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Abstract

The objective of this paper is to propose a lot-sizing methodology for an inventory system

that faces time-dependent random demands and that seeks to minimize total cost as a func-

tion of order, purchase, holding and shortage costs. A two-stage stochastic programming

framework is derived to optimize lot-sizing decisions over a time horizon. To this end, we

simulate a demand time-series by using a generalized autoregressive moving average

structure. The modeling includes covariates of the demand, which are used as predictors

of this. We describe an algorithm that summarizes the methodology and we discuss its

computational framework. A case study with unpublished real-world data is presented to

illustrate the potential of this methodology. We report that the accuracy of the demand vari-

ance estimator improves when a temporal structure is considered, instead of assuming

time-independent demand. The methodology is useful in decisions related to inventory

logistics management when the demand shows patterns of temporal dependence.

1 Introduction and bibliographical review

The use of inventory models is important when managing a logistically efficient organization

[1–3]. A typical objective for evaluating an inventory system is to minimize the total cost

(TC), which is a function of purchase cost, ordering cost per lot (or setup), inventory holding

cost, and shortage cost [4]. The inventory system should establish an economic order quan-

tity (EOQ) or lot size to satisfy demand [5, 6]. The EOQ model often considers a single

period of decision and assumes a constant rate of demand per unit time (DPUT). Note that

this model can also consider multiple periods with more than one level for the decision

stages, but in that case the DPUT rate is frequently non-constant. However, the multi-period

EOQ model may conduct to an inventory cost greater than that obtained with single-period

EOQ model [4].
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[7] proposed a framework with dynamic DPUT to decide the optimal order quantity in

multiple periods, which is known as the economic lot-sizing (ELS) model, and it is frequently

studied in operational research. The ELS model works similarly to the EOQ model, but in a

dynamic (and deterministic) setting, that is, over a multi-period planning horizon with non-

constant DPUT [6].

Both EOQ and ELS models were conceived assuming deterministic frameworks. However,

to formulate more realistic models, the use of a stochastic framework for the DPUT, and its

implications for inventory planning, is needed [8]. Under stochasticity, DPUT is considered as

a random variable with an associated probability (or statistical) distribution. We refer to this

case as the probabilistic (stochastic) ELS inventory model. [9] introduced a probabilistic ELS

model using the concept of costs with back-orders. Probabilistic ELS models with and without

backlogging were proposed by [10] and [11], respectively. Inventory shortages induced by

DPUT uncertainty in ELS models was treated by [12].

The optimization of probabilistic ELS models considers some stochastic elements related to

the DPUT [4]. Then, stochastic programming (SP) can be used to solve the optimization prob-

lem associated with this probabilistic inventory model [13]. Particularly, two-stage optimiza-

tion based on SP has been employed in probabilistic ELS and supply chain models; see details

in [14] and [15]. More details on two-stage optimization based on SP are provided in Sections

3.1-3.2. [15] considered a two-stage SP and established service level and fill-rate constraints in

its second stage, as well as allowed for budget constraints, an aspect often taken into account

by the organizations. [16, 17], and [18] utilized two-stage SP to solve non-capacitated (with no

budget constraints) ELS models. An evolution of different formulations of the ELS problem is

summarized in Table 1, which can be complemented with the recent review provided by [19].

All the articles mentioned in this table assume DPUT to be a time-independent random vari-

able. To the best of our knowledge, there are no papers that consider dependence structures

over time for the DPUT in ELS models. We propose a way to find lot-sizes (order quantities)

with time-dependent random DPUT based on the work by [15].

Since often DPUTs are time-dependent random variables [29], to describe the DPUT of

the ELS model adequately, the modeling needs to consider the possible temporal dependence

related to the multiple periods and levels of the decision stages for the inventory. This depen-

dence can be modeled by autoregressive moving average (ARMA) time-series. ARMA models

are widely flexible, easy to estimate and interpret, and their prediction is straightforward [30].

However, standard ARMA models have a linear structure and a normal (or Gaussian) distribu-

tion assumption for the model error. Therefore, standard ARMA models are highly restrictive.

When non-normality is detected in the data under analysis, transformations for obtaining nor-

mality are frequently employed. Nevertheless, data transformation adds a problem for the

interpretation of results. In regression models, this problem was solved in a more general

framework of statistical modeling by [31] using generalized linear models (GLM). GLM are

based on distributions of the exponential family, of which the normal model is a particular

case. GLM do not assume a distribution for the model error, but for the response, and they

allow for non-linear structures through a link function that relates the predictor to the

model mean. [32] proposed a GLM version of ARMA models known as generalized ARMA

(GARMA), which considers ARMA components by transforming the data mean through a

link function as in GLM. Then, the past data can be used to improve the accuracy of different

models in which statistical aspects are taken into account. In GARMA models, their systematic

component allows us to formulate a function of the mean (the link function) by an additive

structure of parametric functions, which include explanatory variables (covariates hereafter)

and ARMA components. This gives more flexibility to the model formulation, providing

the possibility of employing other types of non-linear associations, in addition to the
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corresponding ARMA framework. GARMA model parameters can be estimated via the maxi-

mum likelihood method, once the underlying distribution has been assumed. Often a normal

distribution is considered in the modeling of DPUT [33], but other distributions might also be

assumed; see, for example, [34]. ARMA and GARMA models are often used to predict future

values [29, 32]. GARMA models may also be employed to estimate mean values and find the

conditional probability density function to past data, such as it occurs with the DPUT when

temporal dependence and covariates are present. This last aspect is of particular interest in

probabilistic inventory models.

As DPUT can present temporal dependence, there exists a need to propose inventory mod-

els involving this dependence [30, 35]. Such a temporal structure may be added into the inven-

tory costs as part of the objective function or into its constraints. Due to the stochastic nature

of the serial dependence of the DPUT values to be modeled (in this case the conditional DPUT

over time), SP must be employed in the optimization. Often a method named sample average

approximation replaces the original SP problem with Monte Carlo sampling-based methods.

Table 1. Evolution of literature on ELS formulations and components? considered in the mentioned reference.

Reference Shortage or

backorder cost

Uncertain

demand

Uncertain lead-

time

Decision variable Constraints Methodological approach

[5] No No No ELS No Differential calculus

[7] Yes Yes No ELS over time No Heuristic

[9] Yes Yes No ELS over time No Mixed integer linear

programming

[20] No No No ELS, reorder point No Linear programming for MRP

[10] No No No ELS over time No Mixed integer dynamic

programming

[12] Yes Yes No ELS over time Service level with static

uncertainty

Mixed integer dynamic

programming

[11] Yes Yes No Plant allocation, ELS Backlogging Mixed integer programming

with feasibility cut

[21] No Yes No ELS, safety stock No Linear programming for MRP

[22] Yes Yes No Run order, storage, ELS over

time

Service level One-stage mixed integer

programming

[15] Yes Yes No Run order, ELS, storage and

shortage over time

Shortest path, budget Two-stage robust dynamic SP

[23] No Yes No ELS over time Budget Heuristic with polynomial time

[16] No Yes No ELS over time Incremental quantity

discount

Multi-stage SP

[24] Yes Yes No ELS over time Service level, penalty cost One-stage dynamic

programming

[25] No Yes Yes ELS, replenishment time Service level Linear programming for MRP

[17] Yes Yes Yes Run order, ELS, storage,

shortage

Shortest path with

stochastic cost over time

Two-stage mixed integer SP

[26] No Yes No ELS of product returns,

remanufacturing

Inventory balance, return

shortest path TCs

Heuristic

[27] Yes Yes No ELS over time Service level Mixed dynamic programming

with linear relax

[28] Yes Yes No Run order, ELS, storage,

shortage over time

Two budget constraint with

fill-rate

Linear, non-linear SP

[18] Yes Yes Yes Run order, ELS, storage and

shortage over time

Shortest path with acyclic

graph

Two-stage SP

? order and holding costs were considered in all references and objective function optimized in terms of TC. MRP: material requirements planning.

https://doi.org/10.1371/journal.pone.0212768.t001
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Then, the objective function is constructed using scenarios that can be estimated with Monte

Carlo sampling. This method assumes that the approximating problem is solved exactly [36].

The optimization may be carried out considering different scenarios for the DPUT, allowing

us to generate simulated values (possible realizations or observations) of DPUT with these sce-

narios. Thus, the simulated values may be clustered with some distance measure [37]. When

compared to the standard ELS model, using a two-stage SP approach with time-dependent

DPUT can give more flexibility to adjust production or purchase quantities, as well as provid-

ing robustness against demand fluctuations [34, 38].

The main objective of this paper is to propose a lot-sizing methodology for an inventory

system that faces time-dependent random demands and that seeks to minimize TC as a func-

tion of holding and shortage costs. The methodology uses several scenarios based on DPUT

data with temporal dependence described by GARMA models. These scenarios consider simu-

lated data which allow the inventory TC to be optimized with a two-stage SP approach. Note

that, since the sample average approximation method requires Monte Carlo sampling for

generating scenarios, it is necessary to have a random number generator for the GLM and

GARMA structures. In the GLM case, there is a method available for this generation. However,

for GARMA models, we need to develop a method to generate random numbers that follow

this model, which is used only to simulate the data for the experiments. To the best of our

knowledge, such a method does not exist in the literature. Thus, a secondary objective of this

work is to derive this method.

The paper is organized as follows. Sections 2 and 3 introduce the methodologies which,

when combined, allow us to achieve the main objective of the work. Section 2 finishes giving a

novel generator of GARMA random numbers covering thus our secondary objective. In Sec-

tion 4, we provide an algorithm which summarizes the proposed methodology and we describe

the computational framework. Then, the numerical results of this article are presented in Sec-

tion 5. First, a Monte Carlo simulation study is performed to compare the methodology when

temporal dependence is present or not in the modeling of DPUT. Second, a case study with

unpublished real-world data related to drugs supply in a Chilean hospital is conducted to illus-

trate the proposed methodology and to show its potential. In Section 6, conclusions on the

results obtained in this study, as well as their limitations and future research, are discussed.

2 Statistical methodology

In this section, we introduce the statistical methodology utilized here to represent time-depen-

dent random demands in the probabilistic ELS problem. Specifically, we discuss GLM and

GARMA structures and then a novel result on generating random numbers that follow a

GARMA model is presented. These results have been implemented computationally in a pro-

gramming language of the R software; see details of this software in Subsection 4.2.

2.1 GLM framework

Let Y be a random variable related to the DPUT. In addition, consider that the distribution of

Y belongs to the exponential family of statistical distributions, that is, its probability density

function is expressed as

fYðy; W;φÞ ¼ expððyW � bðWÞÞ=φþ cðy;φÞÞ; y 2 RY ; ð1Þ

where ϑ, φ are canonical and scale parameters, respectively, RY is the support of Y and b, c
are specific functions defining a particular member of the exponential family. Note that the

mean and variance of Y can be expressed using first and second derivatives of the function b,

as well as employing canonical and scale parameters, by E(Y) = b0(ϑ) and Var(Y) = φb@(ϑ),
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respectively. In GLM, the mean of Y is described by a systemic component associated with

the link function g(μ) = η and with the values of r covariates x = (x0, x1, . . ., xr)>, with x0 = 1,

where

m ¼ EðYÞ ¼ g � 1ðZÞ ¼ g � 1ðx>βÞ; ð2Þ

with β = (β0, β1, . . ., βr)
> being the regression coefficients associated with x. Now, let Yt be the

random variable of interest Y indexed over time t, with t = 1, . . ., n. Furthermore, consider the

conditional distribution of Yt given the past data set

Ht ¼ fx1; . . . ; xt; y1; . . . ; yt� 1g; ð3Þ

which is assumed to belong to the exponential family, so that the conditional probability den-

sity function according to Eq (1) is expressed as

fYt jHt
ðyt; Wt;φÞ ¼ expððytWt � bðWtÞÞ=φþ cðyt;φÞÞ; yt 2 RYt

;

with the canonical parameter ϑt and values of covariates xt depending over time t, where the

parameter φ is independent of t. We denote the conditional mean and variance of Yt given Ht

by μt = E(Yt|Ht) = b0(ϑt) and Var(Yt|Ht) = φb@(ϑt), respectively, for t = 1, . . ., n.

2.2 GARMA models

The GLM framework, connected to the past data set Ht defined in Eq (3), can be formulated in

terms of a GARMA model of p and q orders, denoted by GARMA(p, q), as

gðmtÞ ¼ Zt ¼ x>t βþ
Xp

h¼1

�hðgðyt� hÞ � x>t� hβÞ þ
Xq

j¼1

ljðgðyt� jÞ � Zt� jÞ; ð4Þ

where ϕh and λj correspond to the h-th and j-th components of an ARMA(p, q) model, related

to the autoregressive and moving average components, respectively, and β is given as in Eq (2)

but now associated with the values of r covariates depending over time, denoted by xt = (x0,

x1t, . . ., xrt)>, with x0 = 1. The link function g(μt) = ηt of the GARMA model given in Eq (5)

can be, for example, the identity function (to represent linear association), the inverse function

or the logarithmic –log– function (to represent non-linear association), whereas the corre-

sponding model variance is assumed to be constant over time. In the case of the identity link

function, we have that

mt ¼ x>t βþ
Xp

h¼1

�jðyt� h � x>t� hβÞ þ
Xq

j¼1

ljðyt� j � mt� jÞ: ð5Þ

Now, consider the martingale residual [32], υt = yt − μt, which are uncorrelated and have mar-

ginal mean equal to zero. By expressing wt ¼ yt � x>t β and based on Eq (5), we have

wt ¼
Xp

h¼1

�jwt� h þ
Xq

j¼1

ljut� j þ ut: ð6Þ

Considering lag operators (L) corresponding to the autoregressive and moving average com-

ponents given by

FðLÞ ¼ 1 � �1L1 � �2L2 � � � � � �pLp;

LðLÞ ¼ 1þ l1L1 þ l2L2 þ � � � þ lqLq;

Modeling lot-size with time-dependent demand based on stochastic optimization
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respectively, we may rewrite Eq (6) as

wt ¼
LðLÞ
FðLÞ

ut ¼ CðLÞut;

whereC(L) = Λ(L)/F(L) = 1 + ψ1L1 + ψ2L2 + � � �, assuming that F(L) is invertible. In this

context, [32] demonstrated that the corresponding marginal mean and variance, E(Yt) and

Var(Yt) namely, are defined by

EðYtÞ ¼ Eðx>t βþ wtÞ ¼ Eðx>t βÞ þ EðwtÞ ¼ x>t β;

VarðYtÞ ¼ VarðwtÞ ¼ Eðw2
t Þ ¼ φEðCð2ÞðLÞVarðYtjHtÞÞ;

ð7Þ

whereC
ð2Þ
ðLÞ ¼ 1þ c

2

1
L1 þ c

2

2
L2 þ � � � ; for all stationary time-series.

Remark 1 From Eq (7), note that the marginal mean E(Yt ) does no depend on past data.

However, since the termC(2)(L)� 1, then Var(Yt)� Var(Yt|Ht), that is, the conditional vari-
ance on past data is less than or equal to the marginal variance, which does not consider the
temporal disposition of the observations. This is fundamental to improve the accuracy of the con-
ditional variance based on past data [32].

Given n observations y1, . . ., yn of Yt, for t = 1, . . ., n, the corresponding likelihood function

is constructed as the product of conditional probability density functions of Yt given the past

data Ht. Thus, if θ = (β>, ϑt, φ, ϕ>, λ>)> is the vector of model parameters to be estimated, the

associated log-likelihood function for θ is given by

‘ðθÞ ¼
Xn

t¼1

log ðfYt jHt
ðyt; θÞÞ: ð8Þ

To obtain the maximum likelihood estimate bθ of θ, we must take derivatives of Eq (8) with

respect to each parameter β, ϑt, φ, ϕ and λ. Inference (confidence intervals and hypothesis

testing) about θ can be based on the asymptotic normality of the maximum likelihood estima-

tor bθ.

2.3 Model checking and diagnostic

The quantile residual is often used in GARMA models as a diagnostic tool to detect their ade-

quacy to the data, which is defined as

rt ¼ F� 1ðFYt jHt
ðyt; bθÞÞ; ð9Þ

where FYt jHt
is the cumulative distribution function of Yt conditional to past data, bθ is the max-

imum likelihood estimate of θ, and F−1 is the inverse cumulative distribution function of a

standard normal distribution. Note that the quantile residual follows the standard normal dis-

tribution. For more details about this residual, see [39].

GARMA models have three elements: (i) the distribution of the response; (ii) the link func-

tion for the mean; and (iii) a linear predictor containing a set of model parameters, corre-

sponding to regression coefficients associated with the covariates, as well as autoregressive and

moving average coefficients. For a specific data set, the building process of a GARMA model

consists of comparing several competing models based on different combinations of these ele-

ments. The deviance is used as an indicator to compare these models, which is minus two

times the log-likelihood ratio of the reduced model (in our case GLM) and the full model (in

our case the GARMA model). We can employ model selection tools, such as Akaike (AIC) and
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Bayesian (BIC) information criteria, to select the best GARMA model. AIC and BIC allow us

to compare models by the expressions

AIC ¼ � 2‘ðbθÞ þ 2m; BIC ¼ � 2‘ðbθÞ þm logðnÞ;

with ‘ðbθÞ being the log-likelihood function evaluated at θ ¼ bθ and n, m being the sample

size and number of model parameters, respectively. AIC and BIC correspond to a penalized

log-likelihood function as the model has more parameters, making it more complex. A

smaller AIC or BIC indicates a better model; for more details about deviance, AIC and BIC,

see [40].

2.4 Generator of GARMA random numbers

Algorithm 1 introduces a novel generator of random numbers from a GARMA model. Note

that random numbers following a GLM can be obtained by fixing the orders p = 0 and q = 0 in

the GARMA model, that is, GLM� GARMA(0, 0) model.

Algorithm 1 Random number generator from a GARMA model
1: Construct the GLM term of the GARMA model by fixing:
1.1 A number r of covariates and the size sample n.
1.2 Values for the regression coefficients β associated with the r

covariates.
1.3 The link function g.

2: Build the autoregressive term of the GARMA model by fixing:
2.1 The dimension p of the autoregressive parameters �, assuming

p = 0 if a moving average model is of interest.
2.2 Values for autoregressive coefficients �.

3: Establish the moving average term of the GARMA model by fixing:
3.1 The dimension q of the moving average parameters λ, assuming

q = 0 if an autoregressive model is of interest.
3.2 Values for moving average coefficients λ.

4: Assume a distribution for Yt within the exponential family and fix
its parameter φ (note that by fixing φ we choose a specific member
of the exponential family and then formulate the GARMA model).

5: Obtain values for the covariate matrix X = (xtk), where each of its
k columns x�k = (1, x1k, . . ., xnk)

> is randomly generated from the uni-
form distribution in [0, 1] using the Monte Carlo method.

6: Also using the Monte Carlo method, generate a time-series from a
GARMA model with t = 1, . . ., n following the steps:

6.1 For t = 1, generate a value of yt from YtjHt � Fðmt;φÞ, where F is a
member of the exponential family of parameter φ (as defined in
Step 4) and mt ¼ g � 1ðx>t βÞ, with g and β defined in Step 1 and xt in
Eq (3) but numerically calculated from Step 5. Note that defini-
tion of μt is similar to the expression given in Eq (5) for p = 0
and q = 0 (with the identity link function).

6.2 For each t from 2 to n:
6.2.1 Obtain the autorregresive term using

at ¼

Xp

h¼1

�huh; p > 0;

0; p ¼ 0;

with uh ¼
gðyt� hÞ � x>t� hβ; t > h;

0; t � h:

8
<

:

8
>><

>>:
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6.2.2 Calculate the moving average term employing

bt ¼

Xq

j¼1

ljvj; q > 0;

0; q ¼ 0;

with vj ¼
gðyt� jÞ � Zt� j; t > j;

0; t � j:

8
<

:

8
>><

>>:

6.2.3 Compute μt = g−1(ηt) as location parameter indexed over time
t, with Zt ¼ x>t βþ at þ bt; using at and bt defined in Steps 6.2.1-
6.2.2, respectively, and ηt being analogous to expression
given in Eq (4).

6.2.4 Generate a value of yt similarly as in Step 6.1, but now μt is
computed as in Step 6.2.3.

3 Stochastic programming methodology

In this section, we present the SP methodology to find the ELS in T periods of decision stages

assuming a time-dependent random DPUT. This methodology has been implemented in the R
software.

3.1 Stochastic programming formulation

Table 2 summarizes the elements of the two-stage probabilistic ELS model. In this table,

both Zt and Qt are considered as first stage variables, while the variables It and St are consid-

ered as second stage variables. In the first stage, we decide whether or not to purchase and how

much to purchase, whereas in the second stage, after observing the demand, we obtain inven-

tory and shortage levels. The corresponding SP framework used to minimize the expected

TC –E(TC)– of the inventory model can be formulated as [15]

minfEðTCÞg ¼ min
X

o2O

XT

t¼1

pot ðotZt þ utQt þ htI
o

t þ stS
o

t Þ

( )

; ð10Þ

subject to

Qt þ ðIot� 1
� Sot� 1

Þ � ðIot � Sot Þ ¼ yot ;

Qt � CtZt;
ð11Þ

8t 2 T; 8o 2 O; Qt � 0; Iot � 0; Sot � 0; yot � 0; pot 2 ½0; 1�; Zt 2 f0; 1g;

where O is the set of selected possible demand scenarios and ω is a specific scenario, with a

fixed number of scenarios in each period of the decision stages. The objective function defined

Table 2. Elements of the ELS model.

Parameters Variables

t: Period index of the decision stage in the planning time

horizon (t = 1, . . ., T).

Zt: Binary variable indicating whether a purchase is

carried out in period t or not.

Ct: Purchase budget in period t. Qt: Quantity of units to be purchased in period t.
ut: Unitary cost of purchase in period t. It: Stock level at the end of period t.
ot: Fixed order cost in period t. I0: Initial stock level.

ht: Holding cost at the end of period t. St: Shortage level at the end of period t.
st: Shortage cost at the end of period t.

pot : Probability of occurrence of the scenario ω in period t of the decision stage.

https://doi.org/10.1371/journal.pone.0212768.t002
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in Eq (10) attains a solution that minimizes E(TC) over all scenarios. This minimization can

be carried out through the addition of sharing cuts for feasibility and optimality at the resource

function, whenever this function or its constraints contain stochastic coefficients that exhibit

inter-stage dependency of ARMA type in a multi-stage problem [41]. The approach defined in

Eq (10) can be reformulated using the L-shaped method, according to [42], as a master prob-

lem in each period t of the decision variables in two stages by means of

minfotZt þ utQt þ g2ðZt;QtÞg; g2 2 R; ð12Þ

subject to ut Qt� Zt Ct, where the decision variables of the first stage Zt and Qt are fixed

momentarily until the problem of second stage is solved. Note that

g2ðZt;QtÞ ¼ minfpot ðhtI
o

t þ stS
o

t Þg ð13Þ

defined in Eq (12) represents the objective function of the second stage (considered here as a

subproblem), which is a function in each period t of the decision variables in the first stage,

subject to

Qt þ ðI
o

t� 1
� Sot� 1

Þ � ðIot � Sot Þ ¼ yot ; 8o 2 O: ð14Þ

The subproblem defined in Eq (13), with its constrains given in Eq (14), have a dual form

g2ðZt;QtÞ ¼ maxfp1ð0 � 0� ZtÞ þ p2ðy
o

t � QtÞg; ð15Þ

subject to π1� ht and π2� st, where π1 and π2 are the dual variables related to these constrains.

Next, we indicate how the cuts are generated and added to solve the problem using the L-

shaped method. It is known that the optimal solution of a linear programming, if it exists, is

attained at a vertex. Let Y1 ¼ ðp
ð1Þ

1 ; . . . ; p
ðvÞ
1 Þ and Y2 ¼ ðp

ð1Þ

2 ; . . . ; p
ðvÞ
2 Þ be a finite set of vertices

related to π1 and π2, respectively. Therefore, the master and dual problems defined in Eqs (12)

and (15), respectively, can be solved by γ2(Zt, Qt) = min{γ2}, subject to

g2 � p
ð1Þ

1 ð0 � 0� ZtÞ þ p
ð1Þ

2 ðyot � QtÞ;

..

.

g2 � p
ð1Þ

1 ð0 � 0� ZtÞ þ p
ðvÞ
2 ðyot � QtÞ;

where the constraints are called cut tangent planes to the objective function at each point (Zt,
Qt). This is a convex external approximation of the resource function, with γ2 varying freely. It

is possible to solve this mixed integer linear programming defined in Eq (12), often written in

short as MILP, by using the lpSolveAPI package of the R software.

3.2 Scenarios in two stages

One way of introducing randomness in SP problems is by generating a finite number of sce-

narios as follows. First, a distribution with estimated or known parameters is assumed, which

approximates the true distribution of the DPUT. Second, a large number N of values for the

DPUT (for example, N = 10000) is simulated. Third, a number S of scenarios must be estab-

lished to represent the inherent variability of the DPUT (for example, S = 100). A specification

of S is reached by clustering N values into S nodes, which correspond to the centroids of each

cluster and are represented in a diagram with the associated probabilities over the nodes [37].

SP provides good solutions if the assumed distribution for the DPUT is adequate statistically.

Recall that, in the two-stage SP model, each level of a scenario tree is a decision stage. Con-

sequently, a two-stage SP model corresponds to a scenario tree with only two levels in each
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time period. In the first stage of this model, as mentioned, the decision variables are whether

to purchase or not, represented by the binary variable Zt, and which ELS must be purchased,

represented by the variable Qt, both of which are decided before knowing the values of DPUT

Yt. In the second stage, the decision variables are the inventory level It and the shortage level

St, which are generated after knowing Yt. The representation of each scenario ω 2 O is con-

structed as follows. In each period t, the primary node shows the first decision stage and the

secondary nodes display the second decision stage with the values of Yt and their respective

probabilities pot indicated over the nodes [43].

To obtain the values presented in each node and time t, as well as their respective probabili-

ties, we utilize the values bY t fitted from GLM or GARMA structures as seeds to simulate 1000

values of Yt. Here, GLM and GARMA parameters required for the simulation can be estimated

by the maximum likelihood method using real-world data. These estimates are considered as

constant over t. Then, the 1000 simulated values in each period t of the second decision stage

are grouped employing non-hierarchical clustering. The analysis of non-hierarchical groups

aims to find a clustering of objects. In our case, the objects are values of simulated demands,

such that the separation of these groups or clusters is maximized while minimizing the dis-

tances within the group in relation to its average or centroid. We use the k-means method to

assign simulated demands to a number of groups defined by the user (for example k = 100),

which form the scenarios for the SP [44]. We occupy the Ward method [45] to group such that

the Euclidean distances between the simulated elements to be clustered is minimized. For

more details of non-hierarchical grouping, see [44]. In our case, the possible values to be con-

sidered in each node are the centroids of this non-hierarchical clustering, while the probabili-

ties of each branch correspond to the proportion of grouped elements in each centroid with

respect to the total of simulated values. Note that the simulated values from a GLM and

GARMA structures can be obtained with Algorithm 1 presented in Section 2.

To reach a range of solutions from the SP proposed in Eqs (10) and (11), we apply the

approach described above to cases of extreme demand percentiles. Note that considering this

is a purely statistical issue, because the 5-th and 95-th percentiles can be used as extreme values

of the distribution. In statistics, any value below 5% is considered small and above 95% is

large. Thus, we intend to demonstrate that a more accurate range of variables in the first (Qt)

and second (It, St) decisions, as well as E(TC), are obtained when comparing results of the SP

proposed in Eqs (10) and (11) to describe the DPUT with GARMA vs. GLM. Specifically, we

make this comparison by obtaining the solutions of Eqs (10) and (11), considering 5-th and

95-th percentiles of the distribution of Yt (described by GARMA and GLM), for t = 1, 2, 3. We

denote the l-th percentile of the distribution of Yt by yotl�100
for the scenario ω in period t of the

second decision stage. Then, yot5 and yot95
are the 5-th and 95-th percentiles, respectively, each in

their respective scenario ω of the second decision stage in period t. Given that the distribution

parameters are known, we can simulate values of these percentiles in each period t, clustering

the data to obtain their value and probability in each node of the second stage; see details of

this procedure in steps 3 and 4 of Algorithm 2, and of the generation of SP scenarios in [37].

3.3 Evaluation of SP by using out-of-sample scenarios

To evaluate the purchase plan of the ELS obtained from SP models based on generation of sce-

narios, it is possible to apply the optimization to a realistic framework of the rolling horizon

using out-of-sample scenarios. To generate these scenarios, we use the same distribution and

parameters considered in the scenario representation mentioned in Section 3.2. Note that

the objective function of the SP does not provide the true cost to be incurred when implement-

ing the solution in a real environment, with out-of-sample data within a rolling horizon
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framework. Then, we can contrast the value of a solution in stochastic scenarios with respect

to a solution obtained in a deterministic scenario, comparing the percentage increase of the

TC we pay for ignoring uncertainty [46]. This cost is computed as (DC − SC)/SC, where DC

and SC are the TCs accumulated over each simulation run for the deterministic and stochastic

models, respectively. Repeating this comparative experience in J instants, we obtain the aver-

age percentage cost increase of the deterministic and stochastic solutions (Δ) and its mean

absolute deviation (MAD) as

D ¼
1

J

XJ

j¼1

DCj � SCj

SCj

 !

� 100%; MAD ¼
1

J

XJ

j¼1

DCj � SCj

SCj

�
�
�
�
�

�
�
�
�
�
� 100%:

4 Summary of methodological and computational aspects

In this section, we condense, in an algorithm, the proposed methodology constructed from

Sections 2 and 3. Then, the computational framework used to implement this methodology is

described.

4.1 Summary of the optimization methodology

To obtain the observed values yot of Yt, their probabilities pot , and E(TC), we summarize in

Algorithm 2 the methodology used to get the inventory TC over T periods of the decision

stages.

Algorithm 2 Summary of the methodology to optimize TC over T periods of decision

stages
1: Collect data y1, . . ., yn of the response Y and data x1j, . . ., xnj of the

covariate Xj, with j = 1, . . ., r.
2: Perform an exploratory data analysis according to the following

steps:
2.1 Compute descriptive statistics for y1, . . ., yn to identify the

type of data distribution. If evidence of symmetry exists, use a
normal distribution. Else, employ an asymmetric distribution
such as the gamma model. In both cases, continue with Step 2.2.

2.2 Detect autocorrelation for y1, . . ., yn using the autocorrelation
(ACF) and partial autocorrelation (PACF) functions. If evidence
of autocorrelation exists, utilize an ARMA model of adequate
orders p, q and continue with Step 2.3. Else, assume other
models.

2.3 Construct scatter-plots between Y and each covariate Xj to obtain
the kind of association to be considered in the modeling. If
evidence of correlation between Y and some covariate Xj exists,
employ regression models and continue with step 3. Else, do not
consider the covariate(s).

3: Formulate GARMA models and estimate their parameters according to
the following steps:

3.1 Consider a suitable link function for the GARMA model based on
step 2.3.

3.2 Estimate the GARMA parameters (θ) using the maximum likelihood
method.

3.3 Select the best GARMA model considering the smallest value for
an information criteria (AIC or BIC) and the deviance, producing
the fitted model by with its corresponding values by1; . . . ;byn.

3.4 Obtain the l × 100-th percentile, yl×100 namely, of the distribu-
tion of Y using the estimated parameters θ, which are calculated
in step 3.2.
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4: Generate cluster scenarios carrying out a “for cycle” from t = 1 to
t = T periods of the decision stages following the steps:

4.1 Fix l = l1 at a small value (for example, l1 × 100 = 5) and simu-
late n data y?

1l1�100
; . . . ; y?nl1�100

of the distribution of Y using the Monte

Carlo method, with mean yl1×100 and estimated parameters bθ.
4.2 Conduct a cluster analysis on y?

1l1�100
; . . . ; y?nl1�100

with a number of 100

scenarios conformed for the clusters and obtain yot and pot , for ω =
1, . . ., 2t, where yot is the ω-th cluster centroid (scenario), and
pot is the probability of occurrence of this scenario.

4.3 Fix l = l2 at a large value (for example, l2 × 100 = 95) and simu-
late n data y?

1l2�100
; . . . ; y?nl2�100

of the distribution of Y using once

again the Monte Carlo method, with mean y(l2 × 100) and estimated

parameters bθ.
4.4 Conduct a cluster analysis on y?

1l2�100
; . . . ; y?nl2�100

with a number of 100

scenarios conformed for the clusters and obtain yot and pot , for ω =
1, . . ., 100, where yot is the ω-th cluster centroid (scenario), and
pot is the probability of occurrence of this scenario.

5: Set values for the components ut, ot, ht and st of the inventory
model given in Eq (10) and the components Ct and I0 of the con-
strains given in Eq (11).

6: Optimize the model given in Eq (10) to obtain Zt, Qt, Iot and Sot ,
denoted by eZt, eQt, eIot and eSot , respectively.

7: Establish the optimum inventory TC as

eEðTCÞ ¼
X

o2O

XT

t¼1

pot ðotezt þ ut eQt þ hteIot þ steSot Þ.

4.2 Computational framework

We implement the methodology in the R software, a non-commercial and open source package

for statistics and graphs which can be secured from www.r-project.org. The R software is cur-

rently very popular in the international scientific community. For an application of R in inven-

tory models; see [47]. Some R packages related to statistical distributions that may be useful in

inventory models are available in CRAN.R-project.org; see, for example, [40] and [48]. Specifi-

cally, we utilize the base package for descriptive statistics, the gamlss.util package to per-

form a statistical analysis on DPUT values and time-series analysis for GARMA models. We

use the RcmdrMisc package for cluster analysis in the setting of inventory models, and the

lpSolveAPI package to solve the linear programming with the L-shaped method based on

Eq (10), which can also be solved by using several commercial software packages as LINGO and

CPLEX. Note that by occupying 100 scenarios of DPUT in three periods of the second decision

stage, the processing time is 30 seconds in a computer with the features detailed in Table 3.

5 Numerical results

In this section, we first conduct a Monte Carlo simulation study, which allows us to compare

the performance of ELS and its inventory TC for different methods when describing DPUT

Table 3. Characteristics of the computer used in the simulations.

Characteristic Description

Operating system Windows 10 home single language 64 bits (10.0, compilation 17134)

Model 80FY, BIOS A7CN44WW

Processor INTEL (R) Pentium (R) CPU N3540 @ 2.16 GHz (4CPUs)

RAM 8192 MB

https://doi.org/10.1371/journal.pone.0212768.t003
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based on GARMA and GLM structures. Second, real-world DPUT data from a drug supply

case study in a Chilean public hospital are analyzed with the proposed methodology.

5.1 Simulation study

To carry out the aforementioned simulation study, we consider: (i) two samples, one of time-

dependent DPUT and time-independent DPUT, both using Algorithm 1, are generated; (ii)

a range of SP solutions obtained using extreme demand percentiles (5-th and 95-th) are

obtained for both decision variables and TCs; and (iii) inventory TC for the ELS model are

evaluated by Algorithm 2. We obtain the TC over T = 3 periods of the decision stages and

n = 100 by employing GARMA and GLM structures for simulated data with temporal depen-

dence, based on normal and gamma distributions, different link functions and diverse values

for standard deviations (SDs). We describe the time-dependent DPUT mean considering the

GARMA(1, 1) structure given by

gðmtÞ ¼ Zt ¼ b0 þ b1xt þ �ðyt� 1 � b0 � b1xt� 1Þ þ yðyt� 1 � Zt� 1Þ; t ¼ 1; . . . ; 100: ð16Þ

In addition, as comparison for time-independent DPUT, we use the GLM defined as

gðmtÞ ¼ Zt ¼ b0 þ b1xt; t ¼ 1; . . . ; 100: ð17Þ

In both models, we employ link functions: g� {identity, log}. As mentioned in Algorithm 2,

we assume that the values xt of the covariate Xt are obtained from a uniform distribution in the

interval [0, 1]. The values assumed for ϕ and θ in Eq (16) are ϕ = 0.5 and θ = 0.25. The number

of Monte Carlo replications are 10000. In each of these replications: (i) we obtain the observa-

tions y = (y1, . . ., y100)> for the normal and gamma distributions with temporal dependence by

using Algorithm 1; and (ii) we fit GARMA and GLM structures by estimating their parameters

and obtaining fitted values of Eqs (16) and (17), respectively. These fitted values are computed

for different fixed values of the corresponding distribution SD, σ namely, and regression coef-

ficients β0, β1. To compare different distributions, we set diverse configurations for GARMA

and GLM structures; see Table 4.

We obtain the 5-th and 95-th percentiles of the DPUT distribution for each period of the

decision stages under analysis, by using the quantile function implemented in the gamlss
package with qGA and qNO commands for gamma and normal distributions, respectively. For

each of the replications, we consider three periods by using three consecutive fitted values as

mean of the distributions in each period. The SD is assumed to be constant in each period of

the decision stages and estimated by GARMA and GLM structures. Subsequently, by applying

Algorithm 2 (from steps 4 to 7): (i) we generate scenarios using simulation with a sample size

1000 in each node; and (ii) we obtain the ELS with its TC over all periods of the decision stages.

Fixed values for parameters in all periods of the decision stages are reported in Table 5.

Through this simulation study, as mentioned, we evaluate eEðTCÞ for two DPUT distribu-

tions and two link functions. We are interested in describing the empirical distribution of

eEðTCÞ (for reasons of space, we omit the analysis of the decision variables of first and second

Table 4. Distributions and true parameters used in the simulation study.

Distribution Link function β0 β1 σ
Normal Identity 500 2 {5, 10, 15, 20}

Normal Log 5 1 {5, 10, 15, 20}

Gamma Identity 500 2 {0.1, 0.25, 0.5, 0.75}

Gamma Log 5 1 {0.1, 0.25, 0.5, 0.75}

https://doi.org/10.1371/journal.pone.0212768.t004
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stage). The results on the statistical properties of the maximum likelihood estimators bb0, bb1, bs

and b� are not provided here, but these properties can be found in the simulation study pre-

sented in [32]. Through this study, we intend to corroborate the differences between the results

of the eEðTCÞ when describing the DPUT with GLM and GARMA structures. On the one

hand, we make explicit that the variability of these results, reflected in the range of values of

the obtained solutions given the extreme demand percentiles under consideration, should

always be smaller in the GARMA model than in the GLM, which would provide more accurate

results with our proposal. On the other hand, we compare the medians of eEðTCÞ using the

Friedman test, with both models for the DPUT and link functions being considered. Table 6

reports the mean, SD, coefficients of skewness (CS), kurtosis (CK), median, and Friedman p-

value of eEðTCÞ for the indicated distribution and link function. Note that, when the parameter

σ (related to the SD of the DPUT distribution) increases, the range of eEðTCÞ obtained from

the 5-th and 95-th percentiles is smaller in the GARMA model than in GLM, as indicated in

Remark 1. Observe that eEðTCÞ under time-independent DPUT is greater than in the case of

time-dependent random DPUT, which is explained by higher inventory levels to cover a

higher DPUT uncertainty [49]. Then, the conditional DPUT variance obtained from GARMA

models under a normal distribution and identity link is smaller than the marginal DPUT

variance generated from GLM, which leads to smaller values of eEðTCÞ. (Similar results are

obtained for models with a logarithmic link function.) Notice that eEðTCÞ for the case of the

gamma distribution presents the largest SD. With respect to the SD, note that, if the DPUT

presents temporal dependence, then the SD of the GARMA model is smaller than in GLM, for

any distribution and link function considered. However, when a non-identity link function is

used, these values are similar. In this simulation study, we find that not only the DPUT vari-

ance estimate is smaller when employing GARMA models under temporal dependence, but

also the estimator of min{E(TC)} defined in Eq (10) has a smaller variance. Therefore, the best

accuracy is obtained when we fit a GARMA model using temporal dependence of the DPUT

instead of inventory models obtained under time-independent DPUT.

Following [46], to evaluate the performance of our SP model, we compare the TCs obtained

in 10 simulated instances of the indicated distribution, link function, σ and percentiles with

respect to a deterministic solution of out-of-sample scenarios generated from same parameters

and distributions. The results of average increase of TCs (Δ and MAD) are reported in Table 7.

Note that, in all cases, the performance of the SP models in terms of Δ and MAD, when model-

ing the DPUT via GLM or GARMA estructures, are greater than when considering a deter-

ministic scenario, which does not consider uncertainty. In all tested instances, savings are

obtained in TC, since Δ = MAD. In general, the performance decreases as σ increases, indepen-

dent of the distribution and link function considered. In general, for the 95-th percentile of

DPUT, performance in terms of Δ and MAD is slightly better than when considering the 5-th

Table 5. Inventory model parameters for t = 1, 2, 3 periods of the decision stages.

Inventory element Value

Fixed order cost in period t: ot = 0.75

Shortage cost at the end of period t: st = 0.5

Holding cost at the end of period t: ht = 0.05

Unitary purchase cost in period t: ut = 0.5

Purchase budget in period t: Ct = 1500

Percentiles of DPUT: l × 100 = {5, 95}

https://doi.org/10.1371/journal.pone.0212768.t005
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percentile, while the results are similar when comparing the link function. This performance

is better in the normal distribution than in the gamma distribution and with the GARMA

model, independent of the link function considered.

5.2 Empirical illustration

First, we describe the problem and data set. Then, we provide an exploratory data analysis, ver-

ify the assumptions of the DPUT distribution and estimate the inventory model parameters.

The drug supply in pharmacy units of Chilean primary healthcare centers is channeled

through their central warehouse, which is provided by an external supplier. The warehouse

acts as an intermediary between suppliers and output units, whereas these output units receive

Table 6. Empirical mean, SD, CS, CK, median, and Friedman p-value of the eEðTCÞ for the indicated distribution, link, σ and percentile.

Distribution-link σ Mean SD CS CK Median Friedman

GARMA GLM GARMA GLM GARMA GLM GARMA GLM GARMA GLM p-value

l × 100 = 5

Normal-identity 5 744.21 742.85 3.57 3.87 -0.003 -0.21 0.20 -0.35 744.37 742.78 <0.001

10 736.96 733.57 6.19 7.02 -0.03 0.06 0.28 0.14 735.91 733.33 <0.001

15 727.39 722.74 11.23 11.76 -0.15 -0.06 0.18 -0.16 727.21 721.78 <0.001

20 718.44 713.61 12.88 16.21 -0.13 -0.28 0.88 -0.31 717.75 714.17 <0.001

Gamma-identity 0.10 665.29 651.12 27.12 28.44 -0.04 -0.21 -0.04 0.44 663.11 650.42 <0.001

0.25 542.89 504.18 55.22 60.98 1.12 -0.04 4.12 -0.45 544.12 504.16 <0.001

0.50 318.44 271.77 83.27 89.20 0.15 0.35 -0.19 -0.65 315.89 268.34 <0.001

0.75 147.79 127.22 71.01 78.03 0.88 0.28 0.16 -0.32 148.26 126.21 <0.001

Normal-log 5 448.56 441.09 2.97 3.09 -0.70 -0.42 1.12 -0.28 447.32 442.32 <0.001

10 562.12 555.21 11.34 12.22 0.19 0.22 0.39 -0.05 561.99 554.23 <0.001

15 708.02 693.71 17.66 19.02 -0.30 -0.67 -0.14 0.92 709.17 691.98 <0.001

20 1085.87 1072.59 22.25 24.56 -0.002 -0.35 -0.46 -0.07 1083.23 1070.86 <0.001

Gamma-log 0.10 416.01 411.01 21.74 22.02 -0.38 -0.36 -0.20 -0.21 412.44 411.33 <0.001

0.25 238.23 231.27 28.83 29.07 0.01 0.02 -0.29 -0.66 236.45 230.76 <0.001

0.50 167.64 141.00 40.69 41.18 0.44 0.50 0.75 0.38 167.21 138.98 <0.001

0.75 100.59 74.04 66.84 68.00 1.21 0.66 3.12 -0.23 101.22 76.23 <0.001

l × 100 = 95

Normal-identity 5 769.39 771.61 3.65 3.87 -0.05 0.31 0.62 -0.31 768.22 770.51 <0.001

10 784.90 788.64 7.91 8.55 0.08 0.44 0.20 0.12 783.50 788.0 <0.001

15 799.72 805.98 11.29 12.97 -0.09 0.13 0.18 0.39 799.31 805.51 <0.001

20 814.9 824.70 13.81 15.19 0.03 0.32 0.26 -0.49 812.96 824.31 <0.001

Gamma-identity 0.1 915.64 936.89 35.23 36.23 0.21 0.26 -0.17 -0.02 915.98 935.69 <0.001

0.25 1213.14 1267.29 105.12 108.52 0.76 0.07 2.15 -0.25 1204.05 1257.17 <0.001

0.50 1779.15 1933.00 223.41 234.89 0.51 0.32 0.24 -0.25 1715.71 1911.22 <0.001

0.75 2179.78 2437.31 287.23 296.12 1.11 0.97 0.83 0.86 2176.32 2435.23 <0.001

Normal-log 5 470.21 480.24 2.87 3.12 -0.49 0.44 0.42 0.07 469.25 481.26 <0.001

10 615.24 631.02 12.23 15.28 0.27 0.19 0.38 0.02 614.28 630.23 <0.001

15 785.19 805.65 18.23 20.21 -0.11 0.16 -0.31 -0.24 784.12 807.34 <0.001

20 1190.73 1223.51 25.22 26.33 0.11 0.22 -0.31 -0.41 1192.61 1225.25 <0.001

Gamma-log 0.10 574.62 594.03 27.14 27.17 -0.01 0.17 -0.14 -0.33 572.33 592.31 <0.001

0.25 842.12 896.99 36.78 36.99 0.09 -0.25 -0.21 0.33 844.88 898.92 <0.001

0.50 874.45 976.23 57.51 58.94 0.22 0.12 0.44 -0.29 879.97 978.79 <0.001

0.75 1357.37 1697.97 127.030 131.23 1.23 0.67 3.21 1.23 1342.45 1701.12 <0.001

https://doi.org/10.1371/journal.pone.0212768.t006
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the demand for drugs, including its own pharmacy, which dispenses prescriptions to patients.

The central warehouse needs to store, conserve and distribute such drugs, delivering the prod-

ucts monthly to all output units by using aggregated demand requirements for each of them in

the same periods of the decision stages.

To validate the proposed methodology, we use real-world monthly demand (Y) data of a

pharmaceutical product correlated with the known demand of other pharmaceutical product

(X). The statistical correlation between demands of these two products is often detected,

because frequently more than one drug is used to treat the same disease. Thus, in the GARMA

model, the DPUT of a product can co-vary as a predictor of the DPUT of other product. These

products are shipped from the warehouse and delivered to a healthcare center, located at the

Table 7. Evaluation of out-of-sample scenarios for the indicated distribution, link, σ and percentile with simulated data and the mentioned performance indicator.

Distribution-link function σ Δ MAD

GARMA GLM GARMA GLM

l × 100 = 5

Normal-identity 5 38.76 38.63 38.76 38.63

10 38.65 38.41 38.65 38.41

15 37.96 37.64 37.96 37.64

20 37.41 37.08 37.41 37.08

Gamma-identity 0.10 33.97 33.22 33.97 33.22

0.25 28.25 25.44 28.25 25.44

0.50 20.53 13.28 20.53 13.28

0.75 5.46 3.24 5.46 3.24

Normal-log 5 39.30 39.07 39.3 39.07

10 38.78 38.23 38.78 38.23

15 38.15 38.01 38.15 38.01

20 37.92 37.06 37.92 37.06

Gamma-log 0.10 34.12 33.49 34.12 33.49

0.25 29.12 26.76 29.12 26.76

0.50 20.98 15.12 20.98 15.12

0.75 6.23 4.21 6.23 4.21

l × 100 = 95

Normal-identity 5 39.44 38.95 39.44 38.95

10 38.73 38.52 38.73 38.52

15 38.15 37.89 38.15 37.89

20 37.71 37.46 37.71 37.46

Gamma-identity 0.1 34.00 33.24 34.00 33.24

0.25 28.43 25.88 28.43 25.88

0.50 21.03 14.01 21.03 14.01

0.75 6.01 3.79 6.01 3.79

Normal-log 5 39.32 39.11 39.32 39.11

10 38.98 38.55 38.98 38.55

15 38.34 38.23 38.34 38.23

20 38.12 37.45 38.12 37.45

Gamma-log 0.10 34.17 33.52 34.17 33.52

0.25 29.15 26.96 29.15 26.96

0.50 21.03 15.97 21.03 15.97

0.75 6.83 4.65 6.83 4.65

https://doi.org/10.1371/journal.pone.0212768.t007
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city of Concon, Chile. This case study is based on unpublished real-world data collected during

48 months in 2012-2015 (from 01-January 1 to 31-December) for evaluating supply policies.

The data set is displayed in Table 8.

We perform an exploratory data analysis based on Table 9 and Fig 1. Table 9 reports the

sample values of DPUT corresponding to: the mean (�y), minimum (y(1)), maximum (y(48)),

inter quartile range (IRQ), 1st quartile (y(12)), median (y(24)), 3rd quartile (y(36)), SD, CS, CK

and coefficient of variation (CV ¼ ðSD=�yÞ � 100%). Fig 1 shows the histogram, standard

box plot, box plot adjusted for asymmetric data [50] of DPUT, index-plot of monthly DPUT,

scatter-plot between DPUT and DPUT of other correlated products, and ACF/PACF plots of

DPUT data. We confirm the stationary nature of the time series with p = 2 using the Dickey-

Fuller augmented test (results omitted here). From Table 9 and Fig 1(A) and 1(B), note that

the median and mean are similar, the CS and CK are close to zero and three, respectively, indi-

cating normality in the DPUT data, which is supported by the histogram and box plots. Fig

1(C) shows a decreasing trend in the DPUT for the studied period. From the scatter-plot pre-

sented in Fig 1(D), it is not easy to identity a suitable link function. Then, we use the logarith-

mic and identity link functions and compare them. Fig 1(E) and 1(F) provides evidence about

seasonality, which can be modeled by an autoregressive component, whereas the component

of moving average is not identified by these plots. In summary, from this exploratory data

analysis, we assume a GARMA(p, q) model, with p = {0, 1, 2} and q = {0, 1} using a normal dis-

tribution for the DPUT and considering a covariate with different link functions for the mean

response. To select the best GARMA model, we employ AIC, BIC and deviance, which are

reported in Table 10. Note that, as mentioned in Subsection 4.2, GARMA(0, 0) model� GLM.

From Table 10, note that the smallest AIC, BIC and deviance correspond to the GARMA(2,

0) model, which corroborated our conjecture from the exploratory data analysis. Therefore, to

model the DPUT, we propose the GARMA model given by

EðYjÞ ¼ mj ¼ b0 þ b1xj þ �1ðyj� 1 � b0 � b1xj� 1Þ þ �2ðyj� 2 � b0 � b1xj� 2Þ; ð18Þ

where β0 and β1 are the regression coefficients, xj is the value of the covariate X, and φ1, φ2 are

the autoregressive coefficients. We fit the GARMA model by using the garmaFit command.

The maximum likelihood estimates of the model parameters given in Eq (18), with approximate

estimated standard errors in parenthesis, are: bb0 ¼ 6971:76ð2469:09Þ, bb1 ¼ � 17:49ð9:95Þ,

b�1 ¼ 0:45ð0:10Þ, b�2 ¼ 0:14ð0:14Þ and ðdVarðYtjHtÞÞ
1=2
¼ ðb�ðmtÞÞ

1=2
¼ 240:15ð25:03Þ. All

Table 8. Data set of monthly DPUTs of two pharmaceutical products.

Month 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Y 3174 3304 3053 3119 3245 3331 3246 2565 2625 2790 2668 2773 3075 3097 2974 2841

X 250 245 250 240 246 251 244 247 248 255 251 245 244 245 245 248

Month 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Y 2148 2883 2857 2895 2632 2593 3046 2749 2980 2506 2511 2764 2425 2852 2566 2155

X 251 246 245 253 245 244 251 250 243 248 245 245 250 246 249 250

Month 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

Y 2445 2421 2661 2291 2603 2487 2425 2448 2236 2223 2352 2525 2699 2613 2114 2551

X 246 247 250 250 244 242 248 249 252 248 244 246 249 245 253 247

https://doi.org/10.1371/journal.pone.0212768.t008

Table 9. Descriptive statistics of monthly DPUT for the pharmaceutical product.

n y(1) y(12) y(24) �y y(36) y(48) SD IQR CV CS CK

48 2115.0 2477.3 2647.0 2699.1 2915.5 3331.0 322.8 438.3 12.0% 0.2 2.2

https://doi.org/10.1371/journal.pone.0212768.t009
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coefficients are significant at 10%. This conducts to the predictive model expressed as

bm jþ1 ¼ 6971:76 � 17:49xjþ1 þ 0:45ðbyj � 6971:76þ 17:49xjÞ þ 0:14ðbyj� 1 � 6971:76þ 17:49xj� 1Þ:

To confirm the correct fit of the proposed GARMA(2, 0) model in Eq (18), we use the quantile

residual (rj) defined in Eq (9) for DPUT data. In addition, we employ a theoretical probability

Fig 1. Histogram (A), box plots (B) and index-plot (C) of monthly DPUT; scatter-plot between DPUT and DPUT of

the correlated pharmaceutical product (D); ACF (E) and PACF (F) plots of DPUT.

https://doi.org/10.1371/journal.pone.0212768.g001
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versus empirical probability (PP) plot to do this evaluation. Note that the PP plot can be linked

to the Kolmogorov-Smirnov (KS) test by means of which acceptance bands may be constructed

inside of this plot. Fig 2(A) sketches a PP plot with 95% acceptance bands to verify the distribu-

tional assumption of the model given in Eq (18). Observe that the KS p-value is 0.9991, which

strongly supports the normality assumption of the quantile residuals obtained from the

GARMA(2, 0) model. Fig 2(B) displays an index-plot of this residual, from which no unusual

features, such as neither outliers nor heterogeneity, are detected. Therefore, from Fig 2, the

assumption that the response follows a normal distribution seems to be quite suitable.

Once the statistical model has been identified and estimated based on the available DPUT

data, the two-stage SP must be conducted to obtain the values of two sets of decision variables.

In its first stage, this indicates both whether the binary variable Zt takes the value one (a pur-

chase must be carried out) in the period t or the value zero for Zt, and if it corresponds, the

ELS Qt to be purchased in this period t. In its second stage, once the DPUT fitted values are

obtained, these values are organized in a scenario representation of two nodes for each period

t = 1, 2, 3. To demonstrate how accurate the ELS inventory model is, depending on GLM or

the GARMA(2, 0) model, we generate scenarios of 5-th and 95-th percentiles of the DPUTs

(yot5 ; y
o
t95

) and their probabilities (pot5 ; p
o
t95

) by using sequential simulation according to [37].

The parameters employed for this simulation are: (i) holding cost of each period (ht) of 0.0035

USD$/(month per unit); (ii) unitary purchase cost in each period (ut) of 0.6 USD$/unit; (iii)

shortage cost in each period of 0.33 USD$/(shortage unit); and (iv) order cost in each period

of 0.86 USD$/order. We compare outcomes of SP for the ELS with inventory shortage in two

Table 10. Criterion and deviance for different GARMA models with DPUT data of the pharmaceutical product.

Information criterion GARMA(0, 0) GARMA(1, 0) GARMA(0, 1) GARMA(1, 1) GARMA(2, 0) GARMA(2, 1)

Identity Log Identity Log Identity Log Identity Log Identity Log Identity Log

AIC 692.621 692.55 666.94 658.45 659.27 659.29 654.82 651.06 646.73 869.17 646.78 869.17

BIC 698.235 698.17 674.43 665.94 668.62 668.64 654.17 660.42 657.96 880.40 658.00 880.41

Deviance 686.621 686.55 658.94 650.45 649.27 649.29 634.82 641.06 634.73 857.17 634.83 857.17

https://doi.org/10.1371/journal.pone.0212768.t010

Fig 2. PP plot with 95% acceptance bands (A) and index-plot of the quantile residual (B) with DPUT data.

https://doi.org/10.1371/journal.pone.0212768.g002
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stages, with and without temporal structure, which is reported in Table 11. Note that the

results for E(TC) and quantities Qt to order in each period are smaller and more accurate

when the DPUT is described by a GARMA(2, 0) model than by GLM. This is because the val-

ues of yot obtained with a GARMA model are smaller and have higher accuracy than using

GLM.

To evaluate the performance of SP with respect to deterministic out-of-sample scenarios,

we divide our data set into two parts. We use 24 of 36 observations to estimate the parameters

of GARMA and GLM structures. Then, we make predictions for 12 periods of future decision

stages, as expressed previously, and solve the SP as indicated in Algorithm 2. The remaining 12

observations of the sample are used to compare the behavior of the stochastic solutions with

respect to the deterministic solutions. The results of average increase of TCs (Δ and MAD) are

reported in Table 12. These results are consistent with those found in our simulation study,

since they indicate that the performance of SP obtained by modeling demand with GARMA

model are better than when the uncertainty of this variable is not considered.

6 Conclusions, limitations and future research

This research proposed a methodology to solve a probabilistic ELS problem under time-

dependent demand. A two-stage SP approach and a GARMA model for generation of scenar-

ios were considered. Our results reported that scenarios with temporal dependence provide

more accurate estimates for lot-sizing and smaller amounts of stored and shortage items in the

different periods of the decision stages, when compared to time-independent DPUT, repre-

sented by GLM. The methodology proposed in this work showed an interesting approach to

achieve savings in inventory total costs, assuming the variability of DPUT scenarios linked to

time-series. This approach improved the existing results, preventing both unnecessary stock-

outs and inventory holding. The approach offered the advantage of considering a more realis-

tic and accurate situation of the DPUT. The proposed ELS policy is useful in organizations

that have a single supplier to meet their requirements and that are generally characterized by

high bureaucracy in their administrative systems. This is the case of public hospitals, where

such a behavior in pharmaceutical product DPUT is frequent, and therefore, the supply system

can be facilitated [51]. GARMA models give the possibility of achieving an efficient characteri-

zation of the mean, as well as the adjustment of other parameters, which may be used in

Table 11. Effect of scenarios of DPUT percentiles using the indicated model on SP elements in two stages with DPUT data of the pharmaceutical product.

Percentile Model eEðTCÞ eQ1
eQ2

eQ3

5 GARMA(2, 0) 3846.44 2043 2098 2054

GLM 4118.61 2162 2276 2223

95 GARMA(2, 0) 5271.31 2834 2854 2823

GLM 5939.97 3187 3280 3224

https://doi.org/10.1371/journal.pone.0212768.t011

Table 12. Evaluation of out-of-sample scenarios for the case study according to the mentioned performance

indicator.

Performance indicator Percentile GARMA GLM

Δ 5 36.79 36.59

MAD 5 36.79 36.59

Δ 95 37.60 37.49

MAD 95 37.60 37.49

https://doi.org/10.1371/journal.pone.0212768.t012
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probabilistic ELS problems. Although we employ a normal distribution in this paper, the pro-

posed methodology is valid for any distribution that may be parameterized with respect to the

conditional mean of a time-series model, considering linear and non-linear link functions for

describing the covariates. On the one hand, this parametrization provides a basis for generat-

ing useful scenarios in SP. On the other hand, forecasting to future values based on GARMA

models also gives the possibility of evaluating the quality of the prediction.

Note that the out-of-sample scenarios used in the simulation correspond to values based

on the same parameters and statistical distribution under consideration. However, the out-of-

sample scenarios used in the empirical illustration correspond to estimated values based on the

real data under analysis. In both simulation and empirical studies, our results of SP confirm an

important improvement in the function of total costs. These differences are slightly higher when

considering the modeling of the demand through a GARMA model than when using a GLM.

Some limitations of the present research are that we do not consider: (i) random lead times

nor restrictions on the fill-rate or service levels; and (ii) multiple products. When there is

access to data related to time-dependent demand for more than a single product, the method-

ology proposed in this study could be extended to multiple products. These limitations gener-

ate opportunities for new approaches that take into account such aspects in two-stage SP.

Furthermore, as future research, from the point of view of inventory models, we can employ

approaches which study restocking cycles with scenarios of random lead time. Also, the use of

chance constrains to consider fill-rate or service level may be assumed. From the point of view

of statistics, it is possible to improve the statistical modeling if distributions different than the

normal model are considered. Furthermore, given that in many products the DPUT in each

cycle can be zero, a model employing mixture probability distributions for continuous and/or

discrete data, called zero-inflated, may be considered [48]. Also, since outliers are known to be

harmful for the estimates of statistical model parameters, diagnostic tools can be considered

for the approach proposed in the present work. Even multivariate versions of the statistical

models may be assumed to improve the accuracy of the proposed approach [38, 52–54].
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