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Abstract

The determination of the weights of decision makers (DMs) is an important problem in multi-

attribute group decision making. Many approaches have been presented to determine DMs’

weights. However, the computed weight vectors of DMs are usually assumed to be constant

in existing studies, and this may cause irrationalities in the decision results. Therefore, this

article proposes a novel method to determine DMs’ weights based on variable weights the-

ory in which the evaluation information is described as intuitionistic fuzzy sets (IFSs). First,

DMs provide their assessment with IFSs, and the intuitionistic fuzzy weighted averaging

(IFWA) operator is applied to obtain weighted decision matrix based on the prior given DMs’

and attributes’ weights. Second, the DMs’ weights are obtained based on variable weights

theory, and an alternative decision can be computed. Finally, the converted value of the

achieved IFS of each alternative is calculated, and the best appropriate alternative is

acquired. Two illustrative examples and the comparisons with exsiting approaches are also

used to reflect the effectiveness of the proposed approach.

1 Introduction

Multi-attribute group decision making (MAGDM) is usually used to choose the best alterna-

tive from a group of ones according to the multi-attributes (also called criteria) [1]. The pur-

pose is to help the decision maker (DM) in using a more efficient, rational and explicit

decision tool to fully analyse all the important subjective and objective attributes of the prob-

lem [2–4]. To make the decision results more accurate, researchers began to use fuzzy set the-

ory to study MAGDM problems, and which are widely used in many areas, such as supplier

selection [5, 6], hub location [7] and heat and power economic emission dispatch [8], etc. As

an important component of MAGDM, fuzzy multi-attribute group decision making

(FMAGDM) is a difficult and hot research area [9].

As an extension of fuzzy sets [10], the intuitionistic fuzzy sets approach (IFS)[11] is a pow-

erful instrument to deal with imprecise and imperfect data in MAGDM problems. In recent
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years, many scholars have researched IFSs and used them in many areas, such as decision mak-

ing [12–14], image fusion [15], and other management problems [16–18].

Usually, most the resolution of MAGDM and FMAGDM problem consists of two stages:

aggregation and exploration [14, 19]. In the aggregation stage, top management select appro-

priate language sets based on crisp values or a variety of fuzzy sets, which leads to a MAGDM

or FMAGDM problem. Then, the decision matrices are aggregated into a collective one with

the weights of DMs. In the exploration stage, the collective decision matrix is converted into

the integrated assessment values of alternatives with the weights of attributes and the various

aggregation methods. Fig 1 illustrates the general process of resolving a MAGDM/ FMAGDM

problem [14].

It is easy to see that MAGDM problems with IFSs usually have three common characteris-

tics, including multiple DMs, alternatives and multi-attributes with incomparable units, in

which the DMs’ weights play a key role [2, 4, 20]. DMs cannot be supposed to have enough

professional knowledge to evaluate all sides of the problem, but rather only specific issues [21].

DMs often have different backgrounds with different expertise, personalities and experiences,

which means that the individual DMs are usually not evenly qualified to fairly promote the

whole decision process, and may influence the overall decision result [22–24]. That is, the

DMs’ weights may be different. However, DMs’ weights are usually ignored in the MAGDM

literature [24]. Most of the existing studies often suppose that the weights of the DMs are

known or not taken it into account, and this increases the irrationality in the process [23].

Hence, how to obtain the weights of DMs in MAGDM is an important and interesting

research topic [3, 22, 25].

Many approaches have been proposed to obtain DMs’ weights. For example, Bodily [26]

presented a decision-making term to the initial DMs through measuring the extra preference

value deviations. Brock [27] proposed a Nash bargaining-based method to obtain DMs’ weights

inherently. Ramanathan and Ganesh [21] used the analytic hierarchy process (AHP) approach

to obtain the DMs’ weights, in which each expert gives their evaluation opinions to other

experts. Eklund [28] used a consensus approach to obtain the DMs’ weights. DMs may adjust

their assessment opinions if suggested by a chairman. Xu [29] improved Bodily’s approach to

calculate the DMs’ weights. Xu [30] also proposed some particular formulas to compute the

DMs’ weights. Parreiras et al. [31] established a consensus model to obtain the DMs’ weights.

Wan and Xu [32] presented two approaches to gain the weights of DMs according to the simi-

larity degree. Zhang and Xu [33] established a goal-programming approach to obtain the DMs’

weights. Pérez and Cabrerizo [34] proposed a consensus approach to get the weights of DMs.

Yue [3] proposed a novel approach based on Technique for Order Preference by Similarity to

an Ideal Solution (TOPSIS) and entropy to gain the weights of DMs. Liang et al.[20] presented a

prospect theory-based method to calculate the weights of DMs in GDM, in which DMs’ weights

can be represented using interval numbers, exact numbers and rankings.

In these studies of determining DMs’ weights in MAGDM problems, Yue did more in-

depth research with objective and subjective evaluation information with real numbers, inter-

val numbers, intuitionistic fuzzy sets (IFSs), interval-valued intuitionistic fuzzy sets (IVIFSs),

and other. For instance, Yue [22] determined DMs’ weights with crisp values based on an

improved TOPSIS. In the same year, Yue also extended TOPSIS for determining DMs’ weights

in MAGDM with interval numbers [35] and IVIFS [36]. Yue also proposed a projection

method [2] and a straightforward approach [24] for the determination of the DMs’ weights

with interval data. Yue [37] extended the original TOPSIS to obtain the DMs’ weights with

uncertain information. Yue [38] presented an extended TOPSIS, which was used twice in

MAGDM with multi-attribute interval data; the proposed method was first used to obtain the

DMs’ weights and, second, to sort the order of the alternatives. Yue [39] also presented an
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extended TOPSIS method with a systematic methodology that can obtain the DMs’ weights

without information loss. Yue [40] combined TOPSIS and the optimistic coefficient to deter-

mine the DMs’ weights in MAGDM under the IVIFS environment. Yue [41] improved the

extended TOPSIS technique to obtain DMs’ weights for MAGDM in IFSs.

The abovementioned studies have contributed substantially to obtaining DMs’ weights

under MAGDM and can be divided into two categories [6, 23, 24]. (i) Subjective weighting, It

occurs on the basis of DMs’ subjective comments. The DMs’ weights are often offered ahead of

schedule or by the contrast of differences among DMs via a particular assessment matrix (e.g.,

Delphi, AHP) [21, 28]. In this way, the DMs should comprehend each other, but even then,

the subjectivity and uncertainty is still high. Therefore, scholars have not further researched

this area. (ii) Objective weighting. It occurs just by information offered in each alternative’s

decision matrix. In these studies [29–31, 39–41], the common aspect is that they do not need

to offer another decision matrix for the assessment of DMs, and the DMs’ weights are calcu-

lated only by the information provided in the decision matrix for each alternative. Considering

the objectives and accuracy provides us with a hot study area.

But, through reviewing the literature, we found that the previous researches on the determi-

nation of DMs in MAGDM share something in common, namely, the calculated weight

Fig 1. The process of resolving a MAGDM/ FMAGDM problem.

https://doi.org/10.1371/journal.pone.0212636.g001
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vectors of DMs are generally constant. That is to say, once the weight vector of the DMs is

obtained, its quantitative value will not change throughout the entire computation process.

For example, although our previous studies [6, 23] used TOPSIS, statistical variance (SV) and

simple additive weighting (SAW) to obtain the weights of DMs, the DM weighting method in

the approaches are still always constant. Nevertheless, these existing methods sometimes may

give unreasonable decision results due to the following reasons. First, because each DM’s

knowledge, personal preferences and so on may be quite different from the others, they tend

to have a strong personal bias, which results in higher ratings given to the alternatives that cor-

respond to their preferences and lower evaluations to the ones that they dislike. Second, even if

the weights of the DMs have been confirmed, they may also appear to be obvious errors due to

many “sudden” reasons, such as “he happened to be in a bad mood” or “he was just absent-

minded at that time”. In this case, aggregating the evaluation information will lead to an unfair

or unreasonable decision result. To solve the problem, people often remove the highest and

lowest evaluation values for each alternative and then calculate the final decision result.

Although this method is simple and feasible, it cannot completely solve the problem. For

example, assume there are 30 DMs. Three DMs give significantly higher grades than the others

for an alternative, and two DMs give significantly lower grades. If we remove the highest and

lowest evaluation values, we cannot eliminate two unreasonable evaluation opinions, and the

other unreasonable evaluation opinion(s) still can affect the decision result. Therefore, always

treating the weight vectors of the DMs as constant in the decision process, especially those

decision problems that require repeated evaluations (e.g., singing contest scores), may increase

the irrationality of the final decision result.

Therefore, from the above analysis, we can see that neither the subjective or objective

weighting method can handle the problem very well. Therefore, to solve the above situation,

we propose a novel approach to obtain the DMs’ weights for intuitionistic fuzzy group decision

making based on the variable weights theory [42, 43]. In our approach, the computed weights

of DMs are not constant, but rather they change according to the needs of higher management

or the actual situation. This makes the determination of DMs’ weights more accurate and elim-

inates the influence of unreasonable evaluation opinions on the final decision.

Our method is composed of the following main steps. First, DMs provide their assessment

information based on each attribute with IFSs and compute the weighted decision matrix

according to the intuitionistic fuzzy weighted averaging (IFWA) operator with the prior given

attributes and DMs’ weights. Second, the determination of the DMs’ weights is based on the

variable weighting method, and the conversion of individual decisions to alternative decisions.

Third, the alternatives are ranked.

The article is organized as follows. Section 2 presents the basic concepts of IFSs and variable

weights theory. Based on an extended variable weight vector, Section 3 develops a MAGDM

methodology with intuitionistic fuzzy numbers that can determine the DMs’ weights. Section

4 gives a comparison between our method and other studies. Section 5 presents two illustrative

examples, and Section 6 concludes the article.

2 Preliminaries

In this segment, we will review the basic concepts related to IFSs and variable weights theory.

2.1 Intuitionistic fuzzy sets

Let A be an intuitionistic fuzzy (IF) set in the universe of discourse X, where A = {hxi,μA(xi),
vA(xi)i|xi2X}, and μA and vA are the membership function and the non-membership function

of the membership degree and the non-membership degree of an element, respectively. xi
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belongs to the IF set A, where μA(xi)2[0,1], vA(xi)2[0,1], 0�μA(xi)+vA(xi)�1 and 1�i�m. The

degree of indeterminacy πA(xi) of element xi belonging to the IF set A is equal to 1−μA(xi)
+vA(xi), where πA(xi)2[0,1] and 1�i�m. According to [44], the IF value of element xi belong-

ing to the IF set A is represented by (μA(xi),vA(xi)), where 1�i�m.

Definition 1[44]: Let A and B be two IFSs given as A = {hx,μA(xi),vA(xi)i|xi2X} and B = {hxi,
μB(xi),vB(xi)i|xi2X}, where

A � B, ð8xi 2 XÞmAðxiÞ � mBðxiÞ&vAðxiÞ � vBðxiÞ;

A ¼ B, ð8xi 2 XÞmAðxiÞ ¼ mBðxiÞ&vAðxiÞ ¼ vBðxiÞ;

A [ B, fhxi; mAðxiÞ [ mBðxiÞ; vAðxiÞ \ vBðxiÞijxi 2 Xg;

A \ B, fhx; mAðxÞ \ mBðxÞ; vAðxÞ [ vBðxÞijx 2 Xg; and

An ¼ fhxi; ½mAðxiÞ�
2
; ½vAðxiÞ�

2
ijxi 2 Xg:

Let A and B be two IFSs given as A = {μA(xi),vA(xi)} and B = {μB(xi),vB(xi)}, where k is a real

number greater than 0:

Aþ B ¼ fmAðxiÞ þ mBðxiÞ � mAðxiÞ
�mBðxiÞ; vAðxiÞ

�vBðxiÞg ð1Þ

kA ¼ f1 � ð1 � mAðxiÞ
k
Þ; vAðxiÞ

k
g ð2Þ

dðA;BÞ ¼
1

2
ðjmAðxiÞ � mBðxiÞj þ jvAðxiÞ � vBðxiÞj þ jmBðxiÞ þ vBðxiÞ � ðmAðxiÞ � vAðxiÞÞjÞ ð3Þ

Xu et al. [45] and Xu [46] gave a procedure for ranking IFVs, which can be defined as

follows.

Definition 2[12, 45]: Let A = {μA(xi),vA(xi)} and B = {μB(xi),vB(xi)} be two IFVs; S(A) =

μA(xi)−vA(xi) and S(B) = μB(xi)−vB(xi) be the scores of A and B, respectively; andH(A) = μA(xi)
+vA(xi) andH(B) = μB(xi)+vB(xi) be the accuracy degrees (AD) of A and B. Then,

(1) if S(A)<S(B), then A is smaller than B, which is denoted as A<B;

(2) if S(A) = S(B), then

(a) ifH(A) =H(B), then A and B represent the same information, i.e., μB(xi) = μA(xi) and

vB(xi) = vA(xi), which is denoted as A = B; and

(b) ifH(A)<H(B), then A is smaller than B, which is denoted as A<B.

2.2 Variable weights

The variable weights theory was proposed by Li [43] and Zhang et al. [42]. The basic concept is

as follows [43].

A common multifactor function is the mapping (operator), that is applied in additional

decision-making systems and is as follows:

Mtðx1; x2; . . . xtÞ ¼
X
ðx1; x2; . . . xtÞ¼

D
Xt

k¼1

lkxk ð4Þ

where λk2[0,1](k = 1,2,. . .m) refer to the weighted average or weighted mean, and
Xt

k¼1

lk ¼ 1.

Due to the weights {λk} are constant, the formula represents a constant synthetic weight on the

situation {xk} with respect to relevant factors. Let λ = (λ1,λ2,. . .,λt). Afterwards, the λ is defined
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as the constant weight vector. The constants reflect the strength or relative importance of the

correlative factors.

Refer to the constant weight, the weight vector λ is always fixed, in spite of the essential

structure or configuration of the objective function ϑ(f(u)) = (ϑ1(f1(u)),ϑ2(f2(u)),. . .,ϑt(ft(u))).

The “structure or configuration” denotes the function relationship of u and the vector ϑ(f
(u))’s elements. The constant vector λ in Eq (4) with no changes when X = (x1,x2,. . .,xt) varies.

Hence, the application of constant weights has its limitations. Li [43] gave an example to illus-

trate that the constant vector λ is unfit to apply in all values of X.

Example 1[43]. Assume there are two factors, x1 = feasibility and x2 = necessity, to evaluate

an engineering system. Let the two factors are equally important, i.e.,

l ¼ ðl1; l2Þ ¼ ð0:5; 0:5Þ

Hence, on the basis of Eq (4), the follows are the multifactorial function:

M2ðx1; x2Þ ¼
X
ðx1; x2Þ ¼ 0:5x1 þ 0:5x2

There are two scenarios to consider:

1. the project is entirely viable, but it has very low inevitability; and

2. the project maybe in great need, yet it is not viable.

Generally, we disagree with the project regardless of the circumstances because of the quite

low value of the project.

Numerically, let X = (0.1,0.9)2X(f1)×X(f2) and X� = (0.5,0.5)2X(f1)×X(f2). Afterwards, we would

expectM2(X)<<M2(X�) in most cases. However, if we use the constant weight vector, we have

M2ðx1; x2Þ ¼ 0:5x1 þ 0:5x2

This consequence contradicts ordinary perceptions.

To overcome these disadvantages in the constant weights method, Li [43] and Zhang et al.

[42] put forward the idea of the variable weights theory. The axioms and definition of the vari-

able weights are as below.

Definition 3 [42, 43]: A set of n-dimensional variable weights with a penalty is a set of t-ary

mappings

λk:[0,1]t![0,1]t

(x1,x2,. . .,xt)7!λk(x1,x2,. . .,xt)
that meet the below axioms:

λ.1). NORMALITY.
Xt

k¼1
lkðx1; x2; . . . ; xtÞ ¼ 1;

λ.2). CONTINUITY. λk(k = 1,2,. . .,t) is continuous in the t-dimensional space; and

λ.3). PENALTY. λk(x1,x2,. . .,xt) is monotonically decreasing according to xk(k = 1,2,..,t).
Let λ(x) = (λ1(x),(λ2(x),. . .,λt(x)), and we define it with the variable weight vector with a

penalty. If we change λ.3) to meet the condition that λk(x1,x2,. . .,xt) is monotonically increas-

ing according to xk(k = 1,2,..,t), we define it as the variable weight vector with a reward.

To capture the varying rule of weights, the axiomatic definition of the state variable weight

vector was modified in the literature as follows.

Definition 4: A mapping

S : ½0; 1�
t
! ½0; 1�

t

X! SðXÞ ¼ ðS1ðXÞ; . . . ; StðXÞÞ

Variable weights theory and its application to multi-attribute group decision making
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where Sk:[0,1]t![0,1]t and X!Sk(X) is defined as an (t-dimensional) state variable weight vec-

tor with a penalty if S satisfies the following axioms:

s.1). xa�xb!Sa(X)�Sb(X),

s.2). Sa(x1,x2,. . .,xt) is continuous according to each variable xb(a,b = 1,2,. . .,t), and

s.3). it satisfies the variable weight vector acquired from Eq (5) as

lðxÞ ¼
l�SðXÞ

Xt

k¼1
lkSkðXÞ

ð5Þ

Eq (5) satisfies axioms λ.1) -λ.3) in Definition 3, where λ = (λ1,λ2,. . .,λt) is a constant weight

vector and λ�S(X) = (λ1S1(X),. . .,λt�St(X)).

If we change s.1) to meet the conditions that xa�xb!Sa(X)�Sb(X) and λk(x1,x2,. . .,xt) is

monotonically increasing according to xk(k = 1,2,. . .,t), we call it the state variable weight vec-

tor with a reward.

3. The proposed method

The proposed approach performs the below three steps: (1) Preparatory stage. In the prepara-

tory stage, DMs present their assessment information based on each attribute using intuitio-

nistic fuzzy numbers and establish the decision matrix. Then, we compute the weighted

decision matrix based on the IFWA operator with the prior given attributes and DMs’ weights.

(2) Computation stage. In the computation stage, a variable weighting approach is proposed to

obtain the DMs’ weights. After that, we aggregate the decision matrix based on the IFWA

operator and work out the composite fuzzy scores of individual alternatives. (3) Decision

stage. In the end, in the decision stage, the most desired alternatives are then selected with the

crisp values of composite scores, which are calculated by the accuracy degrees operator (ADO)

of IFSs from Definition 2. Fig 2 represents the computational process of the proposed

approach.

3.1 Notations and definitions

LetM = {1,2,. . .,m}, N = {1,2,. . .,n} and T = {1,2,. . .,t}, where i2M,j2N,k2T. Let A = {A1,A2,. . .,

Am} (m�2) be a discrete set of m feasible alternatives, U = {u1,u2,. . .,un} be a finite set of attri-

butes, and D = {d1,d2,. . .,dt} be a group of DMs.

Specifically, the following notations are defined:

M:M = {1,2,. . .,m}, where i2M;

N: N = {1,2,. . .,n}, where j2N;

T: T = {1,2,. . .,t}, where k2T;

A: A = {A1,A2,. . .,Am} (m�2) denotes a discrete set ofm feasible alternatives;

U: U = {u1,u2,. . .,un} denotes a finite set of attributes;

D: D = {d1,d2,. . .,dt} denotes a group of DMs;

λk: λk(k=1,2,. . .,t) denotes the initial DMs’ weights;

q: q = (q1,q2,. . .,qt) denotes the accuracy degrees;

λ(q): λ(q) = (λ1(q),λ2(q),. . .,λt(q)) denotes the variable weight vector;

3.2 Collection of assessment information and construction of the decision

matrices

An MAGDM with IFSs can be described as follows.

Variable weights theory and its application to multi-attribute group decision making
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Let

Xk ¼ ðx
k
ijÞm�n ¼

A1

A2

..

.

Am

u1 u2 � � � un

ðmk
11
; vk

11
Þ ðmk

12
; vk

12
Þ � � � ðmk

1n; v
k
1nÞ

ðmk
21
; vk

21
Þ ðmk

22
; vk

22
Þ � � � ðmk

2n; v
k
2nÞ

..

. ..
. ..

. ..
.

ðmkm1
; vkm1
Þ ðmkm2

; vkm2
Þ � � � ðmkmn; v

k
mnÞ

2

6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
5

ð6Þ

Fig 2. The conceptual framework of the proposed method.

https://doi.org/10.1371/journal.pone.0212636.g002
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In the field of MAGDM research, many scholars have realized that DMs’ weights play a key

role in MAGDM problems [23, 38, 41]. Therefore, we focus on how to determine the DMs’

weights.

First, we need to compute the weighted decision matrix xki based on the IFWA operator

[46]:

IFWAðxki1; x
k
i2; . . . ; xkinÞ ¼ �

n

j¼1

xkijwj ¼ 1 �
Yn

j¼1

ð1 � mkijÞ
wj ;
Yn

j¼1

ðvkijÞ
wj

 !

ð7Þ

where w1, w2,. . ., and wj are the given attribute weights, and they meet the conditions
Xn

j¼1

wj ¼1 and wj2[0,1]

Example 2. Let

D1 ¼
A1

A2

A3

u1 u2 u3

ð0:6; 0:3Þ ð0:1; 0:5Þ ð0:3; 0:4Þ

ð0:4; 0:1Þ ð0:6; 0:1Þ ð0:2; 0:3Þ

ð0:1; 0:5Þ ð0:5; 0:3Þ ð0:6; 0:2Þ

2

6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
5

;D2 ¼

A1

A2

A3

u1 u2 u3

ð0:5; 0:4Þ ð0:6; 0:3Þ ð0:4; 0:6Þ

ð0:7; 0:4Þ ð0:3; 0:6Þ ð0:4; 0:5Þ

ð0:8; 0:1Þ ð0:4; 0:5Þ ð0:3; 0:3Þ

2

6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
5

;

D3 ¼
A1

A2

A3

u1 u2 u3

ð0:3; 0:6Þ ð0:1; 0:5Þ ð0:5; 0:4Þ

ð0:6; 0:3Þ ð0:4; 0:2Þ ð0:5; 0:1Þ

ð0:3; 0:4Þ ð0:3; 0:4Þ ð0:5; 0:4Þ

2

6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
5

; and w ¼ ½ 0:35 0:34 0:31 �

be three intuitionistic fuzzy sets and the attribute weights. Then, x3
3

can be calculated by Eq (7)

as follows:

x3

3
¼
A1

A2

A3

d1 d2 d3

ð0:372; 0:390Þ ð0:510; 0:411Þ ð0:313; 0:497Þ

ð0:429; 0:141Þ ð0:504; 0:492Þ ð0:508; 0:186Þ

ð0:427; 0:316Þ ð0:572; 0:243Þ ð0:369; 0:400Þ

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

3.3 Obtaining the DMs’ weights based on variable weights theory

First, let λk(k=1,2,. . .,t) denote the prior DMs’ weights based on the opinions from interview-

ing the senior DM. We called it the initial DMs’ weights, which meet
Xt

k¼1

lk ¼1 and λk2[0,1].

Then, let q(q1,q2,. . .,qt) be the accuracy degrees of xki , which are calculated by Definition 2,

where qk2[0,1]l. In addition, let λ(q) = (λ1(q),λ2(q),. . .,λt(q)) be the variable weight vector
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shown as follows:

lkðqÞ ¼ lk þ glk
Xt

k¼1

ðmk þ vkÞlk � ðm
k þ vkÞ

 !

: ð8Þ

where k = 1,2,. . .,t; �q ¼
Xt

k¼1

ðmk þ vkÞlk; qk = (μk+vk) and parameter γ satisfy:

1

min
q2½0;1�t

min
1�k�t
ðqk � �qÞ

� g <
1

max
q2½0;1�t

max
1�k�t
ðqk � �qÞ

ð9Þ

Theorem 1: λ(q) is a variable weight vector. When γ>0, λ(q) is the variable weight vector

with a penalty; when γ<0, λ(q) is variable weight vector with a reward.

Proof.

Obviously, λ(q) satisfies the continuity in Definition 3. If

0 � g �
1

max

q 2 ½0; 1�t

max

1 � k � t
ðqk � �qÞ

:

for q2[0,1]t, when ð�q � qkÞ � 0, we can obtain lkðqÞ ¼ ð1þ gð�q � qkÞÞlk � 0. When

ð�q � qkÞ < 0, it gives

lkðqÞ ¼ ð1þ gð�q � qkÞÞlk � 1þ
�q � qk

max

q 2 ½0; 1�t

max

1 � k � t
ðqk � �qÞ

0

B
B
B
B
B
@

1

C
C
C
C
C
A

lk � 1þ
�q � qk
qk � �q

� �

lk

¼ 0:

Because
Xt

k¼1
lkðqÞ ¼

Xt

k¼1
ð1þ gð�q � qkÞÞlk ¼

Xt

k¼1
lk þ g �q

Xt

k¼1
lk �

Xt

k¼1
qklk

� �

¼ 1, λ(q)

satisfies the normality in Definition 3.

Because γλk(q)/γλk = γ(qk−1)<0, λk(q) is monotonically decreasing with variable qk. That is,

λ(q) is a variable weight vector with a penalty.

In addition,
laðqÞ
la
¼ 1þ g

X

a6¼b

qblb þ gðla � 1Þqb is clearly monotonically decreasing about

qb and thus meets Definition 4.

Let

SkðqÞ ¼
1þ gð�q � qkÞ

tð1þ g�qÞ �
Xt

k¼1

qk

; k ¼ 1; 2; . . . t ð10Þ

Based on Definition 4, S(q) =(S1(q),S2(q),. . .St(q)) is the penalty variable weight vector of λ
(q).

The same theory proves that when

1

min

q 2 ½0; 1�t

min

1 � k � t
ðqk � �qÞ

� g < 0;
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λ(q) is a reward variable weight vector, which is defined as Definition 3, and S(q) is also a state

variable weights vector with a reward because its form is the same as Eq (10).

According to Theorem 1, when γ<0, λ(q) is a variable weight vector with a penalty; when

γ>0, λ(q) is a variable weight vector with a reward; and when γ = 0, λ(q) = λ is the initial given

weight. This reflects that we can obtain diverse variable weight vectors when we regulate the

parameters accordingly, which provides a great convenience in practical use.

3.4 Computing the comprehensive evaluation value

After the DMs’ weights are computed, then we can compute the comprehensive evaluation

value based on the IFWA operator [46], using (11) as follows:

IFWAðx1

i ; x
2

i ; . . . ; xtiÞ ¼ �
t

k¼1
xki lkðqÞ ¼ 1 �

Yt

k¼1

ð1 � mki Þ
lkðqÞ;

Yt

k¼1

ðvki Þ
lkðqÞ

 !

ð11Þ

Now, we can sort the alternatives Ai(i2m) according to Si(i2m) in descending order accord-

ing to Definition 2.

Si ¼ mi � vi ð12Þ

3.5 Main steps of the proposed method

The primary steps of the proposed method are summarized as follows:

Step 1. Construct the individual decision matrix ðxkijÞm�n in groups by Eq (6),

Step 2. Compute the weighted normalized decision matrix xki by Eq (7) with the prior given

attributes and the DMs’ weight vectors wkj and λk,
Step 3. Determine the DMs’ weights by using Eqs (8–10),

Step 4. Compute the collective group decision by Eq (11) with the obtained weight vector

λk(q) of the DMs, and

Step 5. Rank all the alternatives according to the value of Si by using Eq (12).

4. Comparison between the existing related approaches

As mentioned in the introduction section, many studies researched the acquisition of the

DMs’ weights in MAGDM problems with real numbers, interval numbers, IFSs, IVIFs, and

others [23, 29, 39–41]. The existing methods can be divided into two categories [23, 24]: (i)

Subjective weighting, which occurs on the basis of the DMs’ subjective comments; and (ii)

Objective weighting, which occurs on the basis of the information that is offered in the deci-

sion matrix for each alternative for certain attributes.

In the literature review on the acquisition of DMs’ weights over the past decades, the objec-

tive weighting approaches gained more attention in comparison to subjective weighting meth-

ods. With regard to objective weighting methods, Yue et al. did more in-depth research on this

problem [38, 40, 41]. They developed a TOPSIS approach to obtain the DMs’ weights and

define the positive ideal solution as the average of the evaluation information. The negative

ideal solution included two aspects, the right and left negative ideal solutions, which are the

maximum and minimum matrices of the group decision information, respectively. Then, they

combined the approach with other methods (e.g., projection, straightforward, optimistic coef-

ficient, etc.) under MAGDM with real numbers, interval numbers, IFs, IVIFs, and others [24,

36, 39]. However, in Yue’s approach, once the weight vector of the DMs is computed, its

numerical value will no longer change. As mentioned in the introduction, always treating the

weight vector of DMs as a constant value may cause the end decision result to be irrational,
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especially in those decision problems requiring repeated evaluations (e.g., singing contest

scores).

Compared with the subjective weighting methods [21, 28], our method is more objective

(the computation of the variable weight in our method is based on the decision matrix of the

alternatives) and it does not lose the subjective opinions (the prior given DMs’ weights are

based on subjective preferences). Therefore, our method is to some extent more accurate than

the subjective weighting approaches. Table 1 represents the comparisons between our method

and two kinds of existing related approaches.

The primary difference between the proposed approach and other approaches is that the

DMs’ weights are not constant in the decision process once they are calculated, but they

change according to the needs of top management or the actual situation. In the proposed

approach, the weight vector of DMs is defined as a variable weight vector. In addition, we add

adjustable parameters to the variable weight vector to measure the capability of changing

weights. Compared with existing methods, our method can reflect the preferences of top man-

agement to the DMs and give adjustment space for aggregating the evaluation information

when some DMs give obviously unreasonable opinions. Fig 3 illustrates the hierarchical struc-

ture of our method.

5. Illustrative examples

Two numerical examples are applied to compare and discuss the decision results of the pro-

posed method computed in the methods presented in Yue [41]’s and Chen et al [47]’s studies.

Example 1: adapted from Yue [41]:

An annual report is needed to assess satisfaction in regard to leadership at Chinese universi-

ties. Let the alternatives A1, A2, A3, and A4 be four leaders of a university in Guangdong,

China, namely, the headmaster and three vice-headmasters, whose opinions would be

assessed. There are three groups of the various staff, including teachers (d1), scholars (d2) and

students (d3), who are the DMs (evaluators) for the grading. There are three attributes u1, u2
and u3 that are used to evaluate the alternatives A1, A2, A3, and A4, as shown below:

1. u1=working experience,

2. u2=academic performance, and

3. u3=personality.

Suppose that the decision matrices X1, X2 and X3 are represented by IFs given by the deci-

sion makers d1, d2 and d3, respectively and are shown in Table 2.

Table 1. Comparisons between our approach and the two related approaches.

Characteristics Objective weighting methods Subjective weighting

methods

This paper

Proposed by [2, 22, 24, 35–41] Proposed by [21, 28]

Decision information Interval numbers, intuitionistic fuzzy sets (IFSs) and

interval-valued intuitionistic fuzzy sets (IVIFSs)

Crisp values Intuitionistic fuzzy sets (IFSs)

Weight of DM Derived from individual decisions A priori given Derived from the combination of the a priori

and a posteriori variable weight vectors

Whether the Weight of the DM is

variable or constant

Constant Constant Variable

Decision results Ranking the order of alternatives Ranking the order of

alternatives

Ranking the order of alternatives

https://doi.org/10.1371/journal.pone.0212636.t001
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Suppose that the initial weights λ1, λ2 and λ3 of the DMs d1, d2 and d3 are 0.33, 0.34 and

0.33, respectively. Suppose that the attribute weights u1, u2 and u3 given by the DMs d1 are 0.4,

0.2 and 0.4, respectively, i.e., w1
1
¼ 0:4, w1

2
¼ 0:2 and w1

3
¼ 0:4. Suppose that the weights of the

attributes u1, u2 and u3 given by the DMs d2 are 0.3, 0.3 and 0.4, respectively, i.e., w2
1
¼ 0:3,

w2
2
¼ 0:3 and w3

3
¼ 0:4. Assume that the weights of attributes u1, u2 and u3 given by the DMs

d3 are 0.4, 0.4 and 0.2, respectively, i.e., w3
1
¼ 0:4, w3

2
¼ 0:4 and w3

3
¼ 0:2.

【Step1】: Based on the decision matrices d1, d2 and d3 and the weights of the attributes

given by the DMs, we can obtain the weighted (on attributes) score matrices xki by Eq (7), as

shown in Table 3:

【Step2】: Based on Eq (8) and Eq (9), we can obtain the range of γ as

� 7:20 � g � 9:46

Fig 3. Hierarchical structure of the proposed method.

https://doi.org/10.1371/journal.pone.0212636.g003
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Assume that γ = −7.2, γ = 0 and γ = 9.46. The reason why we choose the extreme values (-7.2

and 9.46) is that we want to examine the extreme effect of the variable weight in the range of

the permit. Then, we can obtain the respective weights of the DMs in different situations, as

shown in Table 4.

【Step3】: Based on Eq (11), we construct the aggregated decision matrices in different sit-

uations, which is shown as Table 5.

【Step4】: Based on Eq (12), we rank all the alternatives in different situations, as shown

in Table 6.

Table 7 represents a comparison of the ranking order of the alternatives in different

approaches.

As shown above, with the proposed approach, when γ = 0 and γ =9.46, Xu [48]’s method,

Yue [41]’s method and Chen et al. [47]’s method acquire the same preference order of the

alternatives, i.e., A2>A3>A4>A1; however, Zeng and Su [49]’s method cannot handle Example

1 because it does not permit the attributes to have different weights allocated by different

DMs. However, we find that the preference order of the alternatives is different (e.g.,

A2>A3>A1>A4) when γ = −7.2. Therefore, the calculation result suggests that through the

adjustment of the parameter, top management can adjust the preferences to DMs according to

the parameter @, and this may affect the final decision result. Apparently, via the above discus-

sion, we can draw a conclusion that the variable weight based weighting approach can to some

extent amend the unreasonable sorting results with effect by adjusting the DMs weights, espe-

cially when the prior given DMs weights are unconscionable. By adjusting different parame-

ters, the variable weight vector of the DMs also can efficient reflect the differences of each

DM’s knowledge, personal preferences and so on, which will lead to more scientific decisions.

Table 2. Three score attribute matrices.

Experts’ Alternatives Attribute

assessment u1 u2 u3
d1 A1 (0.36,0,27) (0.53,0.28) (0.57,0.22)

A2 (0.72,0.28) (0.91,0.07) (0.80,0.10)

A3 (0.63,0.19) (0.88,0.12) (0.86,0.14)

A4 (0.65,0.33) (0.72,0.23) (0.77,0.23)

d2 A1 (0.53,0.26) (0.54,0.35) (0.68,0.32)

A2 (0.85,0.15) (0.86,0.13) (0.69,0.30)

A3 (0.83,0.16) (0.76,0.24) (0.73,0.13)

A4 (0.90,0.07) (0.91,0.03) (0.66,0.12)

d3 A1 (0.81,0.18) (0.76,0.24) (0.74,0.19)

A2 (0.75,0.16) (0.84,0.11) (0.97,0.03)

A3 (0.89,0.11) (0.78,0.21) (0.74,0.11)

A4 (0.66,0.18) (0.63,0.27) (0.71,0.29)

https://doi.org/10.1371/journal.pone.0212636.t002

Table 3. Three weighted (on attributes) scores matrices.

Alternatives Decision maker

d1 d2 d3
A1 (0.487,0.251) (0.600,0.309) (0.778,0.204)

A2 (0.805,0.141) (0.804,0.190) (0.863,0.114)

A3 (0.800,0.153) (0.773,0.166) (0.828,0.142)

A4 (0.717,0.266) (0.842,0.067) (0.659,0.233)

https://doi.org/10.1371/journal.pone.0212636.t003
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Example 2: adapted from Chen et al [47]:

An investment corporation intends to invest a sum of money in the best firm. There are

three alternatives firm A1, A2 and A3 to be evaluated as follows:

1. A1: a car firm,

2. A2: a TV firm, and

3. A3: a food firm.

Three attributes u1, u2 and u3 are to be used to evaluate the three alternatives A1, A2 and A3
by the three DMs, i.e., the director (d1), the manager (d2) and the assistant manager (d3), as

shown below:

1. u1: the risk criterion,

2. u2: the growth criterion, and

3. u3: the environmental impact criterion.

Table 4. The weights of the DMs in different situations.

Different Alternatives The weights of the DMs

parameters d1 d2 d3
γ = −7.2 A1 0.000 0.419 0.581

A2 0.266 0.391 0.343

A3 0.328 0.304 0.368

A4 0.460 0.294 0.245

γ = 0 A1 0.330 0.340 0.330

A2 0.330 0.340 0.330

A3 0.330 0.340 0.330

A4 0.330 0.340 0.330

γ = 9.46 A1 0.764 0.237 0.000

A2 0.414 0.273 0.313

A3 0.333 0.387 0.280

A4 0.159 0.400 0.441

https://doi.org/10.1371/journal.pone.0212636.t004

Table 5. Three individual weighted (on attributes and DMs) decision matrices.

Different Alternatives The aggregated decision matrix

parameters

γ = −7.2 A1 (0.716, 0.321)

A2 (0.827,0.259)

A3 (0.803,0.244)

A4 (0.751,0.321)

γ = 0 A1 (0.642,0.315)

A2 (0.826,0.238)

A3 (0.801,0.259)

A4 (0.753,0.377)

γ = 9.46 A1 (0.516,0.308)

A2 (0.825,0.212)

A3 (0.798,0.281)

A4 (0.757,0.398)

https://doi.org/10.1371/journal.pone.0212636.t005
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The decision matrices X1, X2 and X3 given by the decision makers d1, d2 and d3, respectively,

are shown in Table 8.

Suppose that the weights λ1, λ2 and λ3 of the DMs d1, d2 and d3 are 0.36, 0.32 and 0.32,

respectively. Suppose that the weights of the attributes u1, u2 and u3 given by the DMs are 0.01,

0.49 and 0.50, respectively, i.e., w1 = 0.01, w2 = 0.49 and w3 = 0.50.

【Step1】: Based on the decision matrices d1, d2 and d3 and the weights of the attributes

given by the DMs, we can get the weighted (on attributes) scores matrices xki by Eq (7), as

shown in Table 9.

【Step2】: Based on Eq (8) and Eq (9), we can obtain the range of γ as

� 4:53 � g � 6:73

Assume that γ =-4, γ = 0 and γ = 4. The reason why we choose modest values (-4, 0 and 4) is

because example 1 has examined the effect of extreme values, and the purpose of example 2 is

to examine a modest effect of the variable weight in the permitted range. Then, we can get the

weights of the DMs in different situations, as shown in Table 10.

【Step3】: Based on Eq (11), we establish the aggregated decision matrix in different situa-

tions, as shown in Table 11.

【Step4】: Based on Eq (12), we rank all the alternatives in different situations, as shown

in Table 12.

Table 13 shows a comparison of the order of the alternatives for different approaches. As

shown above, the interesting thing is that with the proposed method, when γ = −4 and γ = 0,

Xu [48]’s method, Zeng and Su [49]’s method and Chen et al. [47]’s method have the same

preference order of the alternatives, i.e. A3>A1>A2. In addition, with the proposed method,

when γ = 4, Yue [41]’s method has the same preference order, i.e. A1>A3>A2. Hence, the cal-

culation result further explains that through the adjustment of the parameters, the proposed

method can effectively reflect the various decision results by Xu [48], Yue [41], Zeng and Su

[49] and Chen et al. [47]’s methods. As in example 1, the proposed approach also can obtain

different decision results by adjusting different parameters. By setting disparate parameters,

some of the ranking orders are the same as the existing studies, while some new ranking order

are also obtained. Therefore, through the comprehensive analysis of example 1 and example 2,

Table 6. A comparison of the orders of the alternatives of Example 1 for different parameters.

Different parameters A1 A2 A3 A4

γ = −7.2 3 1 2 4

γ = 0 4 1 2 3

γ = 9.46 4 1 2 3

https://doi.org/10.1371/journal.pone.0212636.t006

Table 7. A comparison of the orders of the alternatives of Example 1 for different methods.

Methods Preference order

Xu [48] A2>A3>A4>A1

Yue [41] A2>A3>A4>A1

Zeng and Su [49] N/A

Chen et al. [47] A2>A3>A4>A1

The proposed method γ = −7.2 A2>A3>A1>A4

γ =0 A2>A3>A4>A1

γ = 9.46 A2>A3>A4>A1

https://doi.org/10.1371/journal.pone.0212636.t007
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we have once again analyzed the effectiveness of the proposed variable weight based weighting

method for DMs in MAGDM problem with IFS.

6 Conclusions

The MAGDM is an important decision tool for complex issues, and intuitionistic fuzzy infor-

mation is appropriate for dealing with the ambiguities and imprecision inherent in MAGDM

problems[41]. Many approaches have been proposed for the solution with different types of

decision information. However, in the existing methods, once the weight vector of DMs is

computed, its numerical value no longer changes. The weight vector of DMs is always con-

stant. Therefore, this paper presents a novel variable weight vector-based approach to obtain

the weights of DMs for MAGDM with IFSs. In this approach, we use the variable weights the-

ory to determine the weights of DMs and add an adjustable parameter to measure the capabil-

ity of changing weights. Finally, the decision opinions for every alternative offered by each

DM is aggregated into a composite assessment value according to the IFWA operator, and the

most satisfying alternative is selected.

This proposed method extends the current research in two ways. (1) Unlike most existing

studies that treat the weights of DMs as a constant vector [23, 29, 30, 38, 40, 41], this paper

treats them as a change vector and proposes a novel method for its determination based on

variable weights theory [42, 43]. As above, our approach can effectively reduce the irrationali-

ties on the results of decision-making cause by the constant DMs’ weight vector methods and

is very suitable for those decision problem requiring repeated evaluations (e.g., singing contest

score). (2) In order to measure the degree of change, we also introduce adjustable parameters

to the variable weight vector, and which can comprehensive manifest the preferences of senior

managers to DMs, and offers room to adjust for aggregating assessment information when

some DMs provide apparentlyunreasonable suggestions. Hence, by taking into account both

the changing weights and preferences of the top management to DMs, our approach can make

Table 8. Three scores matrices of attributes.

Experts’ Alternatives Attribute

assessment u1 u2 u3
d1 A1 (0.80,0) (0.50,0.30) (0.50,0.20)

A2 (0.85,0.01) (0.85,0.15) (0.80,0.10)

A3 (0.99,0.01) (0.90,0.05) (0.85,0.05)

d2 A1 (0.10,0.90) (0.15,0.70) (0.20,0.60)

A2 (0.20,0.65) (0.35,0.60) (0.30,0.50)

A3 (0.25,0.01) (0.50,0.40) (0.40,0.40)

d3 A1 (0.05,0.95) (0.20,0.75) (0.15,0.65)

A2 (0.15,0.80) (0.40,0.60) (0.30,0.60)

A3 (0.35,0.60) (0.50,0.40) (0.35,0.50)

https://doi.org/10.1371/journal.pone.0212636.t008

Table 9. Three weighted (on attributes) scores matrices.

Alternatives Decision maker

d1 d2 d3
A1 (0.505,0) (0.175,0.650) (0.174,0.700)

A2 (0.827,0.119) (0.324,0.548) (0.350,0.602)

A3 (0.880,0.880) (0.450,0.386) (0.4280.449)

https://doi.org/10.1371/journal.pone.0212636.t009
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Table 10. The weights of DMs in different situations.

Different Alternatives DMs’ weights

parameters d1 d2 d3
γ = −4 A1 0.042 0.447 0.510

A2 0.392 0.254 0.355

A3 0.427 0.260 0.313

γ = 0 A1 0.360 0.320 0.320

A2 0.360 0.320 0.320

A3 0.360 0.320 0.320

γ = 4 A1 0.678 0.193 0.130

A2 0.328 0.386 0.285

A3 0.293 0.380 0.327

https://doi.org/10.1371/journal.pone.0212636.t010

Table 11. Three individual weighted (on attributes and DMs) decision matrices.

Different Alternatives The aggregated decision matrix

parameters

γ = −4 A1 (0.192,0)

A2 (0.609,0.273)

A3 (0.710,0.175)

γ = 0 A1 (0.313,0)

A2 (0.591,0.276)

A3 (0.678,0.203)

γ = 4 A1 (0.416,0)

A2 (0.573,0.278)

A3 (0.644,0.235)

https://doi.org/10.1371/journal.pone.0212636.t011

Table 12. A comparison of the orders of the alternatives of Example 2 for different parameters.

Different parameters A1 A2 A3

γ = −4 3 2 1

γ = 0 3 2 1

γ = 4 1 3 2

https://doi.org/10.1371/journal.pone.0212636.t012

Table 13. A comparison of the orders of the alternatives of Example 2 for different methods.

Methods Preference order

Xu [48] A3>A1>A2

Yue [41] A1>A3>A2

Zeng and Su [49] A3>A1>A2

Chen et al. [47] A3>A1>A2

The proposed method γ = −4 A3>A1>A2

γ = 0 A3>A1>A2

γ = 4 A1>A3>A2

https://doi.org/10.1371/journal.pone.0212636.t013
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the rank results more rational than the existing subjective and objective weighting approaches

for determining DMs’ weights in MAGDM with IFSs.

This study enriches the methodology and theory for determining DMs’ weights in

MAGDM with IFSs, and also has below practical implications: (1) Our method takes full

advantage of experts. By applying variable weights theory in FMAGDM, our study can effec-

tively avoid irrationalities caused by DM’s knowledge and personal preferences bias. We also

add adjustable parameters in decision process, which making the final chosen solution more

reasonable and scientific; (2) Our study offers universality and practicability. The analysis of

illustrative examples prove the universality and practicability of our approaches, and it can be

integrated with other approaches for apply in a variety of decision-making problems, such as

partner selection, facility location, etc.

Although the available study results, there is work remaining to be done in the future. First,

this study only focuses on the determination of DMs weights in MAGDM, and future work

should pay more attention to the determination of attributes weights to make the proposed

method more comprehensively. Second, future work should also focuses on develop new

aggregation methods to make the evaluation information aggregation phase more efficient.

Finally, the language set of this study is in the form of intuitionistic fuzzy numbers, and future

work should be implement to support other language sets, such as interval-valued intuitionis-

tic fuzzy numbers, rough sets or vague sets and so on.
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