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Abstract

Disturbance regimes have a major influence on the baseline carbon that characterizes any

particular ecosystem. Often regimes result in lower average regional baseline C (compared

to those same systems if the disturbance processes were lessened/removed). However, in

infrequently disturbed systems the role of disturbance as a “background” process that influ-

ences broad-scale, baseline C levels is often neglected. Long-term chronosequences sug-

gest disturbances in these systems may serve to increase regional biomass C stocks by

maintaining productivity. However, that inference has not been tested spatially. Here, the

large forested system of southeast Alaska, USA, is utilized to 1) estimate baseline regional

C stocks, 2) test the fundamental disturbance-ecosystem C relationship, 3) estimate the

cumulative impact of disturbances on baseline C. Using 1491 ground points with carbon

measurements and a novel way of mapping disturbance regimes, the relationship between

total biomass C, disturbance exposure, and climate was analyzed statistically. A spatial

model was created to determine regional C and compare different disturbance scenarios. In

this infrequently disturbed ecosystem, higher disturbance exposure is correlated with higher

biomass C, supporting the hypothesis that disturbances maintain productivity at broad

scales. The region is estimated to potentially contain a baseline 1.21–1.52 Pg biomass C

(when unmanaged). Removal of wind and landslides from the model resulted in lower net C

stocks (-2 to -19% reduction), though the effect was heterogeneous on finer scales. There

removal of landslides alone had a larger effect then landslide and wind combined removal.

The relationship between higher disturbance exposure and higher biomass within the broad

ecosystem (which, on average, has a very low disturbance frequency) suggest that distur-

bances can serve maintain higher levels of productivity in infrequently disturbed but very C

dense ecosystems. Carbon research in other systems, especially those where disturbances

are infrequent relative to successional processes, should consider the role of disturbances

in maintaining baseline ecosystem productivity.
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Introduction

Disturbance processes, like fires, windstorms, and landslides are ubiquitous and present in all

ecosystems [1, 2] and critical to carbon cycling [3]. They trigger rapid change in resources

availability, short term carbon loss [4], and reorganization of the ecological community [5].

Individual biomes and ecosystems generally have a characteristic suite of disturbance pro-

cesses operating on varying spatial and temporal scales, and individual ecosystems can be

maintained by characteristic disturbance regimes [6]. While historical systems may have had

some sort of characteristic C stock value which incorporated the historical disturbance regime,

e.g. [7], climate change is rapidly altering the drivers of disturbances, increasing or decreasing

their frequency, intensity, and subsequent severity. Novel disturbance processes and new inter-

actions between historical disturbances are also emerging [8]. As a result, understanding the

fundamental relationship between disturbances and carbon is important to projecting the

magnitude and even the direction of future changes in carbon stocks.

Knowledge of how disturbances alter ecosystem C stocks from short to long time scales has

advanced considerably over past decades. Long-term data, paleoecological reconstructions of

historical disturbances, e.g., [9], and real-time flux measurements [4] have allowed for precise

understandings of C loss, recovery, and net change. However, most studies have been con-

ducted in single disturbance scenarios. Our knowledge of multiple disturbances and their

interactive effects on C stocks and trajectories is much more limited [8, 10].

Over relatively short time spans, and holding other factors constant, relative differences in

C stocks are driven by the mean return interval of a disturbance and the time required to

recover lost C from that disturbance [11, 12]. If disturbances are frequent (occur prior to the

recovery of C lost in earlier events), the cumulative effect would be C stocks less than the

“potential” maximum C stocks, e.g. [13]. Very long-term chronosequences, however, suggest

that at millennial or longer return intervals the relationship between disturbances and baseline

ecosystem C is reversed [14], where baseline means average C densities across multiple sites.

Undisturbed ecosystems sometimes display retrogression, where soil nutrient availability

declines [15] result in lowered ecosystem productivity and potentially biomass C [16], for

example through paludification [17]. Disturbance events can also serve to increase nutrient

availability by rapidly decomposing and releasing nutrients sequestered in live or dead biomass

[18, 19] (but see [20]), disrupting impermeable soil layers [21, 22], exposing unweathered par-

ent material [23], or providing openings for early successional, N-fixing species [24]. Overall,

intermediate frequencies of disturbance may result in more productive forests [25] and poten-

tially higher overall C than in the absence of disturbance events. So what is the fundamental

role of disturbance frequency in ecosystem C balance?

The prediction of lowered C at both very high disturbance frequencies and very low distur-

bance frequencies results in the expectation of maximal “baseline” biomass for a given ecosys-

tem occurring at relatively intermediate levels of disturbance frequencies when examined over

very long periods of time [11, 16]. Time between disturbance events would be long enough

(on average) that biomass stocks could re-accumulate after any given disturbance event, but

not so long as to result in hydrologically driven productivity declines, nutrient limitations, or

other retrogressive process.

Support for the “disturbance-baseline C hypothesis,” that an intermediate level of distur-

bance promotes higher baseline biomass, is typically inferred from chronosequences [14, 16]

or paleo ecological studies [11, 22]. An alternative method involves investigating biomass and

ecosystem functions along an exposure gradient. Similar to a chronosequences varying time

via space, this method varies disturbance frequency as a function of space.

Disturbances and spatial C
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Our goal here is to test the disturbance-baseline C hypothesis, and in particular the untested

expectation that areas of very infrequent disturbance will have less baseline C than areas with

intermediate frequency disturbance events, indicating that the disturbance process is influen-

tial in maintaining long-term productivity and higher biomass levels. It is difficult to generate

long-term, spatially explicit records of disturbance frequencies. Many disturbance types inter-

act directly with landscape composition and structure, shaping the relative frequency and dis-

turbance intensity themselves (e.g., fire and vegetation feedbacks).

Site

The temperate rainforests of southeast Alaska avoid these difficulties. The disturbance regime

is spatially stable with little confounding effects. Event size is small relative to landscape size

and recovery rapid relative to return interval, so the assumption that recent large events are

unlikely to be driving any observed pattern is reasonable [26, 27]. There is essentially no fire;

the most recent evidence of widespread natural fire is >5000 years ago and limited to the

southern portion of the region [28]. Insect and pest outbreaks are infrequent and minor, rarely

resulting in mortality [29]. The primary disturbances are windstorms and mass movement,

driven and constrained by topography. Yellow-cedar decline, a mass mortality event associated

with climate warming [30, 31] is widespread but does not appear to be affecting net C stocks

[32]. As a result, it is possible to test if long-term spatial differences in disturbance exposure

(representing the relative frequency of disturbances within a given area, sensu [33]) drives spa-

tial differences in regional ecosystem C stocks above and beyond the short-term fluctuations

resulting from any given disturbance event and recovery.

Wind is the most common disturbance driver. The location of low-pressure systems and

their movement is strongly constrained by the semi-permanent Aleutian low pressure sys-

tem, the shape of the Gulf of Alaska, and the Coast Range mountains. This constrains storm

force winds to the south-southeasterly aspects [34], and the incised landscape results in a

heterogeneous distribution of exposed slopes. Dendrochronological reconstructions show

that disturbance frequency corresponds well with exposure [35], a pattern exploited to

study soil C dynamics [36], watershed-scale C distributions [37], and regional forest

dynamics [32].

Landslides (and avalanches) are similarly spatially stable. Because the region has relatively

shallow soils the most dominant type of landslides are shallow debris avalanches and flows that

occur in predictable locations (associated with slope, drainage, and wind) and a several-cen-

tury return interval [38]. For both processes, because the topography of the landscape has been

essentially stable since the Last Ice Age, exposure to is assumed to be relatively consistent.

The climate is moderate along the entire coast due to its hyper-maritime nature. The species

composition is consistent, dominated by intermixed conifer species, Picea sitchensis and Tsuga
heterophyla, with other species occasionally found throughout: T. mertensiana, Thuja plicata,

and Cupressus nootkatensis. Alnus viridis is the only major broadleaf species, and generally

only found in recently disturbed locations. This consistent species assemblage limits con-

founding C estimates with changes in community composition. All species (except T. plicata
found in the far south) range both further north and south of the region limiting concerns

about significant range edge effects and shifting dominance patterns [39, 40]. Therefore the

relationship between relative disturbance exposure and C stocks can be quantified spatially

with minimal confounding influence from climate or variable vegetation composition.

Here we test the disturbance-baseline carbon hypothesis that higher disturbance rates are

associated with higher C in infrequently disturbed systems and lower C in frequently disturbed

areas. This was done by asking three primary questions:

Disturbances and spatial C

PLOS ONE | https://doi.org/10.1371/journal.pone.0212526 February 21, 2019 3 / 16

https://doi.org/10.1371/journal.pone.0212526


1. Does long-term disturbance exposure drive fundamental differences in biomass, density,

or basal area at the regional scale, above and beyond any influence of short-term variability

driven by recent disturbance or stochastic mortality?

2. Does the type of disturbance change the magnitude of the effect?

3. What is the cumulative baseline non-soil ecosystem C in the region (excluding human

management), and how does that compare to scenarios without disturbance?

Methods

USFS Forest Inventory and Analysis plots (FIA) is the most extensive forest survey in the

region. FIA plots are a fixed area design, consisting of one central location and three surround-

ing subplots at 1200, 2400, and 3600, at a 36 m center-to-center distance from the central point;

all four subplots are 7.3m radius. Plots are placed approximately 5.3 km apart and visited on

~10 year intervals (10% of plots visited per year). Survey dates utilized here range from 2005 to

2017. Plots with any history of management, historical or contemporary, were discarded to

focus on natural dynamics and total potential regional C in the absence of human intervention.

In total, 1491 plots met this criterion. Of those, 484 are in non-forested locations (cover per-

manently <10%). For testing the disturbance exposure-carbon relationships, only the forested

plots were utilized (n = 1007) unless otherwise noted. This eliminates non-informative low val-

ues of C in areas on glaciers and other alpine areas. The entire set of 1491 plots were used for

regional C modeling to accurately capture low C values at high elevations.

Three forest structure metrics were assessed. The FIA program estimates dry biomass by

measuring all live tree greater than 2.54 cm diameter at breast height (DBH) and dead trees

>5” DBH; allometric equations are used to scale volume to dry biomass [41]. Where needed,

this value was converted to C at a rate of 50% [42]. Trees per hectare (TPH) is a significant

response variable because a decrease in per-tree biomass may be offset by an increase in den-

sity. Finally, while C content or biomass is generally the goal of ecosystem ecology studies in a

global context, estimation of those values requires allometric equations which embody consid-

erable uncertainty. Basal area (BA) is a variable which incorporates both tree diameter and tree

density and may be more precise for plot to plot comparisons [43]. All three variables were

assessed using identical methods.

Environmental variables

At each site, several topographic, bio-climatic, and disturbance exposure metrics were quanti-

fied. Elevation, slope, and transformed aspect [44] were derived from 1 arc-second ASTER

GDEM2 data. Mean summer and winter precipitation and temperature, mean annual temper-

ature, and the mean length of growing season (LOG), date of continuous freeze (DOF), and

date of continuous thaw (DOT) were taken from the Scenarios Network for Arctic Planning

(1960–1990 climate normal, 771m, [45]), then downscaled to 30m resolution via bilinear inter-

polation. Percent forest cover was from the Landsat Vegetation Continuous Fields (VCF) tree

layer [46], which estimates the percentage of ground per 30m pixel covered by vegetation >5m

in height via rescaling MODIS vegetation values with Landsat 5 TM and ETM+ data.

Disturbance exposure

Exposure represents the relative probability of a disturbance within a given spatial area (e.g.,

[47]). Wind exposure was modeled via methods described in [33] (the EXPOS model), modi-

fied [35] and applied [32] to the region. Briefly, the method assumes straight-line winds which

interact with topography; high topographic barriers upwind can shelter downwind locations.

Wind passes over those topographic obstacles and bends downwards at eight angles ranging

Disturbances and spatial C
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from 1 – 14o in 2o increments. The degree of exposure is a result of how directly a location is

exposed to storm winds. Using the observed distribution of wind directions [34], an average of

three incoming wind directions (SW to SE) was created to determine average long-term

exposure.

A recent assessment [48] modeled landslide likelihood, ranging from 0 (very unlikely) to

100 (has slid/likely to slide), based on observed slide locations in non-harvested forest

throughout the central portion of the region. Significant variables include slope, local topo-

graphic position, contributing area, and exposure to wind during storms. The two exposure

maps (Fig 1) were created at 30m resolution in R using the raster, sp, and rgdal packages.

Analysis

In these forests, stochastic mortality of large trees can cause very high variance at plot scales, as

single large trees (>60m tall) may dominate a plot [43, 49]. The fundamental interest here is

Fig 1. Disturbance exposure maps utilized in the investigation. Both are relative scales, from low to high. Wind exposure refers to storm force winds, see [35] for design

and comparison to field data. Slide susceptibility is based on observed slides, see [48] for design. Inset maps are for illustrative purposes at a finer scale.

https://doi.org/10.1371/journal.pone.0212526.g001
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the underlying “baseline” average, incorporating that natural variability. In other words, the

effect of time-since-disturbance was intentionally not considered. Thus 1) the modeling and

statistical focus is on relative differences on average compared to exposure and 2) all models

were chosen and explicitly tuned to avoid overfitting plot-scale data (with its inherent time-

since-disturbance variability) to regional projections.

Several methods were used because of the inherent variance in the data given the goals, but

no test was considered as definitive on its own. This avoids the potential for Type 1 errors

resulting from multiple methods to influence results. The statistical framework and all model-

ing choices were made a priori, without seeing the real data. All coding was done in R using

dummy data by Buma, then the framework was applied to the actual FIA dataset by Thompson

independently. This avoids unintentional bias or over-tuning in modeling building.

Direct correlation. To explore direct relationships between disturbance exposure and

biomass at the plot scale, simple, single-error linear regressions were constructed between the

disturbance exposure metrics (wind, landslides) and the response variables (biomass, TPH,

BA). Assumptions were checked and data log transformed if necessary.

Disturbance importance, plot scale. Two stepwise regression models were conducted,

one with, and one without, the disturbance variables (wind and landslide exposure). Back-

wards stepwise linear regression was done, starting with all the potential explanatory variables.

When the best model (as evaluated via AIC reduction) was constructed for each condition

(with and without considering disturbance), Chi-square difference tests were used to com-

pared between the models with and without disturbance. Significant differences in residual

deviance were interpreted as one model being significantly better.

Spatial modeling. Finally, random forest modeling was used to explore variable signifi-

cance and create predictive maps of regional C. Random forests [50] are a machine learning

technique built on classification and regression trees that accommodate non-linear interac-

tions and correlated/non-independent predictor variables. To construct the random forests,

first a random subset (80% of the data) were selected for model construction with 20% retained

for testing.

The extreme topography, which stretches from the ocean to icefields, required a two-step

modeling procedure to capture both variation within forested areas as well as variation between
forested areas and non-forested areas. First, a random forest model for the forested areas only

(>10% cover, n = 1007) was created, which focused on variation as a function of variables rele-

vant to intraforest variability in the structural attributes. Then, to constrain biomass estimates

in areas of non-forest or low forest cover (<10% tree cover), a second model incorporating the

full suite of plots (n = 1451) was constructed, which results in a clear high elevation/ice cap vs.

forest distinction. This output was applied to areas on the landscape where tree cover was

<10% to create a continuous response surface.

Random forests have a well-known tendency to overestimate low values and underestimate

high values due to a regression to the mean associated with bagging predictors. A correction

was applied [51] using cubic smoothing splines.

Using four different biomass calculation methods, [52] determined that the aboveground

component measured by the FIA data is between 46–58% of the total biomass C. Data was

scaled by those factors for a high and low estimate (“scaling” factor in Table 1). To accommo-

date the steep topography, final values were scaled from raster pixel area to actual surface area

by a cos(slope) raster.

Disturbance importance, regional scale. To estimate the significance of disturbances to

regional C balance, we utilized a method conceptually similar to [53], which “turned off” fire

in a global vegetation distribution model and calculated differences between with-fire and

without-fire outputs. To estimate the cumulative effect of wind on the landscape, the model

Disturbances and spatial C
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was re-run with wind exposure set to 1 (the minimum) across the entire landscape. The differ-

ence between this “null” wind model and the biomass model was calculated via subtraction.

The same was done for landslide likelihood (set to 0) and both wind and landslides simulta-

neously to create three hypothetical comparison scenarios–without wind, without landslides,

and without both.

Results

There were direct correlations between exposure to both disturbance exposures and the forest

variables considered, though with considerable variability. Higher wind exposure was signifi-

cantly correlated with higher tree density, though with considerable variance (F(1, 1005) = 23.4,

p< 0.001, r2 = 0.02), but not biomass or BA. Landslide exposure was significantly associated

with all three metrics, in the direction of larger, more widely spaced individuals–higher land-

slide exposure was correlated with significantly higher biomass (F(1, 1005) = 137.6, p< 0.001,

r2 = 0.12) and BA (F(1,1005) = 104.4, p< 0.001, r2 = 0.09), and significantly lower tree density

(F(1, 1005) = 14.4, p< 0.001, r2 = 0.01).

Disturbance importance, plot scale

Models incorporating disturbance as a predictor were significantly improved over non-distur-

bance models. For dry biomass, model selection identified the candidate model which

included landslide exposure as significantly better than the model without (Chi2 test,

p< 0.001). Wind was not retained in the stepwise variable selection process, and thus no sig-

nificant improvement was seen for dry biomass when considering wind. For BA, both wind

and landslide exposures were retained in the better model (Chi2 test, p<0.0001). For TPH,

both wind and landslide exposures were retained in the better model (Chi2 test, p< 0.0001).

Spatial modeling

Modeled dry biomass was correlated with the 20% of observations retained for testing (simple

linear regression, comparison between predicted and independently observed dataset; F(1,200) =

133.3, r2 = 0.4, p< 0.001). Basal area was similar to dry biomass (F(1, 200) = 97.4, r2 = 0.33,

p< 0.001). Tree density observations were also significantly correlated with model predictions,

though with high variance (F(1, 200) = 7.8, r2 = 0.04, p< 0.006).

After applying the spline correction and projecting over the region, the fit between pre-

dicted and observed values at each sampling point was strong for dry biomass (F(1, 1005) =

1509, p< 0.001, r2 = 0.60), tree density (F(1,1005) = 1311, TPH, p< 0.001, r2 = 0.57), and BA

(F(1,1005) = 1863, p< 0.001, r2 = 0.65). Incorporating the entire dataset, including non-forested

plots, further improved the overall predicted vs. observed fit for all variables (F(1, 1489) for all;

Table 1. Estimated potential carbon content. Scaling refers to the assumed proportion of total ecosystem carbon in the modeled biomass.

Scenario Scaling (%) Estimated C (Pg) Difference from actual (%)

Actual conditions 58 1.21 -

46 1.52 -

No wind 58 1.19 -2

46 1.50 -2

No slide 58 0.98 -19

46 1.24 -18

Neither 58 1.02 -16

46 1.29 -15

https://doi.org/10.1371/journal.pone.0212526.t001
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dry biomass: r2 = 0.69; TPH: r2 = 0.67; BA: r2 = 0.77). The most important variables in predict-

ing variation in biomass and BA within forested landscapes was observed forest cover, slope,

elevation, and likelihood of landslide initiation. For tree density, the most important variables

were observed forest cover, aspect, elevation, and mean winter precipitation.

Estimated regional carbon, basal area, and tree density and disturbance effects. Esti-

mated potential biomass (living and dead) carbon ranged from 1.21–1.52 Pg (Table 1). Overall

regional biomass did not change substantially (-2%) when the model was run assuming no

wind disturbance. There were local differences, however, with many open, low angle areas pre-

dicted to have higher biomass (Fig 2). Removing the landslide component resulted in a sub-

stantial decline (-18 - -19%) in predicted biomass regionally, with a few areas of predicted

increase in very steep topographical locations. Removing both disturbance processes resulted

in a substantial decline (-15 - -16%) in regional carbon, but not as much as removing landslide

alone. This suggests an interaction between wind and landslide exposure (Fig 2).

Fig 2. Modeled baseline C stocks and distribution of field points. Smaller regional maps show result of removing disturbance processes (via setting exposure to zero)

and then differencing with modeled carbon stocks; negative values indicate more C when disturbances are included, positive values indicate less C.

https://doi.org/10.1371/journal.pone.0212526.g002
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Basal area was higher in all non-disturbance scenarios, though to a lesser extent than C. In

terms of individual stems, the removal of wind lowered estimated cumulative stem counts by a

substantial margin, whereas removing landslides increased the number of stems. These two

counteracting processes nearly canceled each other out when both disturbances were removed

(Table 2). Together, these results suggest that wind exposure has little effect on carbon (poten-

tially via the offsetting of lower biomass and higher tree density, though the multiple tests do

not agree on strength); landslides have a stronger relationship. Though landslides appear to

drive lower overall tree density (setting landslide exposure to zero results in higher cumulative

stem values), their removal from the BA estimation reduces cumulative BA enough to also

result in a significant decline in total biomass. Overall, both disturbances independently and

combined result in higher biomass through changes to both BA and tree density.

Discussion

The goal of this work was to determine the significance of disturbances to regional C baselines

in the most biomass-C dense forest biome on the planet, temperate rainforests. The region

investigated, southeast Alaska, is known as a globally significant C storehouse [52, 54] though

a high resolution, spatially explicit estimate of C stocks never been conducted. Spatial differ-

ences in disturbance exposure were correlated with baseline differences in biomass, tree den-

sity, and BA throughout the region, and those differences scaled up to the regional level.

Generally, higher biomass was correlated with increasing disturbance exposure at the low end

of the disturbance gradient, as hypothesized, even when accounting for the short-term varia-

tion imposed by random mortality. At the high end of the disturbance exposure gradient, very

high wind exposures were not correlated with lower biomass C, but very high landslide expo-

sures were associated with low (zero) estimates of biomass C. This is not surprising, as

extremely steep slopes (e.g., >600) are highly unstable and generally not vegetated as a result.

In all cases, removing disturbance as a factor in the models resulted in lower overall biomass

C, sometimes substantially. This was also true for BA. Tree density was mixed, with wind driv-

ing higher densities and landslides lower densities. This suggests that regionally, disturbances

are maintaining higher levels of production in vegetated landscapes than would exist in their

absence.

Regional C stocks

Estimated potential regional biomass C stocks ranged from 1.21–1.52 Pg. This represents

5–7% of total US forest C (including public and private land, [41]). This is a potential C stock,

not considering active or historical removal of C via logging. Logging has a history in the

region; [52] estimated that between .01-.02 Pg were lost to logging between 1900–1995. Soil C,

not included here, is a larger fraction of total ecosystem C than biomass. A regional modeling

effort [55] estimated an average of 302 (+/- 146) Mg soil C ha-1, for a total of 1.78 Pg for the

same region. Together, they add to a potential ecosystem C of 2.99–3.30 Pg C for the study

area.

Table 2. Estimated cumulative basal area and cumulative stems.

Regional basal area (m2) Difference from actual (%) Cumulative stems (individuals) Difference from actual (%)

Actual conditions 2.40 x 108 - 7.49 x 109 -

No wind 2.27 x 108 -5 6.89 x 109 -8

No slide 2.14 x 108 -11 8.13 x 109 +9

Neither 2.12 x 108 -12 7.71 x 109 +3

https://doi.org/10.1371/journal.pone.0212526.t002
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The estimate presented here align well with previous estimates in the general area, which

ranged from 0.97–0.99 Pg of biomass C and 2.8 +/- 0.5 including soil C [52] and the FIA data-

set, which estimated 0.863 Pg biomass C in forested areas only (>10% cover). The slightly

lower value predicted by [52] is likely due to differences in design and slight differences in

extent: This study focused on the potential natural C stocks for the region and thus excluded

logging as a factor, whereas [52] incorporated logging. They also only estimated C stocks for

the Tongass National Forest (68,000 km2), whereas this study did the entire region (76,492

km2). The FIA dataset is similarly estimating C over a smaller area (>10% only).

Wind. Across the landscape, the role of wind exposure was relatively minor compared to

landslides, and the statistical results were mixed. In terms of a direct correlation, trees were

denser in areas with higher wind exposure but that relationship did not extend to BA or bio-

mass. The correlation with density, while significant, was very weak. No decline in biomass at

high levels of wind exposure was found (using all 1491 plots to allow for the possibility of

sparse/non-forest conditions due to wind; S1 Fig), suggesting that even in areas of highest

exposure, the current wind regime does not drive significantly lower levels of baseline C at the

regional scale. This implies that while wind disturbance may quite significant in terms of

impact after discrete blowdown events [35], its influence at the regional scale is less important

than other factors. In [35], at a finer scale (single island), exposure was calculated slightly dif-

ferently: Wind exposure was incorporated into a broad, single index which included wind, soil

stability, slope, and elevation. In the present study, those were treated as separate variables

from wind exposure to allow for interactions between topography and the wind itself. The lack

of a meaningful relationship between wind and biomass/BA (in terms of regional scale totals)

suggests that the role of wind exposure in driving baseline differences in forest structure is

more significant at finer, subregional scales and less important at broader scales (Fig 2). Gener-

ally, wind effect was strongest on lower slopes, where excluding wind resulted in slightly higher

projected C; this was offset by the lower magnitude but widespread reduction in C on steeper

slopes. The total effect is little net change in C upon removing wind exposure.

Landslides. In contrast to wind, landslide suitability was correlated more strongly with all

structural variables and appeared to be more influential at the regional scale. In addition to

potentially alleviating nutrient limitation (by exposing bedrock to weathering and shifting live

biomass to the decomposing biomass pool), landslides also influence drainage and likely dis-

rupt iron pan formation and Sphagnum introgression. Soil moisture is negatively correlated

with forest structure (community composition and structure: [56]; biomass: [37]), as well as

nutrient dynamics [57]. Most studies of the influence of landslide on soil properties have

focused on fertility, with a decline in nutrient availability associated with the burial of surficial

organic layers, e.g. [58], noted in some studies, or no difference noted between landslide

deposits and undisturbed soils [59] immediately after a disturbance. However, others [60]

noted that disturbances in areas where N-fixers are common post-disturbance community, as

here, disturbances can progressively increase soil N availability. Over short timescales (<30

years), slower height growth on landslide scars relative to neighboring slopes was noted [61] in

coastal forests to the south, however they did not distinguish between planted and naturally

regenerating seedlings. They also noted that N-fixing species were a main component of the

recovering ecosystem, potentially increasing long-term biomass, which is the focus here. In

perhumid temperate rainforest systems, where drainage is highly correlated with productivity,

changes in nutrient availability and drainage (associated with decreases in soil density in

deposit zones) seem likely to encourage more productive forests in landslide susceptible loca-

tions [62]. On the other end of the disturbance exposure spectrum, a decline in biomass at

high levels of landslide exposure is apparent (using all 1491 plots to allow for the possibility of

sparse/non-forest conditions due to wind; S1 Fig). This is trivially true but nonetheless noted,
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as cliffs and very steep slopes are consistently moving, precluding forest establishment in many

cases.

It is also possible that the drivers of landslide likelihood (steeper slopes) are partially con-

founding the relationship. Slope is strong driver of biomass at local scales [37], and signifi-

cantly positively correlated with biomass at this broad scale, though weakly (forested plots

only; p< 0.05, r2 = 0.06; square root transformed). That landslide susceptibility was retained

in each independent test of the relationship (correlations, stepwise variable selection, and ran-

dom forests) suggests that landslides themselves have different properties from purely slope-

induced differences in drainage rates. At sub-regional scales, the effect of removing landslides

was muted, with no change in areas where no landslides are possible (flat areas) and declines

in C in steeper terrain (Fig 2). A second difficulty in landslide exposure is primarily related to

landslide initiation rather than potential deposition. Landslides in SE Alaska are generally con-

fined to steep slopes, even in their depositional area [38], however more intensive modeling of

landslide movement downhill and across slopes is necessary to get a better estimate of exposed

area.

Overall. The cumulative impact of both disturbances is a slight decrease in tree density

and an increase in carbon and BA, based on modeled outcomes where disturbances were

removed. The effect of the individual disturbance types partially offset each other at the

regional scale, with wind correlated with higher tree densities in some locations countered by

lower density, larger trees in other, more landslide exposed areas (Fig 2). In other words, the

overall correlation of higher biomass with disturbance exposure is spatially heterogeneous

when seen at finer scales. In the central portion of the region, where the topography is lower

slope, disturbances (particularly wind) appear to be constraining biomass C, in that removing

them from the model results in projected higher C values. In steeper locations, however,

removing disturbances generally results in lower C, as those are the areas where landslides

appear more significant. It should be noted that landslides are not independent of wind; there

are higher landslide probabilities in wind exposed locations. This has been attributed to shak-

ing of the trees during high rain/storm events [39, 48]. This interaction adds further nuance to

the disturbance discussion and suggests that treating the individual disturbances separately

also requires considering their interactions as a separate mechanistic component of the overall

regime. In sum, even within an ecosystem type individual disturbance processes vary in their

spatial impacts and therefore in their correlation with baseline C.

This correlation between higher disturbance rates and higher biomass is strikingly different

from further south in the seasonal temperate rainforest (where fire is a factor and can impact

broad-scale C for centuries; [63]) where disturbance rates maintain lower baseline C than

would be expected without disturbance [64]. In that case, suppression of disturbances would

be expected to raise C stocks, though unlikely to be sustainable. In this perhumid portion of

the temperate rainforest, however, disturbance frequency and extents are some of the lowest of

all forested ecoregions in North America (<0.5% per year, [27]). It appears that while there is

some finer scale heterogeneity in the effects of increasing disturbance exposure (Fig 2), the net

effect is higher biomass in areas of higher exposure, and as a result, higher predicted C stocks.

Limitations

Like most broad-scale regional studies, the results here are correlative rather than necessarily

causal. A counter hypothesis would be that disturbance exposure is higher in areas that are

also prone to higher biomass forests for other reasons. The mechanisms that would drive

higher biomass in these exposed areas independent of disturbance would be likely be aspect

(via solar exposure) and slope (via better drainage) for wind and landslide disturbances
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respectively. Both aspect and slope were considered explicitly alongside the disturbance vari-

ables, and the disturbance exposure variables were retained in the statistical models. Second,

aspect and slope are not perfectly correlated with wind and landslides; wind exposure is modi-

fied by upwind topography, so there are sheltered southeast facing slopes (for example). Simi-

larly, there are steep slopes with relatively low landslide probability because local topography

does not concentrate drainage. Further fine scale work would be valuable, especially dendro-

chronological or paleoecological studies which could link specific disturbance histories at a

point to stand biomass metrics. To our knowledge, there are no long-term (1000+ year) studies

on landslide succession, which would be valuable comparisons to existing long-term chronose-

quences (generally post-glacial, [16]). This is often challenging in this environment due to

heart rot making precise dating impossible and the difficulty of ascribing the cause of stand

initiation several thousand years later. Nonetheless, the consistent association of higher base-

line biomass and higher exposures regardless of recent disturbance history, coupled with

undisturbed chronosequences from the region (Glacier Bay) which show substantial biomass

declines in undisturbed areas [14], suggests that productivity is enhanced by infrequent but

not non-existent disturbance regimes.

Conclusions

The temperate rainforests of southeast Alaska are some of the most biomass-C rich forests in

the world and can potentially contain C stores equivalent to 5–7% of the lower 48 forest C

stocks in biomass pools alone. Higher C, contained in lower density but larger tree stands, was

associated with higher exposure to infrequent disturbance (wind and landslide) processes;

areas sheltered from those disturbances had lower values (lower BA, lower biomass). Land-

slides were more associated with higher biomass C than wind exposure, which was more asso-

ciated with higher tree densities. The strength of the cumulative action of these two

disturbance processes was heterogeneous in space, and at finer scales some areas had lower

predicted biomass C. This is consistent with the hypothesis that in very infrequently disturbed

systems, occasional mortality events result in more productive stands at the landscape and

regional scale. While any disturbed location will lose C as a result of that event in the short

term, the overall, broad-scale relationship in this high C density, infrequently disturbed system

is higher baseline C in areas of higher wind and landslide exposure.

Supporting information

S1 Fig. Direct correlations between disturbance and biomass. Wind exposure and landslide

exposure compared to the biomass variables: Tree density, biomass, and basal area. Red line

represents a simple linear regression to show trends.
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