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Abstract

Based on the Markowitz mean variance model, this paper discusses the portfolio selection

problem in an uncertain environment. To construct a more realistic and optimized model, in

this paper, a new general interval quadratic programming model for portfolio selection is

established by introducing the linear transaction costs and liquidity of the securities market.

Regarding the estimation for the new model, we propose an effective numerical solution

method based on the Lagrange theorem and duality theory, which can obtain the effective

upper and lower bounds of the objective function of the model. In addition, the proposed

method is illustrated with two examples, and the results show that the proposed method is

better and more feasible than the commonly used portfolio selection method.

1. Introduction

With the mature development of the securities market, in the last decade, studies have paid

increasing attention to the theory of portfolio selection. The first quantitative mean variance

model for portfolio selection was developed by Markowitz [1], which considers the expected

return and variance to be crisp numbers and seeks a balance between two objectives: maximiz-

ing the expected return and minimizing the risk in the portfolio selection. Since the 1950s, the

quantitative methods for portfolio selection have been dramatically developed in both theories

and applications. The deterministic portfolio model that Markowitz developed has been fur-

ther extended by numerous scholars [2–8]. In these extended portfolio selection models, the

coefficients in the objective function and constraint function are always determined as crisp

values. However, because of the national economic situation, policy changes, investor psychol-

ogy and many other factors, the securities market has a strong uncertainty, which causes the

dynamic expected returns, risk loss rate and liquidity of the securities market [9]. Moreover,

the uncertainties increase the risk of decision-making on portfolio selection for investors.

There are two popular approaches to address such uncertainties: (i) fuzzy programming and

(ii) interval programming. Since the future returns of each securities cannot be correctly

PLOS ONE | https://doi.org/10.1371/journal.pone.0212913 March 13, 2019 1 / 16

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Wang J, He F, Shi X (2019) Numerical

solution of a general interval quadratic

programming model for portfolio selection. PLoS

ONE 14(3): e0212913. https://doi.org/10.1371/

journal.pone.0212913

Editor: Baogui Xin, Shandong University of Science

and Technology, CHINA

Received: July 10, 2018

Accepted: February 12, 2019

Published: March 13, 2019

Copyright: © 2019 Wang et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: This work was supported by the National

Natural Science Foundation of China [grant

numbers 71673022 to FH, 71420107023 and XS]

and the Ministry of Education Science and

Technology Strategy Research Project [grant

number 2015KJW02 to FH]. The funders had no

role in study design, data collection and analysis,

decision to publish, or preparation of the

manuscript.

http://orcid.org/0000-0002-5429-1996
https://doi.org/10.1371/journal.pone.0212913
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0212913&domain=pdf&date_stamp=2019-03-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0212913&domain=pdf&date_stamp=2019-03-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0212913&domain=pdf&date_stamp=2019-03-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0212913&domain=pdf&date_stamp=2019-03-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0212913&domain=pdf&date_stamp=2019-03-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0212913&domain=pdf&date_stamp=2019-03-13
https://doi.org/10.1371/journal.pone.0212913
https://doi.org/10.1371/journal.pone.0212913
http://creativecommons.org/licenses/by/4.0/


reflected by the historical data, particularly in an uncertain environment, investors can use the

fuzzy set to estimate the vagueness of security returns and risk for the future [10–15], which is

a good method to address the portfolio selection. The fuzzy programming treats the uncertain

quantities as a fuzzy set with certain membership functions. Thus, the decision maker must

have precise knowledge of the grade of membership function, which is not easy to obtain from

the limited data that the decision maker often has in practice. In fact, another method to

address the uncertainty in the portfolio selection problem assumes that the data are not well

defined but can vary in given intervals [16]. Hence, interval programming is appropriate to

handle the imprecise input data. The existing literatures indicate that interval programming

has become a popular topic in the research of portfolio selection because it can enrich the the-

ory of optimization and provide the solution of the problem more practical significance.

At present, the interval programming of portfolio selection is mostly based on the linear for-

mat, which is relatively simple compared with non-linear programming. Interval linear program-

ming problems have been explored in several studies on models and estimation methods [17–22].

Then, it has been extensively applied to portfolio selection studies. Based on the interval order

relation, Lai et al. (2002) and Lu et al. (2004) proposed an interval programming portfolio selec-

tion by quantifying the covariance and expected return as intervals, respectively [23–24]. The dif-

ference is that the latter introduces a risk preference coefficient. In solving the multi-objective and

multi-period interval portfolio selection optimization model, Giove et al. (2006) proposed the use

of a minimax regret approach based on a regret function, and Liu (2013) designed an improved

particle swarm optimization algorithm for solution, both of which are used to solve the linear

objective function of the interval portfolio model [25–26]. Bhattacharyya et al. (2011) proposed

three different mean–variance–skewness models with interval numbers to extend the classical

mean-variance portfolio selection model by defining the future financial market optimistically,

pessimistically, and weightedly combined ways [27]. Inspired and motivated by [28], Wu et al.

(2013) proposed an interval portfolio model, where both expected returns and risk can vary in

estimated intervals [29]. In other words, the solution methods to solve the interval linear program-

ming model for portfolio selection have been widely explored. However, to the best of our knowl-

edge, there are few methods to solve the interval quadratic programming model for portfolio

selection with interval coefficients of the objective function and its constraints.

Theoretically, robust optimization is also an effective tool for dealing with parameter uncer-

tainty models, and has received extensive attention in the fields of natural sciences, engineer-

ing sciences, and economic management. Compared with interval optimization, the robust

optimization theory considers the worst case of all possible values, and its optimization result

is more conservative than the interval theory. For investors with high security requirements or

conservative investment strategies, portfolio strategy based on robust optimization theory is a

good choice. However, when using this theory to analyze the problem, if the number of uncer-

tain parameters increases, the number of elements in the scene will also show an exponential

growth trend, which makes the established optimization model difficult to solve [30–31]. How-

ever, combined with the existing literatures, it is more suitable to use the interval optimization

to find the optimal solution of the objective function for the interval quadratic programming

portfolio model proposed in this paper [32].

To solve the interval quadratic programming problem, Liu and Wang (2007) developed an

algorithm for the interval quadratic programming with constraints, which contained interval

numbers [33]. Later, Li and Tian (2008) extended Liu and Wang’s method and developed a

new algorithm to optimize the upper bounds of the coefficients in the general interval qua-

dratic programming problem with all coefficients in the objective function, and its constraints

are interval numbers [34]. Jiang et al. (2008) conducted a non-linear interval programming

method that transformed the uncertain optimization problem into a deterministic two-
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objective optimization problem to seek the algorithmic solutions [35]. Li et al. (2016) devel-

oped a simple and effective method to check the zero dual gaps and discussed some relations

between the upper and optimal values of the two modes to estimate the optimal value of the

fundamental problem of interval quadratic programming [36]. However, there is little research

on the portfolio selection problem using interval quadratic programming. Xu et al. proposed

an interval quadratic programming model that assumed that there are no short sales and intro-

duced the acceptability and possibility degree of interval number to transform the uncertainty

model into a deterministic model [32,37–38]. Based on a partial-order relation in the set of

intervals, Kuamr et al. (2013) developed a method to determine an acceptable optimal feasible

solution to solve the generalized interval quadratic programming model, and applied to the

securities portfolio selection [39].

Considering transaction cost, borrowing constraint and threshold constraint, Zhang et al.

(2016) proposed a multi-stage mean-semi-variance portfolio model with minimum transaction

volume constraint [40]. Compared with the existing multi-stage portfolio, the decision variable of

the multi-stage portfolio is an integer, which is consistent with the real portfolio. Zhou et al.

(2015) constructed a multi-stage portfolio optimization model considering transaction costs.

Based on the real frontier, the efficiency of portfolio was defined and the corresponding nonlinear

model was proposed to solve the problem [41]. Although Zhang and Zhou considered the transac-

tion volume and transaction cost, it studied the portfolio model of securities under deterministic

conditions. However, the various uncertainties in the securities market made it difficult for inves-

tors to give accurate values for the yield and risk of securities. Instead, investors were more likely

to obtain the range of variation of these uncertain parameters, that is, the number of intervals, so

research Investment portfolios and risks were more meaningful for portfolio models with interval

numbers. Although Xu et al. (2015) and Kuamr et al. (2013) studied the interval quadratic pro-

gramming model of securities investment, they did not consider the effects of transaction costs

and market liquidity, the results of their proposed models were not sufficiently optimized [32,39].

To construct a more optimized model, a general interval quadratic programming model for port-

folio selection based on Xu et al. (2012, 2013) and Kuamr et al. (2013) must be investigated. In

this paper, we develop a new general interval quadratic programming model for portfolio selec-

tion by introducing the linear transaction costs and liquidity of the securities market, which

makes the model more optimized and closer to the actual situation. To solve the general interval

quadratic programming, a new solution approach to the problem is proposed based on the

Lagrange dual algorithm. Based on the duality method, a more accurate value can be obtained

when solving the upper bound of the general interval quadratic programming.

This paper is organized as follows. First, Section 2 reviews some preliminary knowledge

about interval numbers. In Section 3, a new general interval quadratic programming model

for portfolio selection and a numerical method based on the Lagrange theorem and duality

theory are proposed. Then, we present two numerical examples to illustrate the potential appli-

cations of the new models and compare two methods of the model in Section 4. Finally, the

concluding remarks and future research directions are provided in Section 5.

2. Theory of interval numbers

(1) Definition of the interval number and interval matrix

Definition 2.1 Let ~a ¼ ½a; �a� be a bounded closed interval; a � �a and a; �a 2 R. We also

regard the interval as a number represented by its endpoints a and �a. We call ~a ¼ ½a; �a� the

interval number. If a ¼ �a, then ~a is reduced to a real number.

Definition 2.2 Let ~A ¼ ð~aijÞn�n be an interval matrix; ~aij ¼ ½aij; �aij�;. If ~aij ¼ ~aji and ~A is posi-

tive semidefinite, then we call the interval matrix ~A ¼ ð~aijÞn�n a symmetric positive semidefinite.
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(2) Operation of the interval number

Let ~a ¼ ½a; �a� and ~b ¼ ½b; �b� be two interval numbers and let k2R be a real number. Thus,

~a þ ~b ¼ ½a þ b; �a þ �b�, ~a � ~b ¼ ½a � �b; �a � b� ~a � ~b ¼ ½minða � b; a � �b; �a � b; �a � �bÞ;
maxða � b; a � �b; �a � b; �a � �bÞ�. In particular,

k~a ¼
½k a; k�a� if k � 0

½k�a; ka� if k < 0
:

(

For more details on theory of interval numbers, see [42].

3. Model and solution

Liu et al. (2015) showed that ignoring transaction costs often leads to invalid portfolio refer-

ences, so this article introduces the concept of transaction costs [43]. Suppose the investor pur-

chases the risk securities xi(i = 1,2,. . .,n) to pay the transaction fee, the rate is ci, and the

purchase amount does not exceed the given value ui, the transaction fee is calculated according

to ui, then the transaction cost function is defined as follows

CiðxiÞ ¼

0; xi ¼ 0;

ciui; 0 < xi � ui;

cixi; xi > ui:

8
><

>:

When considering the transaction cost, we may set the transaction cost function Ci(xi) as a lin-

ear function.

This paper introduces the linear transaction costs and liquidity (Following the idea of [9]

and[44], this paper suggests using the turnover rate to measure market liquidity) as constraint

conditions into the model and uses interval numbers to describe the rate of return, risk loss

rate and liquidity of the securities. Suppose there are n types of securities for investors to select.

Based on the mean-variance model, the investors intend to minimize the risk of the portfolio

f ðxÞ ¼ xT ~Qx ¼
Xn

i¼1

Xn

j¼1

~qijxixj under conditions of fixed returns
Xn

i¼1

~Rixi �
Xn

i¼1

cixi � ~R0 and

turnover rate
Xn

i¼1

~lixi � ~l0. We establish a new general interval quadratic programming model

for portfolio selection as follows:

minf ðxÞ ¼ xT ~Qx ¼
Xn

i¼1

Xn

j¼1

~qijxixj

s:t

Xn

i¼1

~Rixi �
Xn

i¼1

cixi � ~R0

Xn

i¼1

~lixi � ~l0

Xn

i¼1

xi ¼ 1

xi � 0; i ¼ 1; 2; � � � ; n

ð1Þ

8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

where ci is the transaction cost rate of security i,xi is the proportion of security i, ~ri is the return

-

-
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of security i. ~Ri and~l i denote the expected return and the turnover rate of security i, respec-

tively. ~Q ¼ ð~qijÞn�n; i; j ¼ 1; 2 � � � ; n the covariance matrix of the return vector, where we

assume that ~Q is semi-definite. Because ~ri, ~qij, and ~li are uncertain, we treat them as interval

numbers, i.e., ~ri ¼ ½ ri;�ri�, ~Ri ¼ E~ri ¼ ½Ri;
�Ri�, ~qij ¼ ½qij

; �qij�, and ~li ¼ ½l i;�l i�. By solving x = (x1,

x2,. . .,xn)T in model (1), we obtain a portfolio of securities.

To solve the interval quadratic programming, most studies first consider how to convert it

into a deterministic model and design an algorithm [32,45]. Yao et al. (2016) conducted a

multi-period mean-variance portfolio selection problem with a stochastic interest rate using

the dynamic programming approach and Lagrange duality theory [46]. However, they only

considered the expected return and risk in their multi-period mean-variance portfolio selec-

tion and did not account for the effects of transaction costs and market liquidity, which makes

the result not optimal. This paper focuses on the Lagrange dual algorithm to solve the general

interval quadratic programming model for portfolio selection. Based on the duality method, a

more accurate value can be obtained when solving for the upper bound of the general interval

quadratic programming. Thus, based on the risk range of the portfolio, the investors can select

a more reasonable investment plan in an uncertain market environment.

To validate the Lagrange dual method, this paper also uses the common portfolio selection

method to solve the general interval quadratic programming model [47]. First, in sections 3.1 and

3.2, this paper proposes a new method based on the Lagrange dual algorithm. Second, conven-

tional method is shown in Section 3.3. Finally, the two methods are compared by experiments.

3.1 Decomposition of the model

The objective function and constraint coefficients of model (1) are interval numbers.

Clearly, different values of ~qij;
~Ri;

~R0;
~li and~l0 produce different objective values. Let S ¼

fð~qij;
~Ri;

~R0;
~l i;~l 0Þjqij � ~qij � �qij; Ri �

~Ri �
�Ri; R0

� ~R0 �
�R0; l i �

~li � �li; l0 � ~l0 � �l0; i ¼

1; 2; . . . ; n; j ¼ 1; 2; . . . ; ng. The values of ~qij;
~Ri;

~R0;
~li and~l0 can attain the smallest and largest

objective value for f ðxÞ ¼
Xn

i¼1

Xn

j¼1

~qijxixj. Thus, investors can select the appropriate investment

options according to the range of the objective function. Based on Li and Tian’s (2008) method

[34], model (1) can be transformed into a two-level mathematical programming model (2) and

(3). Therefore, we obtain the minimum and maximum values of the objective function by solv-

ing (2) and (3), respectively.

f ðxÞ ¼ min
ð~qij;~Ri ;~R0 ;

~l i ;~l0Þ2S
min

x

Xn

i¼1

Xn

j¼1

~qijxixj

s:t

Xn

i¼1

~Rixi �
Xn

i¼1

cixi � ~R0

Xn

i¼1

~lixi � ~l0

Xn

i¼1

xi ¼ 1

xi � 0; i ¼ 1; 2; � � � ; n

ð2Þ

8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:
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�f ðxÞ ¼ max
ð~qij;~Ri ;~R0 ;

~l i ;~l0Þ2S
min

x

Xn

i¼1

Xn

j¼1

~qijxixj

s:t

Xn

i¼1

~Rixi �
Xn

i¼1

cixi � ~R0

Xn

i¼1

~lixi � ~l0

Xn

i¼1

xi ¼ 1

xi � 0; i ¼ 1; 2; � � � ; n

ð3Þ

8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

3.2 Lagrange dual method to solve the upper and lower bounds

The interval of the objective values of model (1) is obtained by giving its lower bound and

upper bound. First, the simpler case to obtain the lower bound is discussed. Since the inner

and outer programs of (2) have identical minimization operations, they can be combined into

a conventional one-level program, where the constraints of the two programs are simulta-

neously considered.

For xi,xj�0(i,j = 1,2,� � �,n), we obtain q
ij
xixj � ~qijxixj � �qijxixj In searching for the minimal

value of the objective function, parameter ~qijð1 � i; j � nÞmust reach its lower bound. Conse-

quently, we have f ðxÞ ¼ min
x

Xn

i¼1

Xn

j¼1

q
ij
xixj. According to the largest feasible region defined by

the inequality constraint in [47]and [48], the constraint inequalities can be transformed into
Xn

i¼1

~Rixi �
Xn

i¼1

cixi � ~R0 )
Xn

i¼1

ð�Ri � ciÞxi � R
0
;
Xn

i¼1

~lixi � ~l0 )
Xn

i¼1

�l ixi � l
0
. Clearly, model

(2) can be written as an equivalent model (4):

f ðxÞ ¼ min
x

Xn

i¼1

Xn

j¼1

qij
xixj

s:t:

Xn

i¼1

ð�Ri � ciÞxi � R
0

Xn

i¼1

�lixi � l
0

Xn

i¼1

xi ¼ 1

xi � 0; i ¼ 1; 2; � � � ; n

ð4Þ

8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

which is a conventional quadratic programming model of portfolio selection.

Now, we consider the upper bound �f ðxÞ. Note that for xj�0(j = 1,2,� � �,n), we have

Xn

i¼1

Xn

j¼1

~qijxixj �
Xn

i¼1

Xn

j¼1

�qijxixj: ð5Þ

–

-

-
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So

min
x

Xn

i¼1

Xn

j¼1

~qijxixj � min
x

Xn

i¼1

Xn

j¼1

�qijxixj: ð6Þ

Hence

max
ð~qij;~Ri ;~R0 ;

~l i;~l0Þ2S
min

x

Xn

i¼1

Xn

j¼1

~qijxixj � max
ð~qij;~Ri ;~R0 ;

~l i ;~l0Þ2S
min

x

Xn

i¼1

Xn

j¼1

�qijxixj: ð7Þ

However, from �qij 2 ~qijð1 � i; j � nÞ, we know that

max
ð~qij;~Ri ;~R0 ;

~l i;~l0Þ2S
min

x

Xn

i¼1

Xn

j¼1

�qijxixj � max
ð~qij;~Ri ;~R0 ;

~l i ;~l0Þ2S
min

x

Xn

i¼1

Xn

j¼1

~qijxixj: ð8Þ

Combining inequalities (7) and (8), we obtain

�f ðxÞ ¼ max
ð~qij;~Ri ;~R0 ;

~l i ;~l0Þ2S
min

x

Xn

i¼1

Xn

j¼1

�qijxixj

s:t

Xn

i¼1

~Rixi �
Xn

i¼1

cixi � ~R0

Xn

i¼1

~lixi � ~l0

Xn

i¼1

xi ¼ 1

xi � 0; i ¼ 1; 2; � � � ; n

ð9Þ

8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

because �qijði; j ¼ 1; 2; . . . ; nÞ are real numbers, we denote S1 ¼ fð
~Ri;

~R0;
~li;~l0ÞjRi �

~Ri �

�Ri;R0
� ~R0 �

�R0; l i �
~li � �li; l0 � ~l0 � �l0; i ¼ 1; 2; . . . ; n; j ¼ 1; 2; . . . ; ng, and replace the

variables as follows: ~t i ¼ ½Ri � ci; �Ri � ci�. The upper bound �f ðxÞ is formulated as follows:

�f ðxÞ ¼ max
ð~Ri ;~R0 ;

~l i ;~l0Þ2S1

min
x

Xn

i¼1

Xn

j¼1

�qijxixj

s:t

Xn

i¼1

~t ixi � ~R0

Xn

i¼1

~l ixi � ~l0

Xn

i¼1

xi ¼ 1

xi � 0; i ¼ 1; 2; � � � ; n

ð10Þ

8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

Solving model (10) is slightly difficult because the outer and inner programs have different

directions for optimization (one for maximization and the other for minimization). Now, we
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compute �f ðxÞ. We consider the dual form of the inner problem in (10) as follows:

yðl; dÞ ¼ inf
Xn

i¼1

Xn

j¼1

�qijxixj � l1

 
Xn

i¼1

~t ixi � ~R0

!

� l2

 
Xn

i¼1

~lixi � ~l0

!

�
Xn

i¼1

dixi

)

ð11Þ

8
<

:

where Q ¼ ð~qijÞn�n is a symmetric positive semi-definite in model (1). For any λ, δ, θ(λ,δ) is

convex function

The Lagrange dual method on calculating the upper and lower bounds used in Section 3.2

was first proposed by [33]. Then for a special type interval quadratic programming and

extended to general interval quadratic programming by [34]. For solving interval quadratic

programming (12) with both equality and inequality constraints, algorithms established by

[36,49]. So, we can the variable substitution method r1i ¼ l1
~t i, r2i ¼ l2

~l i and transform model

(11) into model (12) directly by citing [36,49].

�f ðxÞ ¼ max
x;l;d
ð�
Xn

i¼1

Xn

j¼1

�qijxixj þ l1
�R0 þ l2

�l0Þ

s:t

2
Xn

j¼1

�qijxj � r1i � r2i � di ¼ 0

t il1 � r1i � �t il1

l il2 � r2i �
�lil2

Xn

i¼1

xi ¼ 1

l1; l2 � 0;

xi; di � 0; i ¼ 1; 2; � � � ; n

ð12Þ

8
>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>:

Therefore, the lower bound and upper bound of the objective values f ðxÞ and �f ðxÞ are

obtained by solving (4) and (12), respectively. Hence, we obtain the intervals of objective func-

tions of the portfolio selection model.

3.3 Conventional method to solve the model

To solve the interval programming model, most studies first consider how to convert it into a

deterministic model. Many studies converted interval linear programming into deterministic

programming in the last decade [50–51]. [47]and [48] introduced definitions such as the best

optimal value, worst optimal value, maximum range inequality and minimum range inequal-

ity, and they solved the interval linear programming problem by transforming it into deter-

ministic programming. Further, these methods are apply to interval linear programming only,

while the portfolio selection model discussed in this paper is a quadratic one. It was proved by

[36,49] that these methods can be applied to general interval quadratic programming.

Therefore, for the general interval quadratic programming model (1) of portfolio selection

in this paper, we transform the quadratic programming model (1) into two deterministic pro-

gramming models (13) and (14) directly by using the results in[36,49]. By solving the quadratic

programming models (13) and (14), we obtain the upper and lower bounds of the objective

function of the general interval quadratic programming model (1) and compare with the

results of the proposed Lagrange dual method in this paper. According to the upper and lower

-

-
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bounds of the two methods, we can determine the minimum risk portfolio interval.

minf LðxÞ ¼
Xn

i¼1

Xn

j¼1

qij:xixj

s:t

Xn

i¼1

�Rixi �
Xn

i¼1

cixi � R
0

Xn

i¼1

�l ixi � l
0

Xn

i¼1

xi ¼ 1

xi � 0; i ¼ 1; 2; � � � ; n

ð13Þ

8
>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>:

minf UðxÞ ¼
Xn

i¼1

Xn

j¼1

�qij:xixj

s:t

Xn

i¼1

Rixi �
Xn

i¼1

cixi � �R0

Xn

i¼1

lixi � �l0

Xn

i¼1

xi ¼ 1

xi � 0; i ¼ 1; 2; � � � ; n

ð14Þ

8
>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>:

4. Numerical examples

This section uses two numerical examples to illustrate the proposed method in this paper to

solve a general interval quadratic programming model for portfolio selection. We solve the

proposed model using the Lagrange dual method (method 1) in this paper and conventional

method (method 2) in Section 3.3. To avoid the occasional results of an experiment and ensure

the effectiveness of the results, this paper uses two examples to verify.

4.1 Example 1

According to [52], we selected three types of securities from April 2005 to March 2009 into

Guangzhou Holdings, Shanghai Airport, Minmetals Development. Considering the monthly

closing price and turnover rate, we calculated the intervals of expected rate of return, intervals

of variance and covariance risk and turnover rate intervals of three securities.

The intervals of expected rate of return are as follows:

~R1 ¼ ½� 0:02972; 0:02196�; ~R2 ¼ ½� 0:02259; 0:01803�; ~R3 ¼ ½0:00282; 0:06566�:

The intervals of variance and covariance risk are as follows:

~q11 ¼ ½0:0204; 0:0289�; ~q12 ¼ ~q21 ¼ ½0:0174; 0:0212�; ~q13 ¼ ~q31 ¼ ½0:0213; 0:025�;

~q22 ¼ ½0:0179; 0:0269�; ~q23 ¼ ~q32 ¼ ½0:0164; 0:0320�; ~q33 ¼ ½0:0417; 0:0590�:

-

–

-

–

-
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The turnover rate intervals are as follows:

~l1 ¼ ½0:2724; 0:4067�;~l2 ¼ ½0:2211; 0:2569�;~l3 ¼ ½0:7688; 1:2066�:

Suppose that the transaction costs rates of the three securities are c1 = 0.00015,c2 = 0.00025,

c3 = 0.0002. The minimum expected interval return of the three securities was set as

~R0 ¼ ½0:001; 0:0025�, i.e., the investors’ expected rate of return is 0.001 in the pessimistic case

and is 0.0025 in the optimistic case. The minimum expected turnover rate interval of the three

securities was set as~l0 ¼ ½0:40; 0:60�, so 0.40 is the pessimistic case, and 0.60 is the optimistic

case.

4.1.1 Solution of method 1. The general interval quadratic programming models (4) and

(12) were used to solve the portfolio selection based on Lagrange dual method. By substituting

the data of Section 4.1 into models (4) and (12), we obtain

f ðxÞ ¼ minð0:0204x2
1
þ 0:0348x1x2 þ 0:0426x1x3 þ 0:0179x2

2

þ 0:0328x2x3 þ 0:0417x2
3
Þ

s:t:

0:02196x1 þ 0:01803x2 þ 0:06566x3�

ð0:00015x1 þ 0:00025x2 þ 0:0002x3Þ � 0:001

0:4067x1 þ 0:2569x2 þ 1:2066x3 � 0:40

Xn

i¼1

xi ¼ 1

xi � 0; i ¼ 1; 2; 3

ð15Þ

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

�f ðxÞ ¼ max � ð0:0289x2
1
þ 0:0424x1x2 þ 0:05x1x3 þ 0:0269x2

2
þ 0:064x2x3

þ 0:059x2
3
Þ þ 0:0025l1 þ 0:6l2

s:t:

2ð0:0289x1 þ 0:0212x2 þ 0:025x3Þ � r11 � r21 � d1 ¼ 0

2ð0:0212x1 þ 0:0269x2 þ 0:032x3Þ � r12 � r22 � d2 ¼ 0

2ð0:025x1 þ 0:032x2 þ 0:059x3Þ � r13 � r23 � d3 ¼ 0

� 0:02987l1 � r11 � 0:02181l1

� 0:02284l1 � r12 � 0:01778l1

0:00262l1 � r13 � 0:06546l1

0:2724l2 � r21 � 0:4067l2

0:2211l2 � r22 � 0:2569l2

0:7688l2 � r23 � 1:2066l2

Xn

i¼1

xi ¼ 1

l1; l2 � 0

xi; di � 0; i ¼ 1; 2; 3

ð16Þ

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

-
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Using the function quadprog in MATLAB, we derived the optimum solution f ðxÞ; �f ðxÞ.
The investment proportions are as follows:

The lower bound of the objective function: x ¼ ð0:0352; 0:8197; 0:1451Þ; f ðxÞ ¼ 0:0181:

The upper bound of the objective function: x ¼ ð0:0188; 0:0365; 0:9447Þ; �f ðxÞ ¼ 0:0537:

Combining these results, we conclude that the objective values of this general interval qua-

dratic programming is in the range of f(x) = [0.0181,0.0537].

4.1.2 Solution of method 2. According to the data in Section 4.1, we obtain the optimal

solutions that represent the upper and lower bounds of the objective function of model (1) by

solving models (13) and (14) in Section 3.3, respectively. The results are as follows:

The lower bound of objective function is x = (0.0352,0.8197,0.1451),fL(x) = 0.0181.

The upper bound of the objective function is x = (0,0.0047,0.9953),fU(x) = 0.0587.

Then, the solution interval of the portfolio quadratic programming model with transaction

costs is f(x) = [0.0181,0.0587].

4.1.3 Comparison of two methods. The solution intervals for the objective function of

the portfolio model obtained using the two methods are f1 = [0.0181,0.0537] and f2 =

[0.0181,0.0587]. The relationship between the two intervals is shown in S1 Fig.

From the relationship in S1 Fig and interval order relation in [53], we see that f1�f2. We

compare f1 and f2 according to the deterministic interval relation (3) in [53]. Since m(f1) =

0.0359<m(f2) = 0.0384, f1 is better than f2. Furthermore, f1 is clearly better than f2 because P
(f1<f2) = 0.5328, which can be obtained by the interval possibility degree in [51].

In summary, based on the deterministic interval order relation and interval possibility

degree, the above results show that the Lagrange dual method of the proposed model in this

paper is better than the other method. Moreover, in the actual investment process, according

to the method of this paper, the investors can select their preferences based on a specific port-

folio plan for forecasting.

4.2 Example 2

We selected fifteen types of securities of Shanghai Stock Exchange from September 2006 to

September 2018: Pudong Development Bank, Baiyun Airport, Dongfeng Motor, China Inter-

national Trade, Initial Share, Shanghai Airport, Baogang Stock, Huaneng International, Wan-

tong Expressway, Huaxia Bank, Minsheng Bank, Minmetals Development, Eastern Airlines,

SAIC Group, Guangzhou Development. The monthly opening price, closing price and turn-

over rate of each stock can be obtained from the Wind database, so we can calculate the inter-

vals of expected rate of return, intervals of variance and covariance risk and turnover rate

intervals of the fifteen securities as shown in Tables 1–3.

Suppose that the transaction costs rates of the three securities are ci = 0.0002,(i = 1,2,. . .15).

The minimum expected interval return of the three securities was set as ~R0 ¼ ½0:0015; 0:002�.

The minimum expected turnover rate interval of the three securities was set as~l0 ¼ ½0:05; 0:35�.

Table 1. The intervals of expected rate of return.

Stock 1 2 3 4 5

~R [0.0109,0.0221] [0.0157,0.0224] [0.0109,0.0236] [0.0174,0.0259] [0.0113,0.0276]

Stock 6 7 8 9 10

~R [0.0269,0.0340] [0.0080,0.0236] [0.0128,0.0205] [0.0097,0.0204] [0.0194,0.0300]

Stock 11 12 13 14 15

~R [0.0118,0.0224] [0.0205,0.0414] [0.0226,0.0390] [0.0357,0.0480] [0.0139,0.0243]

https://doi.org/10.1371/journal.pone.0212913.t001

Numerical solution and portfolio selection

PLOS ONE | https://doi.org/10.1371/journal.pone.0212913 March 13, 2019 11 / 16

https://doi.org/10.1371/journal.pone.0212913.t001
https://doi.org/10.1371/journal.pone.0212913


4.2.1 Comparison of the results of the two methods. According to the data of Section

4.2, the minimum risk interval and investment ratio of the securities investment portfolio of

Example 2 can be obtained by solving models (4) and (12) and models (13) and (14) by

MATLAB mathematical software. The results of the two methods are as follows:

Method 1:

The lower bound of the objective function:

x ¼ ð0; 0:2900; 0; 0:1595; 0; 0:0912; 0; 0:2723; 0:0772; 0; 0:1099; 0; 0; 0; 0Þ; f ðxÞ ¼ 0:0147:

The upper bound of the objective function:

x ¼ ð0; 0; 0:2109; 0; 0:0885; 0:2243; 0:2784; 0; 0; 0; 0; 0:0325; 0:1654; 0; 0Þ; �f ðxÞ ¼ 0:0339:

Combining these results, we conclude that the objective values of this general interval qua-

dratic programming is in the range of f(x) = [0.0147,0.0339].

Method 2:

The lower bound of the objective function:

x ¼ ð0; 0:2900; 0; 0:1595; 0; 0:0912; 0; 0:2723; 0:0772; 0; 0:1099; 0; 0; 0; 0Þ; f LðxÞ ¼ 0:0147:

The upper bound of the objective function:

x ¼ ð0; 0; 0; 0; 0; 0; 0:0952; 0; 0; 0; 0; 0:9048; 0; 0; 0Þ; f UðxÞ ¼ 0:0617:

Then, the solution interval of the portfolio quadratic programming model with transaction

costs is f(x) = [0.0147,0.0617].

Table 2. The intervals of variance and covariance risk (Unit /10−4).

~qij 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 324,

359

138,

153

140,

155

151,167 189,209 156,172 191,

211

131,

144

145,

161

256,

283

256,

283

217,

240

219,

242

220,

243

182,

201

2 138, 153 194, 215 157, 173 136, 150 148,163 155, 171 135,

149

112,

124

152,

168

145,

160

119,

131

186,

206

179, 197 160,177 147, 163

3 140, 155 157, 173 369, 408 169, 186 199, 220 139, 154 196,

217

156,

172

196,

216

159,

175

119,

132

318,

351

229,253 194,214 198,219

4 151, 167 136, 150 169, 186 248,274 158,175 142,157 170,188 113,125 106,117 155,172 151,167 188,208 172,190 173,191 166,183

5 189,209 148,163 199,220 158,175 473,523 181,200 231,256 200,221 145,161 207,229 167,185 242,267 230,254 196,217 224,248

6 156, 172 155, 171 139, 154 142,157 181,200 205,227 137,151 130,143 132,146 144,159 141,156 182,201 173,192 147,163 152,168

7 191, 211 135,

149

196,

217

170,188 231,256 137,151 455,503 161,178 165,183 224,247 186,205 327,361 198,219 224,247 216,238

8 131, 144 112,

124

156,

172

113,125 200,221 130,143 161,178 226,249 135,149 164,181 120,132 206,228 194,215 125,138 183,202

9 145, 161 152,

168

196,

216

106,117 145,161 132,146 165,183 135,149 312,345 162,180 123,136 215,237 175,193 130,144 182,202

10 256, 283 145,

160

159,

175

155,172 207,229 144,159 224,247 164,181 162,180 307,339 244,269 231,256 205,226 208,230 201,222

11 256, 283 119,

131

119,

132

151,167 167,185 141,156 186,205 120,132 123,136 244,269 308,340 159,175 154,171 200,221 173,191

12 217, 240 186,

206

318,

351

188,208 242,267 182,201 327,361 206,228 215,237 231,256 159,175 608,672 323,357 230,255 238,263

13 219, 242 179, 197 229,

253

172,190 230,254 173,192 198,219 194,215 175,193 205,226 154,171 323,357 476,526 186,206 212,234

14 220,

243

160,

177

194,

214

173,191 196,217 147,163 224,247 125,138 130,144 208,230 200,221 230,255 186,206 358,396 172,191

15 182, 201 147, 163 198,

219

166,183 224,248 152,168 216,238 183,202 182,202 201,222 173,191 238,263 212,234 172,191 302,334

https://doi.org/10.1371/journal.pone.0212913.t002
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The solution intervals for the objective function of the portfolio model obtained using the

two methods are f1 = [0.0147,0.0339] and f2 = [0.0147,0.0617]. The relationship between the

two intervals is shown in S2 Fig.

From the relationship shown in S2 Fig and the interval order relation given in[53], we can

see that f1�f2. We compare f1 and f2 according to the deterministic interval relation (3) in [53].

Since m(f1) = 0.0243<m(f2) = 0.0382, it can be concluded that f1 is better than f2. On the other

hand, since P(f1<f2) = 0.7097, it is clear that f1 is better than f2, which can be obtained by the

interval possibility degree a in [16].

Therefore, based on the deterministic interval order relation and interval possibility degree,

the above results show that the Lagrange dual method of the proposed model in this paper is

better than the other method. The results show that smaller interval objective values corre-

spond to a smaller risk of the portfolio. In the actual investment process, according to the

method of this paper, the investors can select their preferences based on a specific portfolio

plan for forecasting.

5. Conclusions

In the actual investment environment, considering the strong uncertainty in the securities

market, the paper describes the uncertainties of the securities risk, return and corresponding

liquidity with interval numbers and establishes a new general interval quadratic programming

model for portfolio selection. Next, we propose a new efficient numerical method to solve the

proposed model based on the Lagrange theorem and duality theory. To show the efficiency of

the proposed Lagrange dual method, two numerical examples were illustrated. The numerical

experiment results show that the proposed portfolio selection model is more feasible, and the

Lagrange dual method is better than the traditional method in finding smaller solution inter-

vals, which implies that smaller interval objective values correspond to smaller a risk of the

portfolio. In addition, this provides a new investment idea for the securities investors. In the

actual securities market, various forms of transaction costs likely affect the portfolio selection.

However, this paper only considers the transaction cost as a linear function. There remains

considerable research space to solve the quadratic programming model of portfolio selection

for different forms of transaction costs.

Supporting information

S1 Fig. Position relation of two interval numbers of Example 1.

(TIF)

S2 Fig. Position relation of two interval numbers of Example 2.

(TIF)

Table 3. The turnover rate intervals.

Stock 1 2 3 4 5

~l [0.1595,0.1664] [0.1847,0.1933] [0.2993,0.3480] [0.1691,0.1957] [0.3061,0.3442]

Stock 6 7 8 9 10

~l [0.2140,0.2211] [0.3424,0.3937] [0.1035,0.1155] [0.1734,0.1867] [0.2443,0.2735]

Stock 11 12 13 14 15

~l [0.1661,0.1746] [0.3508,0.3891] [0.3285,0.3724] [0.1071,0.1122] [0.1414,0.1490]

https://doi.org/10.1371/journal.pone.0212913.t003
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S1 Table. The intervals of expected rate of return.

(PDF)

S2 Table. The intervals of variance and covariance risk (Unit /10−4).

(PDF)

S3 Table. The turnover rate intervals.

(PDF)

S1 File. Fifteen stock related data sets.

(XLSX)
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