let-7i-5p 0.011 hsa-miR-181a-3p 7.79E-05

hsa-miR-34a-5p 0.078 hsa-miR-181a-3p 0.011 hsa-miR-155-5p 8.95E-05

hsa-miR-1229-3p 0.078 hsa-miR-409-3p 0.011 hsa-miR-199b-5p 0.0002

hsa-miR-181a-3p 0.089 hsa-miR-10b-5p 0.011 hsa-miR-24-3p 0.0004

hsa-miR-3200-5p 0.089 hsa-miR-24-3p 0.011 hsa-miR-19b-3p 0.0009

hsa-miR-106b-3p 0.089 hsa-miR-126-5p 0.011 hsa-miR-425-5p 0.0012

hsa-miR-15a-5p 0.104 hsa-miR-3200-5p 0.013 hsa-let-7a-3p 0.0018

hsa-miR-744-5p 0.135 hsa-miR-23a-3p 0.026 hsa-miR-4301 0.0018

hsa-let-7d-5p 0.135 hsa-miR-323b-3p 0.029 hsa-miR-181a-2-3p 0.0018

hsa-miR-23a-3p 0.135 hsa-miR-652-3p 0.032 hsa-miR-335-5p 0.0018

hsa-miR-625-5p 0.135 hsa-miR-181a-2-3p 0.049 hsa-miR-10b-5p 0.0024

hsa-miR-10b-5p 0.142 hsa-miR-22-3p 0.056 hsa-miR-328-3p 0.0024

hsa-miR-126-5p 0.186 hsa-miR-3960 0.074 hsa-miR-142-3p 0.0024

hsa-miR-15b-3p 0.193 hsa-miR-625-5p 0.077 hsa-miR-3615 0.0024

hsa-miR-125b-2-3p 0.193 hsa-miR-181b-5p 0.08 hsa-miR-23a-3p 0.0025

hsa-miR-409-3p 0.193 hsa-miR-4772-3p 0.087 hsa-miR-27a-3p 0.0029

hsa-miR-3960 0.193 hsa-miR-744-5p 0.087 hsa-miR-181b-5p 0.0041

has-miR-4301 0.193 has-miR-146b-5p 0.087 has-miR-125b-2-3p 0.0047

https://doi.org/10.1371/journal.pone.0213078.t002
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differences in patients with double positive AML (NPM1+/FLT3+ mutations). NPM1 muta-

tions are the most common genetic abnormalities in AML (50–60% of cytogenetically normal

AML and 30% of all AML) [15]. Up to one-third of NPM1+ patients also have a mutation in

FLT3, which counteracts the favorable prognosis of the NPM1 mutation [16]. The NPM1 gene

encodes a 32-kDA protein that is involved in numerous cellular processes. It can function as

an oncogene and a tumor suppressor gene depending on expression levels, interacting pro-

teins, and cellular compartmentalization. Dozens of mutations have been described in NPM1

and how they contribute to leukemogenesis is not known. Finding 63 distinct miRNAs either

upregulated or downregulated in NPM1+ /FLT3+ AML suggests that there may be multiple

molecular pathways disrupted that contribute to the leukemic phenotype.

On our list of miRNAs associated with NPM1+/FLT3+ AML, miR-10a-5p showed the most

statistically significant adjusted p-value as well as the highest fold change. This miRNA has been

described in patients with NPM1 mutations and high expression levels are associated with good

response to induction chemotherapy [17]. More recent studies demonstrate a role for miR-10a/

b in regulating the proliferation and differentiation of HL-60 leukemic cells in vitro [18].

One miR family that we identified with statistically significant change was the miR-181

family (181a-3p, 181a-2-3p and 181b-5p). This family has been shown by others to be consis-

tently increased in AML patients [8,19,20]. There are numerous possible target mRNAs for the

miR-181 family and it has been proposed as a therapeutic target.

Fig 2. Boxplots showing relative expressions levels of ten miRNAs with statistically significant difference between control and AML NPM1+/FLT3

+ patient samples.

https://doi.org/10.1371/journal.pone.0213078.g002
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Another report has shown that miR-199b is consistently decreased in AML and we also

found that to be the case in our patients [21]. We found increased expression of miR-223-3p

and this has been shown to regulate granulopoiesis in mice [22].

We compared our list of miRNA differences determined by Nextgen sequencing to lists of

miRNA differences found by hybridization arrays or RT-PCR [10, 23–27]. Many of the miR-

NAs identified by these methods were the same as ours, confirming our ability to generate

meaningful data with our approach. Differences in miRNAs identified can be attributed to dif-

ferences in technique of sample processing (whole blood versus isolated cells or serum). Identi-

fication of novel miRNAs in association with AML are likely due to the greater sensitivity of

our approach, i.e. sequencing all miRNAs obtained in whole blood.

Table 3. Differential expression of miRNAs between NPM1+/FLT3+ AML patients and controls.

miRNA Log2FC miRNA Log2FC

hsa-miR-10a-5p 6.830569383 hsa-miR-339-5p 0.654592192

hsa-miR-155-5p 2.540153625 hsa-miR-378c 0.652454498

hsa-miR-27a-3p 2.282394076 hsa-miR-371b-5p 0.521138094

hsa-miR-181a-3p 2.26616154 hsa-miR-500a-3p � 0.481850139

hsa-miR-146b-5p 2.107437782 hsa-miR-378d 0.407412804

hsa-miR-21-3p 1.870878887 hsa-miR-181b-3p 0.360659064

hsa-miR-340-5p 1.844418662 hsa-miR-1910-5p � 0.295654388

hsa-miR-142-3p 1.755215629 hsa-miR-195-5p 0.287016156

hsa-miR-199b-5p 1.608767963 hsa-miR-6882-5p � 0.286345176

hsa-miR-24-3p 1.567277012 hsa-miR-3667-5p � 0.285098138

hsa-miR-23a-3p 1.484152009 hsa-miR-3922-3p � 0.279184469

hsa-miR-10b-5p 1.406513049 hsa-miR-548al � 0.268147495

hsa-miR-6503-3p � 1.374880947 hsa-miR-199a-5p -0.542007567

hsa-miR-19b-3p 1.373298073 hsa-miR-361-3p -0.564971933

hsa-miR-28-5p � 1.370999597 hsa-miR-106b-3p -0.677684789

hsa-miR-10a-3p 1.359816952 hsa-miR-425-5p � -0.711429318

hsa-miR-582-3p � 1.343371672 hsa-miR-532-3p � -0.726695535

hsa-let-7a-3p 1.325948775 hsa-miR-92a-3p -0.730022499

hsa-miR-181b-5p 1.325353217 hsa-miR-181a-2-3p -0.758535453

hsa-miR-30e-3p 1.322709817 hsa-miR-6511b-3p � -0.768444175

hsa-miR-125b-2-3p 1.258254645 hsa-miR-574-3p � -0.782318226

hsa-miR-29b-3p 1.224950228 hsa-miR-3605-3p � -0.866437008

hsa-miR-29a-3p 1.223591909 hsa-miR-3940-3p � -0.886685286

hsa-miR-335-5p 1.184936831 hsa-miR-3200-5p� -0.911067568

hsa-miR-3688-3p � 1.054040212 hsa-miR-484 � -0.961659564

hsa-miR-222-3p 0.996724055 hsa-miR-486-5p -1.010732451

hsa-miR-769-5p � 0.986880376 hsa-miR-4732-3p � -1.270122308

hsa-miR-451a 0.981368744 hsa-miR-3615 � -1.299778948

hsa-miR-1307-5p � 0.94986408 hsa-miR-4685-3p � -1.35782737

hsa-miR-338-3p 0.918728355 hsa-miR-328-3p -1.380320316

hsa-miR-223-3p 0.891956558 hsa-miR-4301 � -1.554755355

hsa-miR-23a-5p 0.830519732

�indicates miRNAs not previously associated with leukemia

https://doi.org/10.1371/journal.pone.0213078.t003
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New therapeutic approaches are being created to target specific miRNAs in leukemic

patients [28,29]. As we continue to investigate the role of miRNAs in leukemogenesis, the

approaches of diagnosis, treatment, and post-treatment monitoring will be greatly improved.

Supporting information

S1 Table. Differential expression of miRNAs in patients with NPM1+/FLT3+ AML versus

control. This table shows the statistical analysis for each of 996 miRNAs for patients with

NPM1+/FLT3+ AML versus normal controls. Results are listed in decreasing order of adjusted

P. Value.

(XLSX)
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