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Abstract

After being the standard plant propagation protocol for decades, cultures of Arabidopsis

thaliana sealed with Parafilm remain common today out of practicality, habit, or necessity

(as in co-cultures with microorganisms). Regardless of concerns over the aeration of these

cultures, no investigation has explored the CO2 transport inside these cultures and its effect

on the plants. Thereby, it was impossible to assess whether Parafilm-seals used today or in

thousands of older papers in the literature constitute a treatment, and whether this treatment

could potentially affect the study of other treatments.For the first time we report the CO2 con-

centrations in Parafilm-sealed cultures of A. thaliana with a 1 minute temporal resolution,

and the transcriptome comparison with aerated cultures. The data show significant CO2

deprivation to the plants, a drastic suppression of photosynthesis, respiration, starch accu-

mulation, chlorophyll biosynthesis, and an increased accumulation of reactive oxygen spe-

cies. Most importantly, CO2 deprivation occurs as soon as the cotyledons emerge. Gene

expression analysis indicates a significant alteration of 35% of the pathways when com-

pared to aerated cultures, especially in stress response and secondary metabolism pro-

cesses. On the other hand, the observed increase in the production of glucosinolates and

flavonoids suggests intriguing possibilities for CO2 deprivation as an organic biofortification

treatment in high-value crops.

Introduction

Thousands of papers each year (~14500 since 2014[1]) use plant cultures in Petri dishes–seeds

(typically of Arabidopsis thaliana) germinated in sealed, square, vertically held, gel plates–as a

model system. The simplicity, throughput, frugality, practicality, transparency, and sterility of

this protocol has made it widely adopted to study the biology of plant development (e.g., root

formation[2]), stress response (e.g., drought[3]), and interactions with other organisms (e.g.,
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rhizosphere interactions[4, 5]). In order to avoid drying and contamination, these cultures are

sealed usually by a film of paraffin (commercially known as Parafilm) or porous tape (com-

mercially known as Micropore tape).

Parafilm was the recommended seal for A. thaliana cultures as recently as five years ago[6],

and was nearly universally used in earlier studies that are referenced and studied today. A sig-

nificant portion of the experimental plant biology community is not aware of the extent of

stress that Parafilm seals can induce on plant cultures[7–9]. Parafilm-sealed cultures are still

widely used in high profile publications and by prestigious laboratories, and are still the stan-

dard tool to study volatile-based plant-microbe interactions in vitro[4, 10, 11]. The “aeration

issue” is often thought to be effectively mitigated by shorter term cultures or by focusing on

pathways that are not directly associated with photosynthesis. Remarkably, the magnitude of

the effects of Parafilm seals on transcription and phenotypes, and on the dynamics of CO2

uptake and release by A. thaliana cultures has not been reported until now.

This characterization of the phenotypic and transcriptomic response to CO2 deprivation in

A. thaliana could be valuable for three reasons: (i) reevaluating old and new reports that use

Parafilm-sealed A. thaliana cultures, where CO2 deprivation could modify the effects of the

same treatments in less stressful environments; (ii) understanding the biological response of

plants to CO2 deprivation[12, 13] that is observed, for example, in crop canopies[14, 15]; (iii)

assessing the effects of Parafilm-seals on modern studies of volatile-based microbe-plant inter-

actions[4, 5]; (iv) obtain a better understanding of plant response to CO2 scarcity in the past

[16, 17]. In this work, we have engineered square Petri dishes (10 cm×10 cm) for active aera-

tion (described in the Materials and Methods section) of A. thaliana plant cultures and com-

pared them with Parafilm and Micropore tape wrapped plant cultures (plant cultures in Petri

dishes were kept in an upright position) for characterization of stress response to CO2

deprivation.

Results and discussion

Photosynthesis and respiration strongly modify the concentration of CO2 ([CO2]) inside Petri

dish cultures of A. thaliana (15 plants per dish, 0.5 Murashige-Skoog nutrient medium with

1% by weight of sucrose[18]). Fig 1A shows that the [CO2] inside the dishes undergoes very

significant changes at the onsets of light and dark periods, which increase in magnitude with

the development of the plants.

When using Parafilm seals, the [CO2], averaged over the light period (Fig 1B, open purple

squares), decreases from 396 ppm to 177 ppm between the emergence of the cotyledons (day

4) and the emergence of the rosettes (day 11), after which it stops decreasing (RuBisCO binds

preferentially to O2 when [CO2]<200ppm, preventing carbon fixation[19]). With Micropore

seals instead, the depletion of the [CO2] averaged over the light period (Fig 1B, open orange

circles) becomes only evident when the first true leaves emerge (day 7), after which it decreases

by approximately 26 ppm per day to reach 305 ppm at day 14. Respiration increases signifi-

cantly the [CO2] in the cultures during the dark periods (Fig 1B, filled points), especially with

Parafilm seals, where [CO2] can reach values higher than 600 ppm. While these changes in

[CO2] are a function of the number of plants and their age, we observed that even 5 plants

cause [CO2] to decrease below 200 ppm at day 11 (S5A Fig) in Parafilm-sealed dishes.

Importantly, the respiration of the experimenters (cf. day 13 in Fig 1A) caused significant

fluctuations of the [CO2] in the cultures, especially in those sealed with Micropore tape.

Measurements of [CO2] with 60 s time resolution provide insight into the kinetics of CO2

uptake and release by the cultures and how they are affected by the seals. The top panel of Fig

1C compares the [CO2] changes in Micropore- and Parafilm-sealed cultures in response to the

CO2 deprivation in cultures of Arabidopsis thaliana
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Fig 1. CO2 deprivation in Petri dish cultures of A. thaliana. A. Time evolution of the CO2 concentrations in Parafilm-sealed (purple)

and Micropore-sealed (orange) Petri dishes containing 15 A. thaliana (Col-0) plants, compared to room concentration (grey). B. CO2

concentrations averaged over the light periods (empty points) and dark periods (filled points). C. CO2 concentration (top plot) and CO2

exchange rates (bottom plot) at day 10 in Parafilm-sealed and Micropore sealed dishes. The Parafilm-sealed dishes experience severe

suppression of both photosynthetic and respiratory rates, as compared to Micropore-sealed dishes. White and grey background shadings

indicate light and dark periods, respectively. Different number of asterisks indicate three stages of development namely cotyledon

emergence, true leaves emergence, and rosette emergence. D. CO2 concentration (top plot) and CO2 exchange rates (bottom plot) at day 6

in Parafilm-sealed dishes. The mild depletion of CO2 seen in the top plot, is still accompanied by severe suppression of photosynthetic CO2

uptake and respiration (bottom plot). E. Photographs of Parafilm-sealed, Micropore-sealed, and aerated plates. F. Dry biomass. Different

numbers of asterisks above the histograms indicate a significant difference (P<0.05, Students t-test) between the treatments. G. Hue

distribution for the leaves of A. thaliana cultures in Parafilm-sealed, Micropore-sealed, and aerated plates.Probability density indicate the

probability density function of the hue angle variable (obtained using the “ksdensity” function in Matlab with a bandwidth of 0.8).

https://doi.org/10.1371/journal.pone.0212462.g001
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transition between light and dark periods at day 10. [CO2] decreases and increases rapidly as

the light is switched on and off (as fast as -6.0 ppm/min and +3.7 ppm/min), but these changes

slow down less than 2 hours after each transition.

The different shape of the [CO2] traces obtained for the different seals suggest that CO2

exchange by the plant could be affected by CO2 deprivation. By independently measuring the

effective diffusivity of the seals to CO2 and the area of the leaves vs time, we were able to esti-

mate the total exchange of CO2 by the plants (i.e., the μmoles exchanged by 1 m2 of leaf area

per unit second, Jplant, here defined as the sum of the photosynthetic and respiration rates,

Jphotos.<0 and Jresp.>0, respectively) as a function of time (Fig 1C, bottom panel).

The results from the two seals are strikingly different. In Micropore-sealed cultures, Jplant

reaches a steady state (10±1 μmol�m-2�s-1 in dark and -19.3±0.9 μmol�m-2�s-1 in light) within

20 minutes of the light turning off and on. With Parafilm seals, the exchange of CO2 is instead

strongly dependent on time: Jplant increases to a maximum value (8.19 μmol�m-2�s-1) within 3

minutes of the lights turning off, only to then decrease exponentially (R2 = 0.96, time con-

stant = 44±1 min) by an order of magnitude (0.86±0.01 μmol�m-2�s-1). A strikingly similar

behavior is observed during the light period, where Jplant reaches a maximum uptake value

(-11.33 μmol�m-2�s-1) within 9 minutes of the lights turning on, only to reduce exponentially

(R2 = 0.996, time constant = 28±1 min) by an order of magnitude (-1.080±0.003 μmol�m-2�s-1).

The steady state value of Jplant during the light period and dark period for Parafilm-sealed

dishes (-1.080±0.003 μmol�m-2�s-1 and 0.86±0.01 μmol�m-2�s-1) are 20 and 12 times lower than

in Micropore-sealed dishes (-19.3±0.9 μmol�m-2�s-1 and 10±1 μmol�m-2�s-1), respectively, dem-

onstrating a significant reduction of the photosynthetic rate and metabolism in Parafilm-

sealed dishes.

Remarkably, the low CO2 exchange observed in Parafilm-sealed dishes occurs even when

the [CO2] measured by the sensor is in a physiological, RuBP-regeneration-limited, range [19–

21]. Fig 1D shows the [CO2] and Jplant for a Parafilm-sealed dish at day 6. While the [CO2]

decreases from 433 ppm to 351 ppm as the light is turned on, uptake increases to a maximum

(-27.7 μmol�m-2�s-1) only to decrease exponentially over time to a much lower value (-4.40

±0.04 μmol�m-2�s-1). This result points to the formation of a CO2-depleted boundary layer[22]

at the surface of the leaf in Parafilm-sealed dishes, which causes CO2 deprivation even when

the bulk atmosphere is not depleted of CO2. This finding shows that early stages of Parafilm-

sealed cultures are not protected from alterations to their CO2 metabolism.

Suboptimal levels of CO2 lead to leaf discoloration and stunted growth of A. thaliana in

Parafilm-sealed dishes. Fig 1E shows A. thaliana (Col-0) cultures grown in Parafilm-sealed

and Micropore-sealed dishes, compared to an aerated culture. Beside the difference in biomass

(after three weeks, aerated cultures were 3.38 times larger than Parafilm-sealed cultures,

p = 5�10−4, and not significantly larger than Micropore-sealed cultures, cf. Fig 1F), the hue dis-

tributions (Fig 1G) show that the aerated cultures are greener than the Micropore-sealed ones,

which are much greener than the Parafilm-sealed cultures.

Because O2 levels in the Petri dishes are essentially constant in all the conditions we tested

(S10 Fig), our first hypothesis was that the primary cause of these phenotypic changes is CO2

deprivation, which is expected to affect photosynthesis[23, 24], carbohydrate metabolism[25],

and lead to photooxidative stress[26]. Further analysis of gene expression and metabolite pro-

duction reveal a broad and systemic stress response in Parafilm-sealed dishes.

mRNA-Seq analysis conducted on both non-aerated and actively aerated Parafilm-sealed

dishes (shoot samples collected at day 11, 8 hours after the beginning of the light period)

showed a significant (Benjamini-Hochberg adjusted p value< 0.05[27] and fold change� 2)

alteration of gene expression (Fig 2A) caused by Parafilm seals (1642 differentially expressed

genes (DEGs), 67% of which were upregulated) when compared to aerated dishes. Only three

CO2 deprivation in cultures of Arabidopsis thaliana
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genes, At4g06746 (AtDEAR5, DREB subfamily A-5 of ERF/AP2 transcription factor family),

At3g29035 (AtORS1, protein with transcription factor activity, the mRNA is cell-to-cell

mobile), and At3g02550 (lateral organ boundaries (LOB) domain protein 41 (LBD41)) were

upregulated by growing plants in Micropore sealed dishes when compared to actively aerated

dishes, indicating relatively little impact of the [CO2] oscillations caused by Micropore seals (at

least at day 11). Neither of the upregulated genes can be directly connected to plant response

to potentially limiting CO2 concentration but all three DEGs have been shown to change upon

abiotic (drought, salt, heat, hypoxia) and biotic stresses[28–30]. This might indicate that the

plants we grew in Micropore sealed dishes were under mild stress (an increase in the biomass,

either due to more or larger plants would then increase this stress level).

A Gene Ontology enrichment analysis (Fig 2B) showed significant overrepresentation of

stress response and secondary metabolism processes and underrepresentation of primary

metabolism and molecular mechanisms such as DNA or RNA processing among DEGs. Non-

parametric metabolic pathway analysis (Fig 2C) revealed that 211 out of 610 metabolic path-

ways were significantly altered (false discovery rate, FDR, < 0.05). Among these altered

pathways were those for carbohydrate metabolism, chlorophyll biosynthesis, secondary metab-

olites biosynthesis, and stress response.

The simultaneous upregulation of glycolysis and sucrose metabolism and downregulation

of starch degradation suggested that the carbohydrate metabolism was compromised (Fig 3A)

and that sucrose had replaced CO2 as a carbon source. Parafilm-sealed cultures showed

Fig 2. Gene expression analysis. A. Count and regulation of Differentially Expressed Genes (DEGs) in Parafilm-sealed plants compared to aerated plants. B.

Gene Ontology enrichment analysis results for biological process. Panther analysis was made using Panther term enrichment tool version 11. C. Number of

pathways significantly altered by culture in Parafilm-sealed dishes, compared to aerated conditions. Nonparametric multivariate analysis was performed to

identify the Differentially Expressed (DE) gene categories for different pathways.

https://doi.org/10.1371/journal.pone.0212462.g002
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minimal starch accumulation throughout the entire light period (Fig 3B and 3C), which dem-

onstrates that the plants struggled to produce excess photosynthate, consistently with the lack

of CO2 substrate. The lack of accumulated starch is also consistent with the low rates of

Fig 3. Plant molecular and metabolic phenotypes. A. DEGs in pathways related to sugar metabolism, indicating upregulation of

glycolysis and sucrose metabolism and downregulation of starch degradation. B. Accumulation of starch in leaves (whole plant

colorimetric assay and 10x micrographs) in aerated (left), Micropore-sealed (middle), and Parafilm-sealed (right) plants. C. Time-

resolved starch accumulation quantification during the light period in aerated (green squares), Micropore-sealed (orange circles), and

Parafilm-sealed (purple triangles) plants. Lines are guides to the eye. D. DEGs on pathways related to chlorophylls metabolism,

showing downregulation of the chlorophyll biosynthesis pathways. E. Chlorophyll concentration in Micropore-sealed and Parafilm-

sealed dishes (% of the aerated plants). Error bars represent standard error (95% CI, n = 3 replicates /10 plants each). F-G. Number

and regulation of DEGs associated with abiotic or biotic stresses. H. DEGs in pathways associated with the synthesis of glucosinolates

and flavonoids. I. Concentration (% of aerated plants) of flavonoids, glucosinolates and phenolic compounds. Error bars represent

standard error (95% CI, n = 3 replicates /10 plants each).

https://doi.org/10.1371/journal.pone.0212462.g003
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respiration observed during the dark period in Parafilm-sealed cultures (Fig 1C). Micropore-

sealed cultures accumulate starch faster than Parafilm-sealed cultures, but slower than aerated

cultures. Parafilm-sealed dishes also led to downregulation of the chlorophyll biosynthesis

pathways (Fig 3D) and lower concentrations of chlorophyll (Fig 3E), while Micropore-sealed

dishes did not affect chlorophyll production significantly. Plants grown in Parafilm-sealed

dishes showed a decreased concentration of carotenoids (proportionally to chrolophylls). This

might be due to inhibited metabolisms caused by lack of carbohydrates in non-aerated plants.

However, decreased carotenoids concentration could be the result of a low concentration of

chlorophylls. Light harvesting by less chlorophylls could result in slower generation of chloro-

phyll triplet states or/and singlet oxygen that carotenoids protect from[31].

Upregulation of genes associated with biotic and abiotic stress (Fig 3F–3G) is consistent

with the hypothesis that CO2 deprivation resulted in a systemic stress response, potentially due

to the accumulation of reactive oxygen species (ROS)[32]. We observed a upregulation of

SuperOxide Dismutase 1 and 2 (SOD1 and SOD2) encoding enzymes that catalyze the dismu-

tation of superoxide radicals into H2O2 [33, 34].

A potential silver lining of these findings lies in the secondary metabolite biosynthesis,

which is mostly upregulated in Parafilm-sealed cultures. In the case of flavonoids and glucosi-

nolates, this upregulation (Fig 3H) is matched by an increased concentration of these species

in the plants (Fig 3I). Glucosinolates are under intense investigation for potential medicinal

uses[35, 36], and flavonoids are powerful antioxidants[37] that are important in the interaction

of plants with their environment[38] and are partly responsible for flavor and aroma of fruits

and vegetables[39]. In light of these results, controlled CO2 deprivation–a relatively easily scal-

able and organic treatment–should be considered a candidate treatment for increasing the

production of high value medicinal compounds and boosting or tuning the flavor of high

value crops (e.g., strawberries, grapes).

In conclusion it might be helpful to use these data to provide some recommendations on

experimental procedures that would avoid CO2 deprivation in A. thaliana cultures in Petri

dishes. 1. Do not use the data in this paper to estimate how many plants you could grow in Par-

afilm-sealed dishes without incurring into CO2 deficiency. The data in Fig 1D clearly show

that CO2 deficiency occurs as soon as the leaves emerge. As those data show, the [CO2] con-

centration measured by sensors in the dish do not represent the state of CO2 deficiency at the

leaf. In the case of Micropore seals, our data do not allow to estimate accurately at what rate of

collective CO2 uptake the Micropore-sealed cultures will also incur in significant CO2 deple-

tion. Therefore, until more complete measurements are conducted on the limits of Micropore-

sealed cultures, we would recommend to use them within the parameters (i.e., number of

plants and duration of culture) explored here.

2. Whether you decide to use Parafilm or Micropore seals, always explicitly report it in your

papers so that your data could be better understood in light of our growing understanding of

CO2 deprivation. In the absence of that information it might be difficult in the future to fully

understand your conclusions. Also, importantly, report how many wrappings of seal do you

use.

3. If you introduce a new seal, characterize in detail the [CO2] inside the cultures with a

high time resolution (1 min or less) to allow the visualization of the difference in [CO2]

between light and dark periods, and to allow the characterization of the rates of uptake and

release. Quantification of the rates of uptake and release is essential to assess the effect on the

plant. If possible, also conduct a transcriptome analysis.

4. As new technologies emerge that will allow the facile aeration of cultures, use them in

case you need to grow plants in vitro for extended periods.

CO2 deprivation in cultures of Arabidopsis thaliana
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Materials and methods

Plant material

Arabidopsis thaliana (A.thaliana) (ecotype Col-0) was chosen as a model organism for all studies

in Petri dishes using the sterile approach described by Xu et. al. and Lindsey et. al.[40, 41] with

modifications. Briefly, surface sterilized seeds (first, soaked in 70% ethanol for 1 minute; then

immersed in 1:5 v/v sodium hypochlorite solution with 0.05% surfactant (Tween 20) for 8 mins;

last, washed 6 times with sterile H2O) were planted on a half strength Murashige and Skoog with

0.8% agar and 1% w/v sucrose. The pH was adjusted to 5.7–5.8 in square Petri dishes (dimensions

10 cm×10 cm, FisherBrand, USA) under sterile conditions.[42, 43] The plant cultures were

wrapped and sealed with either paraffin films (commercially known as Parafilm) or tapes (com-

mercially known as Micropore tape). The plants were grown in a 16h day/8h dark cycle with

ambient temperatures of 21±3˚C with light intensity [130–160 μmol m-2 s-1] under LED light.

Measurement of CO2 concentration

CO2 sensor setup. All CO2 concentration was measured with NDIR CO2 sensors (K30

module from Senseair purchased from CO2 meter.com) with a sensitivity range of 0–5000 ppm

within specifications and an accuracy of ±30 ppm (±3% of measured value within specifica-

tions) powered at 5V with an Arduino Uno microcontroller (S1 Fig). Data were acquired with

Arduino assembled data logging shield (Adafruit item #1141) using a SD card. The output of

the sensor is the CO2 concentration (ppm by volume) and time in seconds. Data were collected

every second from the sensor using an arduino code.

Calibration of CO2 sensors. The CO2 sensors were calibrated with standard gases of

known CO2 concentrations (0, 100, 500, 1000 ppm standards) as input and the output reading

of the sensors were recorded. The fitted equations were then used to calibrate all the raw data

from the sensors. All the sensors behaved linearly within this range. Calibration curves of CO2

sensors used to measure CO2 concentrations in the room and in Parafilm and Micropore

wrapped plant cultures in Fig 1A are shown in S2 Fig with the fitting parameters shown in S1

Table. Calibration data for all sensors used in CO2 characterization experiments are available

in S4 Supplementary data.

Incorporation of CO2 sensor into Petri dish. The main limitation of measuring CO2 in

real time (every second) is the small volume of Petri dish (~106 ml) and the requirement of a

sterile, closed environment. The CO2 sensor from Senseair fits the size of Petri dish and could

be embedded in the Petri dish without blocking light or touching the gel surface (S3 Fig). To

fit the sensor on the top cover of the Petri dish, the outline of the sensor membrane surface

was created by melting the top cover using a soldering iron in the biosafety cabinet. The sen-

sor/Petri dish contact area was further sealed with autoclaved soft silicone putty (Ear Mack’s

product, Walmart # 004055880) to avoid any leaks. The set up can be surface sterilized with

ethanol inside the bio-safety cabinet without comprising gas measurement.

Aeration for Petri dish

Aeration system setup. The aeration system was made with a screw cap Erlenmeyer flask

(tightly screwed to avoid any loss of air flow) attached to a silicone tubing of (1/4" ID, 3/8" OD,

McMaster-Carr #5236K87 and 1/8" ID, 1/4" OD McMaster-Carr #51135K15) connected to a

double outlet aquarium pump (Walmart item #000816269). The set up was then attached to

the inlet of the Petri dish. The flow was divided using a T-separator in such a way that four

Petri dishes can be aerated with one flask. The minimum flow rate was found in the range of

0.15–0.25 lpm.

CO2 deprivation in cultures of Arabidopsis thaliana
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Incorporation of aeration system into Petri dish. The Petri dishes were engineered for

active aeration (S4 Fig). The tips of sterile syringe filters (mixed cellulose esters, 0.22 μm pore

size, 33 mm diameter, Fisher Scientific item # 09-720-004) were wrapped with stretched sterile

Parafilm strips (sterilized in a 70% ethanol bath for 1–2 hours). A soldering iron was used in

the biosafety cabinet to burn through the top of Petri dish to create holes for inlet and outlet

and the Parafilm wrapped filters were mounted. The Petri dish with filters was placed in a ster-

ile box and kept for 1–2 hours at 70–80˚C in the oven. The Petri dishes were moved from oven

to biosafety cabinet, and the filters were twisted and pressed into the holes to seal gaps at the

connections.

Characterization of CO2 trace

CO2 concentrations were measured simultaneously inside and outside of Petri dishes sealed

with Parafilm or Micropore tape and containing 5 or 15 A. thaliana plants (S5 and S6 Figs).

The plates were kept for vernalization at 4˚C for 3 days after sowing the seeds. The gas mea-

surement was started one day after vernalization in real time every 1 sec throughout the light

and dark period. The sensor was switched on/off every ~24 hrs throughout the experiment to

avoid any data loss due to overheating of sensors. The CO2 traces were measured until 19 days

from plating. The collected data were averaged over 60 seconds to reduce noise. Time evolu-

tion of CO2 concentration was determined for all replicate experiments as shown in Table 1.

CO2 trace of single replicates of Parafilm and Micropore-sealed plant cultures (each with 15

plants) is shown in Fig 1A. CO2 trace experiments were conducted, for all replicates, simulta-

neously under same conditions.

Measurement of dimensions of Petri dish. The dimensions of Petri dish used in calcula-

tions are listed in Table 2.

Thickness determination of Parafilm and Micropore tape. Stretched Parafilm samples

were frozen in liquid nitrogen. The imaging was done at a magnification of 20X using Nikon

Eclipse upright microscope. The thickness was measured using ImageJ at multiple positions.

SEM images of cross section of Micropore tape samples were taken at 150x magnification. The

length of pores which span from top of the fiber to the adhesive side were considered for calcu-

lation. The average values and standard errors of thickness (95% CI) for Parafilm and Micro-

pore tape are 46.9 μm±1.83μm, 67.9μm±8.569μm respectively.

Calculation of effective diffusivity of CO2 inside Petri dish sealed with Parafilm or

Micropore tape. A tightly sealed box was used for this experiment. There is a sensor within

Table 1. Number of replicates per treatment for CO2 characterization within plant cultures.

Treatment (Type of membrane used to close the Petri dish w/ number of plants inside) Number of Replicates

Micropore tape -15 plants 4

Parafilm—15 plants 3

Micropore tape—5 plants 5

Parafilm—5 plants 3

https://doi.org/10.1371/journal.pone.0212462.t001

Table 2. Dimensions of Petri dish.

Parameters Dimensions

Volume 0.00011 m3

Perimeter of the Petri dish 0.4 m

Width of the opening 0.001 m

Area of the width(gap between top and bottom plate) 0.0004 m2

https://doi.org/10.1371/journal.pone.0212462.t002
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the Petri dish and one outside. The source of CO2 (dry ice) was kept inside the box and the

concentration vs. time profile was measured for Petri dishes sealed with Parafilm and Micro-

pore tape respectively(S7 Fig). A fan was used for mixing the air inside the box to avoid inho-

mogeneities in the concentration of CO2. Both the sensors were placed next to the fan on the

base. We started the measurement after evaporation of dry ice as the CO2 concentration inside

the box has to be within the detection limit of the sensor. The Petri dish hosting the sensor was

quickly placed inside the box after the dry ice evaporated.

The concentration vs. time plot can be made from the data collected from the experiment

with a y-axis corresponding to CO2 concentration after de-dimensionalization and time as the

x-axis. The concentration values in petri dish for multiple experiments was converted to

dimensionless quantity using scaling method with the equation

CðtÞ � Cavg
Cmax � Cavg

ð1Þ

Where C (t) is the concentration at each time point t, and Cavg is the overall average concen-

tration, and Cmax is the maximum concentration. The assumptions taken are as follows: 1. A

constant source and finite sink for all the experiments. 2. The source is adequately mixed. 3. It

is a one-dimensional diffusion problem. Petri dish is squared and symmetrical. So we can take

four faces of Parafilm summed up as one membrane of defined thickness.

Fick’s first law of diffusion can be used to calculate the one dimensional diffusion problem

(assuming mass flow remains constant) where J is flux in the unit of moles�m-2 �s-1, D is the dif-

fusion coefficient of the membrane for CO2 (m2�s-1), ΔC is the concentration difference

between outside and inside (moles�m-3), Δx is the thickness of membrane (m). Now we know,

J ¼ � D
dc
dx

ð2Þ

D/Δx is known as the permeability value of the membrane for CO2 and can be calculated

from this experiment. Using the thickness (Δx) measured before we can measure the average

D for all points along the curve and report the error values. The corresponding D values can

be used to report the useful permeability values for both the membranes which can be used

later for further calculations. We measured independently the diffusivity of CO2 through the

seals to be Deff = 1.0×10−9±6×10−10 m2�s-1 and 8×10−08±4×10−08 m2�s-1 for Parafilm and

Micropore tape, respectively.

Measurement of leaf area. Images of the Petri dish were taken from the back side every

day until the end of the experiment. They were then processed in ImageJ by color thresholding

to convert the images to binary form. Then the total area of the leaves was plotted as a function

of time. The data were then fitted with a power law and interpolated to obtain the leaf area as a

function of time every 60 s. The interpolated data were then used to calculate the CO2

exchange rate discussed below.

Calculation of plant CO2 exchange rates. The rate of uptake and release were calculated

using the following steps: 1) the concentration (ppm) data for the sensor within the Petri dish

and the room sensor was converted to moles/m3 for inside and outside of petri dish. 2) The

time was synced for each sensor in the Petri dish with the CO2 profile from room sensor. 3)

The data were averaged every 60 sec. 4) In the first approximation the change in [CO2] with

time is given by the sum of Jplant�Aplant (where Aplant is the leaf area of the plants) and (Deff/Δx)

×Δ[CO2] where Deff is the effective diffusivity of CO2, Δx is the thickness, and Aseal is the area

of the seals, respectively, while Δ[CO2] is the difference in the [CO2] inside and outside the

Petri dish. The uptake/release rates are calculated from the rate of concentration change within
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the Petri dish per unit time adjusted with the contribution of the membrane at each time point

using the permeability values from the effective diffusivity experiment multiplied by Petri dish

volume and normalized by measured leaf area for each day of measurement (S8 Fig).

Measurement of O2 concentration

O2 sensor setup. The oxygen (O2) concentration inside the Petri dish was measured with

LuminOx (LOX-02-S) optical oxygen Sensors (from sstsensing.com) with a sensitivity of

0–25% O2 and error of<2% powered at 5V with an Arduino Uno microcontroller (S9 Fig).

Data were measured every second with an Arduino. Data were acquired in the same way as

described above for the CO2 sensor.

Incorporation of O2 sensor into Petri dish. Each Petri dish was engineered for an O2

sensor in the same way as for a CO2 sensor. The outline of the sensor (sterilized with ethanol)

was cut out of the Petri dish lid with a soldering iron inside the biosafety cabinet. The face of

the sensor with the membrane was placed inside the outline in the Petri dish lid. The gaps

between the sensor and the plastic of the lid were sealed with soft silicone putty as described

before and left to dry inside the biosafety cabinet. The lid was then used as a regular Petri dish

lid.

Characterization of O2 trace. Time evolution of O2 concentrations were measured inside

and outside of Petri dish lined with Parafilm containing 10 A. thaliana plants (S10 Fig). The

plates were kept for vernalization for 3 days at 4˚C. The gas measurement was done following

the same protocol described for the CO2 measurements.

Phenotype analysis

For both aerated and non-aerated Petri dishes, the phenotypes were observed at the end of 3

weeks from imbibition for hue analysis as shown in Fig 1D and after 2 weeks out of fridge for

the gene expression.

Experimental protocol. All experiments (secondary metabolite extraction/starch quanti-

fication) had three treatments: Aerated plant cultures, micropore and parafilm wrapped plant

cultures. There were three replicates per treatment each having 10 plants inside. We did all the

replicate experiments simultaneously in same conditions. We aerated all the Petri dishes with

same flow rate using the method discussed earlier.

Secondary metabolite extraction. After the treatment, plants were photographed on

Petri dish, flash frozen using liquid nitrogen and powdered in mortar. Powdered samples were

kept at -80˚C until use.

Total glucosinolate: The total glucosinolate content was measured following the method

described by Mawlong et al. and Kestwal et al. [44, 45] with modifications. The glucosinolates

were extracted using 80% methanol (HPLC grade, Sigma) from weighted flash frozen pow-

dered samples (shoot) and kept overnight at room temperature. Next, the homogenate was

centrifuged at 3000 rpm for 4 min and the supernatant was collected and diluted to 1 ml with

80% methanol. The reaction was conducted using: (i) 100 μl of the supernatant sample, (ii)

300 μl dH2O (distilled water) and 3 ml of 2 mM sodium tetrachloropalladate. The reaction

mixture was incubated at room temperature for an hour and then its absorbance was measured

at 425 nm. The absorbance of known concentrations of sinigrin was used as standard for quan-

tification of total glucosinolates.

Total flavonoids content: The amount of flavonoids in each sample was determined by the

aluminum chloride method described by Jia et. al.[46]. Samples were extracted following the

method described by Sofo et al.[47] method using 100 μl of acidified methanol (1% HCl) for

each 17 mg of frozen sample (powder). 500 μl of extract was then diluted with 500 μl of dH2O
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to which 150 μL of 5% sodium nitrite was added. Samples were vortexed and incubated at

room temperature for 5 min. 150 μL of 10% aluminum chloride was added and samples were

again vortexed and incubated at room temperature for 6 min. 2 mL of 4% sodium hydroxide

was then added and samples were diluted to 5 ml with dH2O, vortexed and allowed to stand

for 15 min at room temperature. Measurement of the absorbance was performed after the

pink color developed due to the presence of flavonoids against the reagent blank at 510 nm.

The amount of total flavonoids in the sample was expressed as mg rutin equivalents/g sample.

Total Phenolic Content: Total amount of phenolics in the samples was measured by using

the Folin-Ciocalteu method described in Makkar’s manual [48]. Samples were extracted fol-

lowing the method described by Sofo et al. [47] using 100 μl of acidified methanol (1% HCl)

for each 17 mg of frozen sample (powder). 50 μL of extract, 950 μl of dH2O and 500 μl of 0.5

mL of Folin-Ciocalteu reagent (1 N) were vortexed and allowed to stand for 5 min at room

temperature. 2.5 mL of 5% sodium carbonate was added and the samples were vortexed again

followed by incubation in the dark at room temperature for 40 min. Absorbance was measures

after blue color developed against the reagent blank at 725 nm using spectrophotometer. The

amount of total phenolics in the sample was expressed as mg gallic acid equivalents/g sample.

Detection of starch in plant material. The dynamics of starch accumulation was deter-

mined based on three-time points during the light period (two weeks after treatment) 20 min-

utes after the light is on, 8 hrs into the light period and 1 hour before the end of the light

period for all the treatments. The rosettes were cut from each plant at the respective time

points as mentioned before and placed in boiling water for 2 minutes to stop the plant metabo-

lism. The rosettes were then placed in boiling absolute ethanol for 5 minutes. The boiling etha-

nol was changed with a fresh batch of ethanol and kept boiling for another 5 minutes. The

ethanol was discarded with caution as the leaves are dehydrated and brittle and the vessel was

filled with distilled water to allow the leaves to rehydrate. After 5 minutes images were taken of

the bleached plants for each treatment. Bleached rosettes were then exposed to Lugol solution

(1% KI/I) and left in the dark for 10 minutes. The samples were washed with distilled water to

remove excess stain and placed on the Petri dish cover for final imaging. Calculation of starch

accumulation was performed semiquantitatively by image analysis of pixel intensity. Photo-

graphs were made from the same perspective and under the same lighting (background inten-

sity p-value = 0.58). Pictures were converted to 8 bit. Using ImageJ software, the average pixel

intensity (i.e., the darker the pixel, the higher the concentration of dye and the higher is the

pixel intensity) within each leaf of all plants in the experiment was measured (minimum of 10

plants per treatment with 3 replicates was used).

Detection of chlorophyll and carotenoids concentration. The chlorophyll and caroten-

oid content was measured using a previously described method.[49, 50] The samples were

extracted using methanol and the concentration was assessed spectrophotometrically by ana-

lyzing absorption in a spectrum range from 449 nm to 700 nm.

Characterization of hue distribution across three treatments. The hue distributions of

the leaves of Micropore-sealed, Parafilm-sealed and aerated samples was measured from pho-

tographs that were histogram matched to a reference image from the same experiment. The

leaves were isolated by color thresholding in ImageJ. The RGB values for each pixel were

extracted with Matlab and converted to HSV. The hue values, converted to hue angles, were

then plotted as a distribution by using a kernel density plot.

Genomic analysis

Treatments and experimental protocol. Two sets of mRNA sequencing was done. The

need for two sets of mRNA sequencing data is attributed to the experimental design (to have a
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larger number of replicates to confirm our hypothesis).The first set was performed on two

treatments: Parafilm-sealed plant cultures and aerated plant cultures. Both treatments had 4

replicates with 10 plants each. The second set of sequencing was performed for two treatments:

Micropore-sealed plant cultures and aerated plant cultures. In this case both treatments had 4

replicates with 10 plants each.

RNA isolation. Two weeks after in vitro cultivation, with or without aeration, plants were

photographed on Petri dish, flash frozen using liquid nitrogen and powdered in mortar. Total

RNA was isolated from the samples for two treatments (Parafilm and aerated) using IBI Total

RNA Mini Kit (Plant) according to the manufacturer’s instruction. RNA concentrations and

integrity were determined using a RNA 6000 Nano Assay Kit and Bioanalyzer 2100(Agilent

Technologies, Santa Clara, CA) with RNA 6000 ladder as the standards. Typical electrophero-

grams and chromatograms of the total RNA suggested good quality of the RNA samples. Sam-

ples were stored at -80˚C until use.

Characterization of RNA-Seq data

The sequence archive from the ISU DNA facility website was extracted. FastQC v0.11.3 was

used to determine the quality of the sequenced reads. All the sequence reads were determined

to be of good quality, and no sequence trimming was necessary.

Genome and annotation. The reference genome (Arabidopsis_thaliana.TAIR10.dna.tople-

vel) was downloaded from http://plants.ensembl.org/info/website/ftp/index.html and the annota-

tion/GFF file (Araport11_GFF3_genes_transposons.201606.gff.gz) from Araport11 website.

Mapping the reads to the reference genome. HISAT2 version 2.0.4, a splice-aware short

read mapper, was used to map the reads to the reference genome using default settings. The

aligned map files were then converted to sorted BAM files using samtools version 1.4.

Transcript abundance estimation. For quantifying gene transcript abundance from

RNA-Seq data, we used featureCounts, version 1.5.2. The aligned reads were quantified against

the gene features file (Araport11_GFF3_genes_transposons.201606.gff.gz), and the read counts

for each gene transcript and each sample were written into a data matrix.

Differential expression analysis with DESeq2. DESeq2 normalizes the counts of genes

by using median-of-ratios method[51], uses the counts of all genes to estimate dispersions and

then employs a negative binomial model to calculate log fold change and p-values which are

adjusted for multiple testing. The code is explained below.

Final curation. The results were filtered to exclude genes for which all samples showed

zero counts. For gene descriptions of Arabidopsis, the biomart functionality of the plants

ensembl website was used to get the gene descriptions/annotations which were appended to

the working file.

Characterization of differently expressed pathways. Nonparametric multivariate analy-

sis[52] was performed to identify the DE gene categories. First, the RNA-Seq counts were nor-

malized by using upper-quartile normalization method of Bullard et. al.[53] and converted to

log2-counts-per-million (logCPM). All genes were standardized to a common variance. Then,

we computed the multiresponse permutation procedure test statistic (MRPP) and calculated

the permutation p-value for each category. A significant threshold was chosen such that the

false discovery rate (FDR) is maintained at a suitable level.

Characterization of Gene Ontology enrichment analysis for biological processes. Pan-

ther analysis was made using Panther term enrichment tool version 11.[54]

Characterization of differentially expressed genes associated with biotic and abiotic

stresses. The differentially expressed genes associated with biotic and abiotic stresses was

obtained using MapMan 3.6.0RC1 using TAIR 9 database.[55]
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Gene expression data availability. The complete results of gene expression analysis

(mRNA-Seq) and nonparametric pathway analysis are attached as tables in Excel file: S1 Sup-

plementary Data (mRNA-Seq aerated to Parafilm) and S2 Supplementary Data (pathways

analysis). The result of mRNA-Seq analysis of aerated and Micropore tape gene expression are

shown in S3 Supplementary Data.

Accession numbers. The two sets of mRNA sequencing data are available through a

linked repository (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE120840) with the

accession Number: GSE120840 and token no ylcbmimmnhyxnqp for the reviewers.

Supporting information

S1 Fig. Schematic of Arduino-sensor assembly. A. Connection schematic of CO2 sensor with

Arduino. B. K-30 carbon-dioxide sensor module.

(TIF)

S2 Fig. Calibration curves of CO2 sensors. Calibration curves of CO2 sensors used to measure

CO2 concentrations in the room and in Parafilm and Micropore wrapped plant cultures (15

plants each). “Input” refers to the standard gases of different CO2 concentrations and “Output”

refers to the sensor reading in response to individual input standard gases.

(TIF)

S3 Fig. Schematic of CO2 sensor embedded inside the Petri dish. A. Pictogram of the engi-

neered Petri dish with sensor inside B. Plants growing in engineered Petri dish with sensor

after 2 weeks.

(TIF)

S4 Fig. Petri dish modified for aeration with inlet and outlet ports as shown.

(TIF)

S5 Fig. Time evolution of CO2 concentrations in 5 plants. A. Micropore sealed Petri dishes

with 5plants. B. Parafilm sealed Petri dishes with 5plants (dark period shown in gray) with

multiple replicates (Petri dish cultures with 5 plants each).

(TIF)

S6 Fig. Time evolution of CO2 concentrations in 15 plants. A. Micropore-sealed Petri dishes.

B. Parafilm-sealed Petri dishes with 15 plants each (dark period shown in gray) with multiple

replicates.

(TIF)

S7 Fig. Characterization of the effective diffusivity of the membranes. A. Experimental set

up. B. Concentration–time plot for two different membranes.

(TIF)

S8 Fig. Dynamics of CO2 exchange. A Dynamics of CO2 exchange for plant cultures in Petri

dishes. B Leaf growth dynamics over time for Parafilm and Micropore wrapped plant cultures

with 15 plants.

(TIF)

S9 Fig. Schematic of Arduino-sensor assembly of O2 sensor.

(TIF)

S10 Fig. Time evolution of O2 concentrations in Parafilm-sealed Petri dishes (red) contain-

ing 10 plants (Col-0) compared to room (black).

(TIF)
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S11 Fig. Comparison of phenotypes for non-aerated and aerated plant cultures. A and aer-

ated B plant cultures after 2 weeks before extraction of RNA samples for gene expression.

(TIF)

S1 Table. Fitting parameters for the CO2 sensors used in the calibration curves in S2 Fig.

(XLSX)

S1 Appendix. Codes for Arduino sketches and DESeq analysis.

(DOCX)

S1 Supplementary Data. mRNA-sequencing data comparing aerated to parafilm.

(XLSX)

S2 Supplementary Data. Pathway analysis of aerated to parafilm.

(XLSX)

S3 Supplementary Data. mRNA-sequencing data comparing micropore to aerated.

(XLSX)

S4 Supplementary Data. Calibration data for CO2 sensors used in time evolution of CO2

concentration experiment.

(XLSX)
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