
RESEARCH ARTICLE

Brief communication: β-cell function

influences dopamine receptor availability

Julia P. DunnID
1,2,3*, Naji N. Abumrad4, Bruce W. Patterson2, Robert M. Kessler5, Robyn

A. Tamboli4

1 Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of

America, 2 Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United

States of America, 3 Veterans Administration St. Louis Health Care System, St. Louis, Missouri, United

States of America, 4 Department of Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee,

United States of America, 5 Department of Radiology, Vanderbilt University School of Medicine, Nashville,

Tennessee, United States of America

* julia.dunn@va.gov

Abstract

We aim to identify physiologic regulators of dopamine (DA) signaling in obesity but previ-

ously did not find a compelling relationship with insulin sensitivity measured by oral-minimal

model (OMM) and DA subtype 2 and 3 receptor (D2/3R) binding potential (BPND). Reduced

disposition index (DI), a β-cell function metric that can also be calculated by OMM, was

shown to predict a negative reward behavior that occurs in states of lower endogenous DA.

We hypothesized that reduced DI would occur with higher D2/3R BPND, reflecting lower

endogenous DA. Participants completed PET scanning, with a displaceable radioligand to

measure D2/3R BPND, and a 5-hour oral glucose tolerance test to measure DI by OMM. We

studied 26 age-similar females without (n = 8) and with obesity (n = 18) (22 vs 39 kg/m2).

Reduced DI predicted increased striatal D2/3R BPND independent of BMI. By accounting for

β-cell function, we were able to determine that the state of insulin and glucose metabolism is

pertinent to striatal D2/3R BPND in obesity.

Clinical Trial Registration Number: NCT00802204

Introduction

Diminished dopamine (DA) signaling and food reward are associated with obesity and are

postulated to contribute to and/or perpetuate obesity. The mechanisms of the anorexic effects

of insulin include regulating food reward through DA signaling, and thus, impaired insulin

sensitivity (i.e. insulin resistance) is expected to dysregulate DA signaling [1] as occurs in

rodent models of diet induced obesity (DIO) [2]. We previously reported that higher body

mass index (BMI) and lower fasting acyl ghrelin concentrations were associated with increased

striatal DA subtype 2 and 3 receptor (D2/3R) binding potential (BPND), which we interpreted

to reflect lower levels of endogenous DA competing with the displaceable radioligand, [18F]

fallypride [3]. Reduced striatal DA levels occur in DIO rodents [4] and one human report had

trend level data demonstrating reduced pharmacologically-induced DA release in obesity [5].

Using the same radioligand we utilized, [18F]fallypride, others found positive relationships
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between BMI and D2/3R BPND in the dorsal striatum (caudate and putamen) with conflicting

findings in the ventral striatum [6, 7]. In our previous report, insulin resistance also predicted

higher striatal D2/3R binding, (i.e. lower endogenous DA), but this effect was not independent

of BMI [3]. Eisenstein et al used β-cell function and [11C](N-methyl)benperidol([11C]NMB), a

non-displaceable, D2 receptor-selective radioligand, to examine the relationship between DA

signaling, obesity, and insulin. They did not find associations between striatal D2R levels and

BMI or β-cell function (determined by disposition index, DI). This lack of relationship

between BMI and receptor levels with a non-displaceable radioligand supported our interpre-

tation that differences in endogenous DA levels were a predominate factor defining the rela-

tionship we identified with BMI and receptor levels measured with a displaceable radioligand.

Eisenstein et al did report that β-cell function was associated with increased delayed discount-

ing, a detrimental reward behavior which reflects impaired inhibitory control and is attenuated

by agents that increase extracellular DA levels. Essentially, they found that impaired β-cell

function occurred with a behavior that is present in a state of decreased endogenous DA [8].

This finding prompted us to re-examine our data to determine the relationship of β-cell func-

tion measured by DI to striatal D2/3R BPND estimated with a displaceable radioligand. Further

we sought to determine if any identified relationships were independent of BMI as our pri-

mary aim is to define physiologic regulators of DA signaling.

Methods

The study protocol was approved by the Vanderbilt University Institutional Review Board and

all participants gave written informed consent. We studied 26 weight-stable females, 8 non-

obese (22±3 kg/m2) and 18 obese (39±6 kg/m2) of similar age (Table 1), 22 who were included

in our prior report [3]. Screening included history and physical exam, laboratory testing

including urine drug screen, and magnetic resonance imaging (MRI) of the brain. Exclusion

included pregnancy, significant current psychiatric, neurologic or medical condition. One par-

ticipant had diet-controlled type 2 diabetes mellitus. Individuals were also excluded if current

tobacco use, substance abuse or heavy alcohol use, or if treated with central acting medications

or insulin sensitizing agents in the preceding six months.

As detailed previously [3], before admission to the Vanderbilt University Clinical Research

Center (CRC) participants were requested to refrain from exercise, alcohol and excess caffeine

for 48 hours. On the day of admission, at ~18:30h after an eight-hour fast, blood was collected

(with serine protease inhibitor and subsequent plasma acidification for acyl ghrelin measure-

ment) then positron emission tomography (PET) scanning with [18F]fallypride was completed.

Participants stayed overnight at the CRC and the next morning underwent a five-hour 75

Table 1. Total cohort of participants that completed baseline PET imaging and OGTT.

Non-obese (n = 8) Obese (n = 18) p-value

Weight (kg) 59±7 106±17

BMI (kg/m2) 22±3 39±6

Age (y) 41±9 39±8 0.489

SI (10−4 � min-1 �μU-1 � mL) 11.2±4.1 3.9±2.5 <0.001

ϕtotal (109 min-1) 26.7±8.6 30.8±10.3 0.336

DI (106 min-2 �μU-1 � mL) 29.6±13.7 10.8±6.67 0.005

Regional D2/3R BPND

Caudate 28.9±3.3 32.6±2.8 0.006

Putamen 34.2±3.8 37.6±2.5 0.013

Ventral Striatum 19.1±3.8 22.1±2.6 0.030

https://doi.org/10.1371/journal.pone.0212738.t001

β-cell function and dopamine receptor
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gram oral glucose tolerance test (OGTT) with 11 blood draws for glucose, insulin and C-pep-

tide measurement [9]. The oral-minimal model (OMM) was applied to provide estimates of

insulin sensitivity (SI) and insulin secretion (ϕtotal) by modeling the relationships of glucose

with insulin and C-peptide with glucose, respectively [9]. The disposition index (DI) is the

product of SI and ϕftotal and describes the β-cells’ ability to respond to a decrease in insulin

sensitivity by appropriately increasing insulin secretion [10].

Imaging techniques and analysis were also completed as previously detailed [3]. Briefly, T1

weighted images of the brain were obtained on either a 1.5T or 3T MRI at screening. PET

scanning was initiated with a bolus injection of [18F]fallypride and was completed in three

scan sequences over approximately 3.5 hours. For imaging analysis, the serial PET scans were

co-registered to each other and to the thin section T1-weighted MRI scans using a mutual

information rigid body algorithm. The full reference region method was used to calculate

regional DA D2/D3R BPND with the cerebellum as the reference region. Region of interest

(ROI) analysis of the caudate, putamen, and ventral striatum was used due to the regions’ rele-

vance to reward behaviors and being the most consistently reported ROIs in the literature. The

caudate and putamen were manually drawn on axial slices of the MRI at approximately 2–12

mm above the anterior commissure—posterior commissure line. The ventral striatum was

delineated on coronal slices using established criteria [11]. The ROIs were delineated bilater-

ally on the MRI images and transferred to the coregistered PET scans. The average value

between the two hemispheres for each region was used for analysis.

Data are presented as mean ± standard deviation (SD) and non-obese vs obese, respectively.

Demographic and outcome measures were compared using student t-tests. The relationship

between striatal D2/3R BPND and age, BMI, SI, DI, ϕtotal were evaluated by linear regression.

The β’s reported are the unstandardized coefficients.

Results

D2/3R BPND was 10–15% higher in the obese (caudate 29 vs. 33, p = 0.006; putamen 34 vs. 38,

p = 0.013; ventral striatum 19 vs. 22, p = 0.030) (Table 1). We again found that higher BMI,

lower insulin sensitivity (SI), and lower fasting acyl ghrelin levels predicted increased D2/3R

binding throughout the striatum (Table 2, Fig 1). DI also had significant negative relationships

with striatal D2/3R BPND. Neither age (p-values = 0.11–0.60) nor ϕ total (p-values = 0.42–0.98)

were associated with regional receptor binding in our cohort. When adjusted for BMI, SI did

not maintain relationships with D2/3R BPND (p-values = 0.1–0.2) but DI maintained robust

negative relationships with D2/3R BPND (Table 3). DI explained all variance in D2/3R BPND

attributed to BMI without significantly modifying parameter estimates for DI. Since in our

previous report fasting acyl ghrelin concentrations were associated with striatal D2/3R BPND

independent of BMI, we explored the relationship of both DI and fasting acyl ghrelin concen-

trations to receptor binding. When both were included as covariates to explain striatal D2/3R

BPND, DI continued to explain the majority of the variance (p values = 0.088–0.028) while acyl

ghrelin concentrations did not maintain independent (p values�0.15) relationships with

Table 2. Univariate metabolic predictors of striatal D2/3R binding potential.

BMI SI Acyl ghrelin DI

Region

R β p-value R β p-value R β p-value R β p-value

Caudate 0.482 0.18 0.013 0.485 -0.39 0.012 0.511 -0.016 0.008 0.545 -0.14 0.004

Putamen 0.394 0.14 0.047 0.492 -0.36 0.011 0.549 -0.017 0.004 0.595 -0.15 0.001

Ventral Striatum 0.364 0.13 0.067 0.477 -0.34 0.014 0.491 -0.015 0.011 0.601 -0.15 0.001

https://doi.org/10.1371/journal.pone.0212738.t002

β-cell function and dopamine receptor
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striatal D2/3R BPND; however, the parameter estimates for DI changed by 19–31%, demon-

strating acyl ghrelin concentrations as a relevant modifier (Table 3).

Discussion

We determined that impaired β-cell function (lower DI) is associated with higher striatal D2/

3R binding. Again, this is interpreted as lower endogenous DA as we used a displaceable radi-

oligand (Fig 2). DI allows insulin secretion to be interpreted in light of the prevailing insulin

sensitivity, providing a quantitative index that estimates an individual’s state of glucose toler-

ance based on a physiologic challenge [12]. Our regressions demonstrate that this physiologic

measure can describe over twice the variance in D2/3R binding as the non-physiologic BMI

Fig 1. Linear regressions for striatal D2/3R availability with disposition index and D2/3R availability with BMI.

https://doi.org/10.1371/journal.pone.0212738.g001

Table 3. Multivariate relationships for striatal D2/3R binding potential with either DI and BMI or DI and fasting acyl ghrelin concentrations.

Caudate Putamen Ventral Striatum

R β p-value R β p-value R β p-value

DI 0.589 -0.11 0.057 0.601 -0.14 0.012 0.602 -0.15 0.008

BMI 0.10 0.201 0.04 0.618 0.02 0.788

DI 0.592 -0.10 0.088 0.642 -0.11 0.049 0.623 -0.12 0.028

Acyl ghrelin -0.009 0.184 -0.009 0.145 -0.006 0.323

https://doi.org/10.1371/journal.pone.0212738.t003

β-cell function and dopamine receptor
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measure. The effect size we detail for DI with D2/3R binding is substantially greater than what

others have reported for BMI with D2/3R binding using the same radioligand [7]. We did not

find age to be a modifier of striatal D2/3R binding as others have reported; however it is

important to note the DI declines with aging and can be modified by weight loss [13]. BMI is

commonly used to explore the effect of obesity on central reward signaling, but the current

work demonstrates its limitations. The state of insulin and glucose metabolism are pertinent to

design and interpretation of studies of DA signaling in obesity. Further, if aspects of insulin

and glucose metabolism are influencing central reward signaling, this presents the potential

for personalized therapeutic targets in diseases of reward signaling and obesity.

Besides peripherally secreted insulin directly modifying DA signaling there is evidence for a

dopaminergic gut-brain axis at least partially mediated via the vagus. There are hypothalamic-

vagal-pancreatic connections with dopaminergic innervations[14] and peripheral insulin also

modifies vagal afferents[15]. Intact vagal transmission is necessary for meal-induced increases

in striatal DA release[16], however it is unknown if this is modified by insulin signaling. Par-

kinson’s Disease, a state of central dopaminergic depletion, occurs with impaired vagal activity

and altered glucose-stimulated insulin secretion (GSIS) [17]. In rodents, depleting nigrostriatal

DA alters colonic DA, D2R and DA type 1 receptor levels which is hypothesized to contribute

to the gastrointestinal symptoms of Parkinson’s Disease [18]. We are not aware of any direct

evidence that central DA depletion influences pancreatic β-cell DA signaling however, insulin

sensitivity increases with acute deep brain stimulation (DBS) of the internal capsule, (which is

known to increase striatal DA release) and decreases with acute pharmacologic depletion of

extracellular DA [19]. At the level of the DA neuron (Fig 2), insulin increases cell-surface

expression of the DA transporter (DAT) which takes DA back up into the presynaptic neuron.

This function is impaired in insulin-deficient streptozotocin (STZ) diabetic rodents[20] and in

insulin resistant (impaired insulin signaling) diet induced obese (DIO)[15] as both have

reduced cell-surface DAT. DAT activity is also reduced in food restricted (Fr) animals[21] that

have low insulin levels. While direct insulin exposure in the ventral tegmental area (VTA)

causes reduced extracellular DA levels via increased DAT activity [22], Stouffer et al reported

Fig 2. Presynaptic terminal: Simplified schema of insulin effects on DA neuron synapse in the striatum. Evidence

supports cell surface DAT and striatal ChI excitability vary by diet-induced effects on both insulin secretion/levels and

insulin sensitivity. Postsynaptic membrane: with PET imaging the displaceable radioligand competes with extracellular

DA for binding.

https://doi.org/10.1371/journal.pone.0212738.g002

β-cell function and dopamine receptor
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that direct insulin exposure in the striatum has competing effects on extracellular DA. In the

striatum, insulin does promote DA reuptake via DAT but it also increases the excitability of

striatal cholingergic interneurons (ChI) causing release of DA which is the predominant effect.

As this is mediated by insulin receptors on ChI, it is modified by insulin sensitivity such that

insulin resistant DIO obese and insulin sensitive food-restricted rodents have attenuated and

amplified DA release, respectively[21]. This demonstrates that both insulin secretion/levels

and insulin sensitivity influence DA signal transduction consistent with our current report.

We hypothesize that at least some of the inconsistencies in the literature related to DA sig-

naling in obesity (reviewed by Dang, L et al) [7] are due to metabolic variation within obese

cohorts. Other specifics of our protocol including weight stability, restraining from exercise

[23] before imaging, fasting pre-scan [24], and evening scan times [25] are also posited to con-

tribute to our findings as pre-clinical studies support these as relevant modifiers of DA signal-

ing. The modification of the relationship between DI and D2/3R binding by ghrelin support

both the relevance of fasting, when ghrelin reaches its peak, and the known effects of ghrelin

on DA mediated reward signaling [1]. A more comprehensive understanding as to how weight

gain modifies the dopaminergic gut/pancreatic-brain axis will be relevant to various disease

processes including dysregulated reward signaling in obesity.
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