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Abstract

The data collected by mobile methane (CH4) sensors can be used to find natural gas (NG)

leaks in urban distribution systems. Extracting actionable insights from the large volumes of

data collected by these sensors requires several data processing steps. While these survey

platforms are commercially available, the associated data processing software largely con-

stitute a black box due to their proprietary nature. In this paper we describe a step-by-step

algorithm for developing leak indications using data from mobile CH4 surveys, providing an

under-the-hood look at the choices and challenges associated with data analysis. We also

describe how our algorithm has evolved over time, and the data-driven insights that have

prompted these changes. Applying our algorithm to data collected in 15 cities produced

more than 6100 leak indications and estimates of the leaks’ size. We use these results to

characterize the distribution of leak sizes in local NG distribution systems. Mobile surveys

are already an effective and necessary tool for managing NG distribution systems, but

improvements in the technology and software will continue to increase its value.

Introduction

Mobile atmospheric methane (CH4) analyzers have been developed as an effective tool for

identifying natural gas (NG) leaks in urban distribution systems [1,2]. The advantages of these

highly-sensitive instruments on a mobile platform include the ability to detect more leaks and

to quickly survey large spatial regions. These benefits are prompting many local distribution

companies to adopt this technology as an integral part of managing their NG distribution sys-

tem. For example, information from these surveys has been used by local distribution compa-

nies to prioritize millions of dollars in pipeline replacement [3,4]

A crucial and challenging step in using this monitoring technology is translating raw survey

data into actionable information about natural gas leaks. The instruments used in these sur-

veys produce large volumes of data, including atmospheric CH4 concentrations and GPS loca-

tions, as well as wind speed and direction, current time, instrument functionality, and vehicle

speed, all at 2 Hz. From this stream, an algorithm is needed to generate actionable information

such as locations of natural gas leak indications and an estimate of each leak’s emission rate.
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Algorithms for processing data from mobile CH4 surveys have been commercially devel-

oped [5,6], but these algorithms are proprietary information, and little is known about the

details of the processing steps. In this paper, we describe the algorithm and processing steps

that we use to develop leak indications from mobile CH4 surveys. Collectively, we refer to our

data processing steps as our leak indication algorithm. Hereafter, unless specified otherwise,

we use the term algorithm to mean leak indication algorithm.

An algorithm for processing mobile CH4 survey data requires multiple steps. Within each

step, the user will need to make data processing decisions. For example, when are CH4 concen-

trations large enough to flag as a leak indication? While these decisions are subject to trade-

offs (e.g., sensitivity and specificity), we use data, validation, and in-field experience to inform

our processing protocols whenever possible.

The goal of our algorithm is to convert raw survey data about atmospheric CH4 concentra-

tions into data products that contain actionable information to be shared with local distribu-

tion companies (LDCs) and the public. The data products derived from these surveys can be

customized to fit the user’s need, and there is great potential for the development of new data

products. Here we describe how we develop a map of natural gas leak indication locations and

estimates of the leaks’ emission rate. We also describe a method for identifying especially leaky

areas of NG pipe, illustrating the potential for deriving multiple data products from these

surveys.

Since its initial implementation as detailed in von Fischer et al. [1] referenced here as v1.0,

our algorithm has undergone several changes to improve its efficacy, leading to v2.0 presented

here. Here we provide more details about the algorithm and describe updates to the algorithm

while presenting the data that motivated and supported these updates. Finally, we present a

summary of the database of leak indications that we’ve derived from surveying and applying

our algorithm in multiple cities. The rest of the paper is organized as follows: in Section 2 we

describe our algorithm and updates we have made to it; Section 3 compares the results from

applying v. 1.0 and 2.0 of our algorithm to survey data from four cities; in Section 4 we provide

an analysis of our leak indication database derived from surveying in multiple cities; Section 5

concludes the paper with a discussion.

Survey procedures and leak indication algorithm

In this section we describe the survey procedure for the mobile CH4 surveys, and the steps of

the algorithm that we use to extract actionable information from the survey data. As we illus-

trate in Fig 1 there are a number of stages in the survey procedures and the steps of data pro-

cessing. We organize the text below to follow the stages outlined in the figure above. Table 1

lists and describes the data used in our algorithm and the data products it produces. We refer

the interested reader to von Fischer et al. [1] for a description of the sampling instrumentation,

and further details about the controlled CH4 releases and decisions made in the data process-

ing algorithm.

2.1 Survey procedure

In most cases, whole cities were not mapped exhaustively. Instead, we identified subsets of the

city to serve as survey regions. In some cases, our interactions with local distribution compa-

nies directed our survey toward specific regions of interest. In other cities, survey regions were

chosen to reflect the variation in socio-economic conditions, housing age (intended as a proxy

for NG pipeline age) and demographic composition of the city, based on data obtained from

the U.S. Census Bureau [20] and Google Maps.
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Our survey protocols have not changed since v1.0, and here we further describe how these

protocols were implemented. We instructed the drivers of the survey vehicle to drive every

roadway within each designated survey region. The driver was able to monitor their coverage

of the region via a display screen in the car. Data from each day were uploaded to a data cloud.

As coverage of each region neared completion, we checked for survey gaps. We defined gap

areas as any roadway segment(s) in the survey region where either the driver failed to survey

or where data quality was poor (see Section 2.2 for more information on data quality). If we

found gap areas, we sent a map of these areas to the driver, instructing them to drive the survey

vehicle through these areas. Due to idiosyncratic issues (e.g., private roads, road construction,

driver error, data quality) that arose during surveying, spatial coverage of survey regions was

not always 100%, but was typically >90%. Once a survey region had been surveyed once, we

designated the region as having the first pass completed. We then instructed the car driver to

survey the region a second time (second pass), using the same protocols as the first pass. Com-

pletion of each pass of a survey region typically took 2–3 days but occasionally did take longer

due to size of the region, mechanical failures, weather, and/or traffic.

During data collection, we ran checks for quality control, instrument error, and survey

progress every 1–2 days. We ran checks for anomalous leaks (see Section 4.2) every 1–2 weeks.

Fig 1. Flow chart of the steps used to create maps of leak indications and survey coverage. The parenthetical numbers denote the section of the paper that describes

the data processing step. Topics marked with an asterisk (�) denote parts of the algorithm that have been modified since v1.0. Icons are reprinted from The Noun Project

under a CC BY license, with permission from icon authors. Individual author attributions are given in the references [7–19].

https://doi.org/10.1371/journal.pone.0212287.g001

An algorithm to detect natural gas leaks from mobile methane surveys

PLOS ONE | https://doi.org/10.1371/journal.pone.0212287 February 13, 2019 3 / 18

https://doi.org/10.1371/journal.pone.0212287.g001
https://doi.org/10.1371/journal.pone.0212287


Collecting data for all the survey regions within a city typically took several months. Final pro-

cessing of all the data collected in a city took place after data collection in all survey regions

was complete.

2.2 Quality control and GPS adjustment

We use a number of quality control (QC) checks to ensure that the survey data are reliable and

to ensure the instruments are functioning correctly. As described in v1.0, we do not use data

collected by the car when the car speed is greater than 20 m/s (45 mph); controlled CH4

releases [1] indicated that CH4 concentration measurements become unreliable at high vehicle

speeds. Instrument performance metrics, including inlet pressure, cavity temperature, and

instrument temperature were defined by the instrument manufacturer. Deviations from these

normal operating ranges are possible indications of a problem with the sampling system.

In reviewing QC data from two cities, we found that 9% and 7% of data collected were dis-

carded due to failing to meet QC criteria. The most commonly failed QC criteria was vehicle

speed, which accounted for the vast majority of discarded data. Although survey areas gener-

ally did not include high-speed roadways, the drivers often commuted from their home to the

survey region via highways, and the instruments collect data whenever the car is running. Low

cavity pressure, an indicator of a clogged sampling inlet, was the next most commonly failed

QC criteria.

Because there is a delay in the time between when air is sampled at the front bumper and

when it is analyzed by the instrument, we adjust GPS locations to account for this delay. This

adjustment is described in algorithm v1.0. As an example, if the GPS-sampling time delay is 2

seconds, latitude and longitude coordinates are reassigned to CH4 readings that were observed

two seconds previous.

2.3 Peak detection

The first step in identifying NG leak indications is to characterize departures from typical lev-

els of CH4. We characterize these departures by first defining a baseline (or background) CH4

concentration. Atmospheric CH4 concentrations are typically around 2 parts-per-million

Table 1. Summary of the data used by our algorithm and the data products it produces.

Data/Data Product Data type Section Description, Attributes, and/or Key Features

Census Data Input 2.1 American Community Survey demographic information

Tiger/Line Files Input 2.7 Roadway location information, vector form

Raw Survey Data Input 2.1 Vehicle location, time stamp, atmospheric CH4 concentration, quality control metrics

Road Points Derived Intermediate 2.7 Roadway location information, raster form

Quality Approved Data Derived intermediate 2.2 Survey data filtered for QC standards and adjusted for GPS-sampling delay

Elevated Readings Data Derived intermediate 2.3 Baseline CH4 concentration; locations, time stamp, and CH4 concentration for readings over baseline

Observed Peak Data Derived intermediate 2.3 Central location, time stamp, and CH4 concentration for each set of elevated readings

Leak Indications Derived final 2.4 Aggregations of peaks: estimated location of NG leak, max CH4 observed, first and last date peaks were

observed, estimate of emission rate

Roads Surveyed Derived final 2.7 Roadway locations that have been surveyed two or more times

Leak Indication Maps Combination of derived

final

— Visualization combining roads surveyed and leak indications

Anomalous Leak

Indications

Derived final 4.2 Locations of unusually large peaks or emission rates

Flute data Derived final 2.8 Aggregation of multiple observed peaks in close proximity: estimated location of extended area with

high density of leak indications.

https://doi.org/10.1371/journal.pone.0212287.t001
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(ppm), but they vary at the small, localized scale where CH4 measurements are taken during a

mobile survey. Thus, it is necessary to define a baseline concentration as a function of local

CH4 measurements. We calculated a baseline concentration for each CH4 measurement made

by the survey instrument.

We updated our baseline calculation methodology between v1.0 and v2.0 of our leak detec-

tion algorithm. We now define the baseline concentration associated with a CH4 measurement

as the median of all CH4 concentrations recorded within a 2.5 minute window of the reading

(i.e., the median of all readings that occurred 2.5 minutes before and 2.5 minutes after the

given reading). Previously, we defined the baseline for each CH4 measurement as the average

of all CH4 readings that occurred in the previous 2 minutes of surveying. An analysis of our

baseline CH4 concentration data revealed that, when the survey vehicle drove through the gas

plumes from multiple leaks that were spatially close, these baseline concentrations tended to

become inflated (e.g., larger than 3.5 ppm). This inflation hinders our ability to detect the

departures from typical CH4 levels caused by NG leaks. The +/- 2.5 minute window allows a

greater spatial extent of methane concentrations to be used for characterizing the baseline rela-

tive to using only the data from the previous 2 minutes. The median provides a better measure

of typical CH4 concentrations than the mean because it is relatively unaffected by the large

CH4 concentrations that occur when driving through the plumes created by NG leaks.

Next, we define a threshold for elevated CH4 concentrations using the baseline value.

Unchanged from v1.0 of the algorithm, we define an elevated reading as any reading having

CH4 levels greater than or equal to 110% of the baseline value. Because the baseline value will

vary in time and space, so will the threshold for elevated CH4 levels, but at a typical back-

ground of 2 ppm, the threshold is 2.2 ppm. Fig 2 displays an example of survey data where we

found elevated CH4 readings.

The percentage of readings that are considered elevated varied by city and reflect the rela-

tive leakiness of NG infrastructure. For example, in one city known to have relatively large

amounts of leak prone pipe, 1.8% of CH4 readings were marked as elevated. In another city,

which has relatively newer infrastructure, 0.4% of reading were marked as elevated.

Fig 2. An example of data processing from the CH4 survey. The left panel shows the survey data after quality control. The right panel displays the elevated readings,

observed peaks (blue markers), and leak indication (black pipe marker) information within the black rectangle marked in the left panel. The leak icon is reprinted from

The Noun Project under a CC BY license, with permission from icon authors. Individual author attribution [19] is given in the bibliography. Maps were created using

Leaflet for R [21].

https://doi.org/10.1371/journal.pone.0212287.g002
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When the survey vehicle drives though a plume of gas created by a NG leak, it is typical to

observe multiple elevated readings in series. Plots of these elevated CH4 measurements as a

function of time reveal a peak shape, where concentrations rise and fall as the car passes

through the plume. We refer to these consecutive elevated readings as observed peaks (OPs).

Each OP consists of a central location, maximum CH4 concentration, and timestamp of obser-

vation. The central location of an OP is defined as a weighted spatial average of the locations of

all the elevated readings in the OP, where the weights are defined using the corresponding

CH4 measurements. The OP location is given by

ðLong;LatÞ ¼
Pn

i¼1
wiðlongi; latiÞPn

i¼1
wi

; ð1Þ

where wi is the CH4 concentration recorded from the ith elevated reading and n is the number

of elevated CH4 readings in the peak.

OPs are an indicator that a natural gas leak or other CH4-emitting source is present near-

by. In some cases, CH4 levels can change from elevated to non-elevated to elevated within a

short time period. If the time between two series of elevated readings is less than 5 seconds

(i.e., if readings go from elevated to non-elevated to elevated within 5 seconds), the two series

are treated as a single OP. In v1.0 when two such series were observed, they were treated as

two separate OPs regardless of the time between observations. In some cases, these two OPs

would be joined into a single leak indication (see Section 2.4) despite elevated methane levels

being observed on only a single day. The 5 second interval is based on a driving speed of 11–13

m/s (25–35 mph), so that 5 seconds of driving equates to a distance of approximately 55–67

meters.

2.4 Leak indications

The next step of the algorithm is consolidating OPs into leak indications. When multiple OPs

are located in close spatial proximity, they likely correspond to detections of the same CH4-

emitting source. Environmental variables, small-scale winds or soil conditions, can change the

apparent location of a CH4-emitting source. To account for this change in apparent location,

we place a spatial buffer around each OP location and join OPs with overlapping buffers. In

algorithm v1.0, we used a 20 m buffer for the join. Data from our field work with one utility

company revealed multiple instances where observed peaks from the same leak were separated

by more than 20 meters. These data suggested that a 30 m buffer was more appropriate, and as

a result, we use a 30 m buffer to join OPs in algorithm v2.0.

We join OPs that have overlapping buffers into a single leak indication location. Thus, a

leak indication corresponds to an area where elevated CH4 levels have been observed two or

more times. Each leak indication consists of a location (lat/long), first and last date of observa-

tion, the number of OPs joined to create the leak indication, and an estimated emission rate

(see Section 2.5 for more information on estimated emission rates).

The percentage of OPs that become a part of a leak indication varied by city and again

reflected the state of infrastructure in the city. In the aforementioned city known to have a rela-

tively large proportion of leak prone pipe, 75% of OPs became part of a leak indication. In the

other city, which has relatively newer infrastructure, 47% of OPs became part of a leak indica-

tion. These percentages also suggest that leaks are larger in the first city than the second, as the

probability of detecting a leak increases with leak size [22]. Leak indications typically consist of

2 or 3 OPs (detections), although it is not unusual to consolidate as many as 5–8 OPs into a

single leak indication. Occasionally, when located along arterial routes crucial for navigation

or near the driver’s residence, leaks may be detected as many as 15+ times.

An algorithm to detect natural gas leaks from mobile methane surveys
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Following algorithm v1.0, we do not report locations where elevated CH4 levels (i.e., an OP)

have only been detected once. We require repeated observation of elevated CH4 levels in order to

reduce false positive reporting where no leak is present. Transient sources of CH4 emissions such

as compressed natural gas vehicles can cause elevated CH4 levels to be detected by our mobile sur-

veyor. The tradeoff for reducing false positives is an increase in false negatives. Leaks can go unde-

tected for a variety of reasons including wind (e.g., wind blowing the plume away from the

roadway) and soil conditions (e.g., wet soil preventing the escape of gas). As a result, the leak indi-

cations reported from our survey efforts are a subset and not a census of all leaks present in the

distribution system. See also Weller et al. [22] for a discussion of this phenomenon.

New to algorithm v2.0, we calculate the location of leak indications using a weighted spatial

average of the locations of the OPs that compose the leak indication. The location of a leak

indication is an estimate of the location of a potential natural gas leak. In algorithm v1.0 we

used an unweighted spatial average. Each OP has a maximum recorded CH4 concentration

and a location associated with this maximum concentration. When OPs are joined, we average

the coordinates of the maximum CH4 concentration from each peak. Coordinates with the

largest CH4 concentrations are given the most weight. We use a weighted average because data

from controlled CH4 releases showed that, for a given leak size, the largest measured CH4 con-

centrations are more likely to be observed when the vehicle is closest to the expression point.

The final estimate of the leak’s location is given by:

ðLong; LatÞ ¼
Pp

j¼1
wjðlongj; latjÞ
Pp

j¼1
wj

; ð2Þ

where wj is the maximum CH4 concentration from the jth observed peak and p is the number

of OPs that were joined to create the verified peak.

We used a handheld GPS to record the coordinates of leaks during field work in one city to

assess whether or not our weighted spatial average produced improved leak location estimates.

We compared the leak location error associated with the weighted and unweighted location

estimates. The location error is defined as the distance between the estimated leak location and

the actual leak location recorded in the field. The difference in the location error is defined as

the unweighted location error minus the weighted location error. Thus, positive values of this

difference indicate that the weighted location estimate was closer to the leak. A histogram of

the differences is show in Fig 3. The average of this difference was 0.38 m, and the weighted

location was closer to the actual leak for 54% of the leaks (26/48). In one instance it was 11 m

closer, although the absolute difference tends to be small (less than 5 m). In another study [2]

we found that the weighted location formula reduced the location error by an average of 1.8 m.

Thus, while this change tends to produce better location estimates, the improvement is modest

and could be included as a user-specific option.

2.5 Estimating emission rates

We updated the way we estimate leak emission rates relative to algorithm v1.0. In an examina-

tion of our leak rate prediction approach, we identified a tendency to over-estimate the leak

rate, some statistical collinearity among predictors, and inconsistent choice of data to use in

the calibration. As a result, we revisited the controlled CH4 release data and analysis described

in v1.0. The resulting changes include: 1) removal of some calibration data, 2) change in the

elevated CH4 features used to predict leak rate, and 3) an updated maximum estimated leak

rate.

We use a statistical calibration model for estimating leak size using data from controlled

CH4 releases. At low release rates and large distances, we sometimes failed to detect departures

An algorithm to detect natural gas leaks from mobile methane surveys
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from the baseline CH4 concentration (i.e., we did not observe concentrations that were greater

than 110% of the baseline). In this new analysis, we removed passes from the calibration exper-

iment where we failed to detect elevated CH4 levels; the previous calibration included some

passes where the CH4 readings were elevated but did not rise above 110% of baseline.

An exploration of the controlled release data using R software [23] indicated that the maxi-

mum CH4 enhancement from each pass of the controlled release was the best predictor of the

leak emission rate, and that additional predictors did not meaningfully improve model predic-

tions. We define the CH4 enhancement, or excess CH4, as the difference between the measured

CH4 concentrations and the baseline concentration. The relationship between the known

emission rate and the maximum excess CH4 from the controlled release experiments is illus-

trated in Fig 4. As expected, the observed maximum excess CH4 tends to increase as the CH4

release rate increases.

Besides the leak emission rate, our analysis of the controlled release data indicated that dis-

tance between the car and the leak expression point is also an important factor in understand-

ing the relationship between the release rate and the excess CH4 concentrations. In practice,

however, we do not know the distance between the car and the leak expression point. Thus, we

do not include distance in our subsequent analysis. Instead, our calibration analysis assumes

an average distance of 15.75 meters between the car and the leak. Data on the distance between

the survey vehicle and known leak locations indicated that the typical distance between the car

and detected leaks was 21 meters (see Fig 5).

Fig 3. Histogram of the difference in location error. The difference in location error is defined as unweighted error–

weighted error. Positive values of this difference indicate that the weighted location estimate was closer to the actual

leak. The mean difference was 0.38 m, and the weighted location was closer for 54% of the sites (26/48).

https://doi.org/10.1371/journal.pone.0212287.g003
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We fit a linear regression model to the controlled release data, using natural log (ln) of the

known release rate as the explanatory variable (x) and the ln of the maximum excess CH4 as

the response variable (y). We use the model

lnðmaxexcess CH4Þ ¼ b0 þ b1 � lnðemission rateÞ þ ε; ε�iidNð0; s2Þ; ð3Þ

where the emission rate is given in L/min and the excess CH4 is given in ppm. The estimated

regression equation is

lnðmaxexcess CH4Þ ¼ � 0:988þ 0:817 � lnðemission rateÞ: ð4Þ

To use this model to estimate the emission rate of a leak in practice, we calculate the geo-

metric mean of max excess CH4 values associated with each detection of the leak. Recall, each

leak indication results from two or more observed peaks, each of which has a ln(max excess

CH4) value. We enter the average ln(max excess CH4) into the left-hand side of Eq (4) and

solve for the emission rate.

2.7 Roads driven two or more times

Among the data products that we generate, we provide maps showing locations where the sur-

vey vehicle has collected useable survey data two or more times. This map is derived using U.S.

Fig 4. Relationship between known emission rate and excess CH4 from controlled release experiments. The axes

are on the ln-ln scale.

https://doi.org/10.1371/journal.pone.0212287.g004
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Census TIGER/Line GIS (Geographic Information System) [24] files to define the locations of

roadways within the survey regions. We rasterize the relevant roadway vectors, discretizing

them into road points placed 20 m apart along the roadway vector.

We then use ArcGIS to analyze the GPS coordinates and time stamps of processed survey

data in order to determine how many times a road point has been surveyed. We define a road

point as having been surveyed if the survey vehicle passed within 20 m of the road point. This

20 m buffer accounts for GPS and/or GIS road location errors. In algorithm v2.0 we define a

road point as driven two or more times if two or more survey attempts occurred at least 30 sec-

onds apart in time. Previously we required survey attempts to be separated by five minutes.

Due to the logistics of driving in an urban area, many roadways are surveyed more than

two times. We similarly define a road point as having been driven three times, four times, etc.

In the overwhelming majority of cases, road points driven 2+ times have been surveyed on at

least two separate days. We estimate the number of miles driven 2+ times by interpolating

adjacent road points that were driven 2+ times using ArcGIS. Table 2 displays the number of

road miles driven and number of survey attempts from two cities.

Fig 5. Histogram of the distance between the survey vehicle and NG leak expression points in Boston. In this

histogram, there were 468 passes of 19 known leaks. The typical distance between the car and leaks is 10–30 meters.

Occasionally, the survey instruments detect leaks that are greater than 60 m from the car.

https://doi.org/10.1371/journal.pone.0212287.g005

Table 2. The number of road miles driven by survey effort in two cities.

2 3 4 5 6 7 8 9+

Jacksonville 80 137 156 126 85 61 47 48

Pittsburgh 300 183 139 112 70 72 62 35

https://doi.org/10.1371/journal.pone.0212287.t002
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2.8 Flutes

In some cities, leak prone pipeline infrastructure (e.g., cast iron pipe) can develop multiple

leaks in close proximity. We refer to these leaky segments of pipe as flutes because, like the

musical instrument, they have multiple gas escape routes along their flow path. These leaky

segments of pipe can cause elevated CH4 levels to be detected over a large spatial extent. Our

leak indication algorithm typically cannot resolve these individual leaks due to their close

proximity; instead, they are often consolidated into a single leak indication.

Flute areas highlight locations that contain an unusually high frequency of elevated CH4

concentrations over a longer stretch of roadway than a leak indication. We identify these areas

by buffering and then joining together the locations of elevated CH4 readings. By joining these

buffered locations, we estimate the area of the spatial extent of elevated CH4 levels. We can

then use these size estimates to rank and identify locations that may contain multiple leaks. Fig

6 shows an example.

Identification and ranking of flute areas can be used to prioritize more intensive effort of

pipe segment replacement rather than individual leak repair. When we shared our flute areas

with one LDC, they indicated that the maps would be useful, and they noted that two of the

five flute areas that we identified had already been slated for>1 mile of pipeline replacement.

We do not yet have a mechanism for estimating total gas emission rates from flutes.

Analysis of algorithm modifications

The most significant updates leading to algorithm v2.0 include the baseline calculation and the

method used to estimate leak emission rate. Smaller changes include the threshold for joining

observed peaks into leak indications, timing between observed peaks, and timing used to cal-

culate roads driven two or more times. Although no single change to our algorithm is dra-

matic, we anticipated that the combination of these changes could have significant effect on

the conclusions we draw from the data. Here we compare findings of the two algorithms in

light of this potential. The results of this analysis are displayed in Table 3. One of the cities

used in the analysis is anonymized because the results have not yet been shared publicly.

As expected, v2.0 of the algorithm produces more OPs because the baseline concentration

tends to be less affected by areas with elevated CH4 concentrations. This allows us to more eas-

ily detect small departures from baseline. Surprisingly, the increase in observed peaks does not

always lead to an increase in leak indications. This is in part due to the larger buffer used

around OPs in v2.0, which consolidates more OPs together. For example, the larger buffer

could join five OPs into a single leak indication rather than two separate leak indications. In

two of the cities the number of leak indications increased while in the other two the count

stayed the same or slightly decreased.

Despite changes in the number of leak indications and miles of roadway surveyed, the den-

sity of leak indications per mile was relatively stable across cities between v1.0 and v2.0

(Table 3). Across the 15 cities we have mapped thus far, we have observed a range in leak indi-

cation density from 0.005 to 1 leak indications per mile). In light of this ~200-fold range, the

<20% change in leak indication density arising from algorithm changes (Table 3) does not

meaningfully alter the qualitative comparison among cities. Thus, we conclude that the leak

indications per mile metric can be fairly compared between cities, regardless of whether v1.0

or v2.0 was used to analyze the cities’ data.

In a related study, we evaluated the precision and accuracy of our updated model for esti-

mating emission rates by comparing it with enclosure and tracer release quantification meth-

ods [2]. This comparison revealed that although the mobile quantification method still over-

estimates the size of the smallest leaks, it is a generally unbiased estimator of leak size for the
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larger leaks that are of primary interest for pipeline management. We explored the impact of

the updated model on estimated emission rates.

The updated emission rate model generally predicted smaller rates. As a result, the esti-

mated total emissions decreased in all four cities, but, once again, the magnitude of the

decrease varied by city. For Anonymous, Pittsburgh, and Dallas, the v2.0 estimate of total

emissions was about 46% less than the v1.0 estimate. In Birmingham, v2.0 estimated emissions

were only 9% lower than v1.0. Estimates of emission rates per mile of roadway similarly

decreased. In Anonymous City and Pittsburgh, estimates of liters per minute per mile were

reduced by roughly 57%. In Dallas the reduction was 36%, and in Birmingham it was 11%. For

the cities considered here, the liters per minute per mile only varied by an order of 1.7x, from

0.93 to 1.62.

To account for uncertainty in leak size estimation, we assign leaks to size bins (small,

medium, and large), following the same categorization as v1.0. The reduction in estimated

Fig 6. An example of a flute area (blue line). Segments of pipe with multiple leaks can cause elevated CH4 levels to be detected over a large spatial extent, as illustrated

by the blue polygon encircling multiple series of elevated readings. The scale is the log of the CH4 enhancement (log10 ppm over baseline). Map created using Leaflet for

R [21].

https://doi.org/10.1371/journal.pone.0212287.g006
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emission rates from v1.0 to v2.0 caused an increase the number of leak indications that were

categorized as small, and typically, a decrease in the number of leak indications categorized as

medium or large. An exception to this was Birmingham, where the number of large leaks

increased from zero to two, largely due to the updated baseline calculation and a number of

large OPs in close proximity that had previously been joined into fewer large leak indications.

Survey efforts and anomalous leaks

4.1 Leak indication database

Cumulatively, our survey efforts between 2013 and 2017 have covered over 13,300 miles of

roadway across 15 cities. This survey provides information about natural gas leak indications

in 1405 census tracts, home to an estimated 5.7 million people [25]. By applying our algorithm

to the data collected in these 15 cities, we have developed location and emission estimates for

6125 leak indications. This database will grow as we complete our survey efforts in 2018. Leak

indication maps and data are publicly available on the EDF website.

Fig 7 shows a histogram of estimated emission rates for the 6125 leak indications. The

shape of the distribution of estimated leaks sizes is typical of other studies that quantify CH4

emissions from the NG production and distribution process [26–28]. We see a right-skewed

distribution where most of the leaks are small but there are a number of leaks with exception-

ally large emission rates. The smallest estimated emission rate was 0.47 L/min and the largest

was 238 L/min. This highest value is an extrapolated estimate beyond the range of our calibra-

tion experiment, which used a maximum release rate of 61.5 L/min. Of the 6125 leak indica-

tions, only 7 were estimated to be greater than 61.5 L/min. For the bin sizes, 93.8% of the leak

indications were categorized as small, 5.9% were medium, and 0.3% were large. The estimated

total emissions from these leak indications are 16,261 L/min. Assuming a 20-year global

Table 3. A comparison of survey results between algorithm v1.0 and v2.0.

City Counts & Miles v2.0 v1.0 Emissions v2.0 v1.0

Birmingham Observed peaks 728 654 Sm 159 141

Leak indications 168 160 Med 7 19

Miles 2+ 366 354 Lg 2 0

LI/Mile 0.46 0.45 Total emission (L/min) 592 648

L/min/Mile 1.62 1.83

Anonymous City Observed peaks 1115 1075 Sm 251 215

Leak indications 275 277 Med 24 59

Miles 2+ 569 488 Lg 0 3

LI/Mile 0.48 0.57 Total emission (L/min) 774 1636

L/min/Mile 1.36 3.35

Pittsburgh Observed peaks 2306 2041 Sm 422 374

Leak indications 460 447 Med 35 69

Miles 2+ 1532 1347 Lg 3 4

LI/Mile 0.30 0.33 Total emission (L/min) 1419 2781

L/min/Mile 0.93 2.06

Dallas Observed peaks 2066 1856 Sm 390 353

Leak indications 414 414 Med 23 57

Miles 2+ 875 873 Lg 1 4

LI/Mile 0.47 0.47 Total emission (L/min) 1226 1913

L/min/Mile 1.40 2.19

https://doi.org/10.1371/journal.pone.0212287.t003
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warming potential of 84 for CH4 [29], the daily emissions from these leaks are equivalent to

1286 metric tons of CO2, roughly the CO2 emissions from burning 703 tons of coal [30].

Fig 8 shows a cumulative emissions curve from the 6125 leak indications. Previous studies

have defined the largest 5% of leaks as super-emitters [28]. In their analysis of NG leaks from

18 studies across the NG supply chain, Brandt et al. [26] propose the 5–50 rule where the larg-

est 5% of leaks account for at least 50% of emissions. Our cumulative emissions curve indicates

that the largest 5% of leak account for only 17% of emissions, suggesting that the distribution

of emission rates for local NG distribution is not as heavy tailed as the distribution of leak

emission rates in other segments of the NG supply chain.

It is not clear why the emission rates are not as heavy tailed as other NG sectors. It may be

that very large sources are rarer, perhaps because they are readily detected by their odor and

are thus rapidly found and repaired. On the other hand, there may be relatively more small

leaks than in other sectors due to the numerous connections and fittings in local distribution

systems. Unlike large leaks, these small leaks persist because they are either difficult to detect

or do not pose a safety concern. In combination, we hypothesize that this lack of large leaks

and abundance of small leaks causes a departure from the 5/50 rule observed in other studies.

4.2 Anomalous leaks

We developed criteria for identifying when the leak emission rate may be anomalously large

and deserving the immediate attention of the LDC. Of course, any NG leak could pose a

safety threat, but as leak rate increases so does the potential for gas to accumulate quickly to

explosive levels. There are two cases when we flag readings as anomalously large. First, an

observed peak is flagged as anomalous when its CH4 concentrations exceeds 20 ppm. Second,

a leak indication is flagged as anomalous when its emission rate estimate (derived from

Fig 7. Histograms of estimated sizes of 6125 leak indications developed from surveying in 15 cities. The left figure shows a histogram of estimated emission

rates truncated at 20 L/min. The right figure shows a histogram emission rates from all 6125 leak indications on the log10 scale.

https://doi.org/10.1371/journal.pone.0212287.g007
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multiple observations) exceeds 15 L/min. Both of these thresholds lie above the empirical 99th

percentile of their respective metrics. If anomalous peaks or leak indications are discovered

during the survey, we report them immediately to the LDC telephone hotline.

Conclusions, commercialization and future improvement

The sophistication, size and cost of environmental sensors has improved over the last 15 years,

enabling their creative deployment on diverse mobile platforms [31–35]. These deployments

generate sophisticated datasets, requiring a new generation of algorithms for extracting the rel-

evant data products from these observations. Often, mobile sensor deployments aim to docu-

ment patterns of risk exposure across diverse human populations. We support transparency

and open discussion in such efforts by explicitly documenting the methods used to interpret

these data.

We have presented an open source algorithm for processing data from mobile CH4 sources

in order to identify leak indication location. The code for implementing our algorithm and an

example dataset is available on GitHub. Algorithms for processing data from mobile methane

surveys have been commercially produced, and we anticipate that they employ more advanced

computational and analytical techniques than those presented here. Nonetheless, we have pre-

viously shown [2] that our algorithm is effective for detecting, locating, and ranking the size of

natural gas leaks in urban distribution systems.

Fig 8. Cumulative emissions curve from the estimated sizes of 6125 leak indications. The cumulative emissions

curve indicates that largest 20% of leaks account for approximately 54% of total emissions.

https://doi.org/10.1371/journal.pone.0212287.g008
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There are several ways our algorithm could be improved. First, we do not distinguish

between thermogenic and biogenic CH4 sources, but this capability could be added by analyz-

ing both CH4 and ethane concentrations. Second, we do not utilize wind data when developing

our leak location estimates. The use of wind data from both the survey vehicle and local

weather stations could potentially provide better estimates of leak locations, and wind data are

already being used in commercially developed algorithms.

Data from mobile CH4 surveys are already being analyzed more broadly [22] and being

used as a basis for informing repair decisions [3,4]. But we anticipate still greater potential for

the development of other data products and use of data from mobile CH4 surveys. For exam-

ple, data from mobile surveys could be coupled with existing pipeline and building infrastruc-

ture data to create a hazard map of NG infrastructure [36]. Mobile survey data products could

also be developed for incorporation into decision and scheduling algorithms for prioritizing

NG infrastructure and leak repairs [37].

Not every leak is found every time by mobile methane surveys. Thus, for reasons of safety

and completeness, ground surveys will always remain an essential tool for managing NG distri-

bution systems. However, as scientists, commercial software providers, and technology devel-

opers learn more about NG leaks and improve sensing technology, these algorithms will

continue to be developed and updated, making mobile surveys an integral part of maintaining

the safety and integrity of local distribution systems.
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