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Abstract

Hybrid biotic abiotic devices can be used to interface electronics with biological systems for

novel therapies or to increase device functionality beyond silicon. Many strategies exist to

merge the electronic and biological worlds, one dominated by electrons and holes as charge

carriers, the other by ions. In the biological world, lipid bilayers and ion channels are essen-

tial to compartmentalize the cell machinery and regulate ionic fluxes across the cell mem-

brane. Here, we demonstrate a bioelectronic device in which a lipid bilayer supported on H+-

conducting Pd/PdHx contacts contains carbon nanotubes porin (CNTP) channels. This bioe-

lectronic device uses CNTPs to control of H+ flow across the lipid bilayer with a voltage

applied to the Pd/PdHx contacts. Potential applications of these devices include local pH

sensing and control.

Introduction

Bioelectronic devices that interface with biological systems have many potential applications

including new therapies and computational systems with functionalities beyond silicon [1, 2].

Examples include electroceuticals [3], wearables [4], electronic plants [5], and edible electron-

ics [6]. In biological systems, membrane proteins and ion channels contribute to most of the

communication between cells and their environments. Ion channels either passively allow or

actively control the flow of ions, typically Na+, K+, Cl-, and Ca2+, and small molecules across

the cell membrane [7]. Although protons are not directly involved in neuronal action potential

generation and propagation, proton (H+) currents and concentration,[H+], gradients play

essential physiological roles in a number of other processes [8]. The most striking example is

oxidative phosphorylation in mitochondria in which proton gradients serve as a means to

translate the energy from oxidation of glucose during the Kreb’s cycle into ATP, the biological

energy currency [9, 10]. Other examples include the light-activated H+ pumping by archaeal

bacteriorhodopsins [11], the activation of bioluminescence from H+ in dinoflagellates [12], the

bacterial flagellar motor activation [13], and the activity of the antibiotic Gramicidin [14].
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Recently, carbon nanotube porins (CNTPs) have emerged as artificial channels that can con-

duct protons across lipid bilayers [15]. In particular, narrow sub-1-nm diameter CNTPs that

force water into a single-file wire conformation show very high H+ conductivity exceeding that

of Gramicidin channel and even exceeding the intrinsic conductance of Nafion [16].

Man-made electronic platforms, which use electronic currents to carry charge have an

intrinsic difficulty connecting to the biological systems that rely mostly on ionic currents [17].

To this end, many efforts in bioelectronics focus on strategies to interface ionic and electronic

signaling. For example, researchers showed carbon nanotube, silcon nanowire, and organic

field effect transistor devices that integrated gramicidin and rhodospins as gating elements

[18–20]. Organic bioelectronics[21–22] with mixed ionic [23–25] and electronic conductivity

enables devices that can both record and stimulate physiological function, and can be assem-

bled into logic circuits [26]. We have recently demonstrated bioprotonic devices that control

the flow of H+ in field effect transistors (H+-FETs) [27–30] and memories [31], and integrated

these devices with enzymes to create logic gates [28]. H+ conducting transistors with squid

reflectin proteins have also been described [32–34]. All of these H+ conducting devices incor-

porated Pd/PdHx contacts, which translated an H+ current into an electrical response [30,35].

We have previously demonstrated the integration of gramicidin, alamethicin, and deltar-

hodpsin with Pd/PdHx contacts and created devices that control H+ currents and modulate

pH gradients across phospholipid membranes [36, 37]. Here, we expand these types of devices

to a fully synthetic platform by using CNTPs as H+ channels mimics (Fig 1). These devices

comprise a supported lipid bilayer (SLB) that mimics the function of a cell membrane at the

Pd/solution interface and acts as a self-sealing support for the insertion of the CNTP channels.

Materials and methods

Devices

We fabricated bioprotonic devices as previously described [36,37]. In brief, we defined a Pd

contact area ranging from 10 μm2 (2 μm × 5 μm) to 200 μm2 (2 μm × 100 μm) by evaporating

100nm Pd with a 5nm Cr as an adhesive layer onto a Si wafer with a 100 nm SiO2 insulating

layer. A photolithographically patterned SU-8 photoresist defined a microfluidic channel over

the device. A polydimethylsiloxane (PDMS) well was placed on top of the microfluidic channel

to confine the solution and to provide enough room to insert the Ag/ AgCl electrode that acts

as a counter and a reference electrodes. The channel was filled with a buffered solution of dif-

ferent strength and composition as described in the Results section.

Liposome and CNTPs Liposome

Liposomes were prepared using a 1,2-Dioleoyl-sn-glycero-3-phosphocholine (DOPC, Sigma

Aldrich Lipids). We followed a hydration- dehydration protocol to form liposomes. The lipids

were dissolved in chloroform into glass vials and became dehydrated by evaporation of the sol-

vent under a stream of argon gas. To dry the lipids further we stored them in a vacuum desic-

cator chamber overnight. Liposomes were prepared by hydrating the lipids with a buffer

solution containing 10 mM HEPES, 150 mM NaCl, 30 mM KCl pH = 7.0 to the dried lipid

film to obtain a final lipid concentration of 2 mg ml-1. This solution was hydrated at room tem-

perature and bath-sonicated for 30 min. Liposomes were then extruded 20 times through a

200 nm (LUVs) pore-sized polycarbonate membrane using a mini-extruder (Avanti Polar Lip-

ids). We used Dynamic Light Scattering (DLS) to characterize the size of liposomes.

To incorporate 1.5 or 0.8 nm diameter CNTPs into the liposomes, we first dissolved appro-

priate amount of DOPC–CNTP complex into 2 ml solution. We then kept the mixture in a

vacuum desiccator overnight to remove the solvent. The dried DOPC–CNTP complex was
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hydrated with 10 mM HEPES, 150 mM NaCl and 30 mM KCl at pH 7.0 and bath-sonicated

until completely solubilized. We prepared a dried lipid film in a separate glass vial, hydrated it

using the solubilized DOPC-CNT complex, and bath-sonicated the solution to obtain a final

lipid concentration of 2 mg ml-1. The mixture was extruded through a 200 nm polycarbonate

filter using a mini-extruder (Avanti Polar Lipids). The vesicle size was characterized using a

DLS instrument (Malvern).

Supported Lipid Bilayers (SLB)

We deposited DOPC or DOPC-CNTP liposomes solution onto the Pd contact and formed an

SLB over it using vesicle fusion. This SLB mimics a cell membrane, electrically insulates the Pd

contact (ρ ~ 3 G O cm-1) and divides the solution into two volumes. We refer to the larger vol-

ume containing the Ag/AgCl electrode as the bulk solution (B). We refer to the small volume

between the SLB and the Pd contact as the isolation layer (IL).

Atomic Force Microscopy (AFM)

We used an MFP-3D OriginTM (Oxford Instruments- Asylum Research) operating in air at

room temperature, in conductive atomic force microscope (c-AFM) mode, which measures

the current through the tip as a function of applied voltage, V. To preserve the integrity of the

SLB coating we maintained high relative humidity of 75%. At this high relative humidity and

without drying the sample, we postulate that a thin layer of water is still present on the SLP

and keeps it stable. For sample preparation, excess buffer solution was gently removed from

the surface of the Pd contact. The sample then was placed into a conductive sample holder to

complete the electric circuit. The tip position was controlled using a custom-made LabView

program that converts graphic information to voltage commands, which are sent to the AFM

scanner. Current measurements were performed using a dual-phase amplifier with the ampli-

tude of -250 mV and frequency of 0.99 Hz.

Fig 1. A bioprotonic device with integrated carbon nanotube porins (CNTPs) supports proton current across the

SLB through the CNTPs when a negative voltage (-V) is applied on the Pd contact. When H+ reach the surface of

the Pd contact, they are reduced to H by an incoming electron and diffuse into the Pd to form palladium hydride

(PdHx). The current density at the contact (–iH+), measures the rate of H+ flux along the CNTPs.

https://doi.org/10.1371/journal.pone.0212197.g001
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Results and discussion

In our bioprotonic devices, the Pd contact acts as a working electrode and the Ag/AgCl acts as

a counter and reference electrode. For a bare Pd contact, when we apply a DC voltage differ-

ence between the Pd contact and the Ag/AgCl electrodes (V), we measure the resulting proton

current (iH+). For -V applied to the Pd contact, H+ flow from the solution onto the Pd surface,

where they are reduced to H by an e-. These H+ leave behind a OH- ions that make the pH of

the solution increase for large enough currents as we have previously demonstrated. H then

absorb into the Pd to form PdHx. Conversely, for +V, the H in PdH oxidizes into H+ at the

Pd/solution interface and are released into solution.

After we formed a supported lipid bilayer (SLB) membrane with integrated CNTPs on the

Pd contacts, applied voltage to the contact and measured iH+. As control, with the Pd contact

protected by the SLB in the absence of CNTPs, applied voltage of V = -250 mV resulted in a

negligible iH+ = -0.06 ± 0.01 nA (Fig 2A and 2D). This amount of iH+ indicates that the SLB

creates an effective barrier that minimizes transport of H+ to the Pd contact surface. To con-

firm this result, we set V = 20 mV after applying V = -250 mV for 10 minutes. If any H+

crossed the SLB with V = -250 mV, they will reduce onto the surface and diffuse into the Pd to

form PdHx [28]. This PdHx has a higher protochemical potential (μH+) than the pH = 7.0 solu-

tion at V = 20 mV. As a result of this higher μH+ for the PdHx contact, H would oxidize at the

Fig 2. (a) Pd contact with SLB. The SLB blocks H+ from transferring from the solution to the Pd contact even with V = -250 mV (vs. Ag/

AgCl). (b) Pd contact with SLB incorporating 0.8 nm diameter CNTPs is semipermeable to H+, with CNTPs facilitating the rapid flow of H+

to the Pd/solution interface. (c) Upon addition of Ca+2 to the bulk solution, H+ current through CNTPs becomes partially blocked. (d) iH+ vs.

time plots recorded at V = −250 mV and V = 20 mV. Blue trace: SLB, red trace: SLB with CNTPs, gray trace SLB with CNTPs in presence of

Ca+2 ions in the bulk solution. (The data are collected from 3 different devices with different dimensions: Pd / SLB: 3 different devices of

2 × 50 μm, Pd/SLB+CNTPs: 3 different devices of 2 × 50 μm, Pd/SLB+CNTPs+Ca+2: 3 different devices of 2 × 50 μm. The error bars are the

root mean square of the displacement of the data from the average value).

https://doi.org/10.1371/journal.pone.0212197.g002
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PdHx contact solution interface and a proton current would flow from the PdHx contact into

the solution at the IL. This current would be measured as iH+[28] with a positive value. The

blue trace in Fig 2D shows that this is clearly not the case.

In contrast, when we inserted CNTPs in the SLB, iH+ was much larger with V = -250 mV

and iH+ continually increasing with iH+ = -1.12 ± 0.05 nA at t = 10 min. (Fig 2B and 2D). This

large iH+ confirms our conjecture that the CNTPs inserted in the SLB support the H+ current.

To verify this conjecture, we added 1 mM Ca+2 ions, which were previously demonstrated to

block H+ from entering CNTPs [16] and carrying current across the SLB (Fig 2C) [19]. As

expected, iH+ values recorded at V = -250 mV is i H+ = – 0.47 ± 0.03 nA (Fig 2D, grey trace).

To confirm that H+ are indeed the carriers for the observed for iH+, we performed the

experiments with different buffers that maintain pH = 7.0 or pH = 6.0 (Fig 3A, Fig 3B). Using

the same V sequence that we used in Fig 2, we consistently measured iH+ to be higher at

pH = 6.0 (iH+ = -2.08 ± 0.02 nA nA) (Fig 3C, red trace) than at pH = 7.0 (iH+ = -1.58 ± 0.04 nA

nA) (Fig 3C, black trace). This is expected because lower pH value corresponds to higher H+

concentration for H+ current to flow. To exclude the possibility of the current being caused by

the ionic flux through the CNTPs, we also performed experiments with buffer with and with-

out K+ ions. At the same pH, we observed very little difference between iH+ whether K+ ions

were present, iH+ = 1.10 ± 0.05 nA or not iH+ = 1.16 ± 0.04 nA (Fig A in S1 File)., indicating

Fig 3. (a) Pd contact with SLB incorporating 0.8 nm diameter CNTPs with K-HEPES buffer at pH = 6.0, is semipermeable to H+, with CNTPs

facilitating the rapid flow of H+ to the Pd/solution interface. (b) Pd contact with SLB incorporating Narrow CNTPs with K-HEPES buffer

pH = 7.0, is still semipermeable to H+ but facilitating lower flow of H+ to the Pd/solution interface. (c) iH+ versus time plot for V = −250 mV

and V = 50 mV. Gray trace SLB, red trace SLB+ CNTps (K-HEPES, pH = 6.0), black trace SLB+ CNTPs (K-HEPES, pH = 7.0). The iH+ for

measurements K-HEPES pH = 6.0 is higher than K-HEPES pH = 7. We can hypothesize that at pH = 6.0 we have a driving force due to the

lower pH across the membrane in addition to the applied voltage that expedite the flow of H+ while at pH = 7.0 we have only the applied

voltage as a driving force to transport the H+ across. We did not observe any significant different between the iH+ at pH = 8.0 as compare to

pH = 7.0 which might be due the buffer capacity of HEPES at different pH condition (Fig A in S1 File). (The data are collected from 3 different

devices with different dimensions: SLB- K-HEPES pH = 7.0 : 3 different devices of 2 × 50 μm, Pd/SLB+CNTPs+Ca+2: 3 different devices of

2 × 50 μm. The error bars are the root mean square of the displacement of the data from the average value).

https://doi.org/10.1371/journal.pone.0212197.g003
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that K+ ions do not significantly contribute to iH+. Note that if K+ ion current through CNTPs

is, then even larger ions would provide an even smaller contribution to the device current.

To confirm the presence of CNTPs in the lipid bilayer, we performed conductive AFM imag-

ing to generate a current map (Fig 4A). In this map, green spots correspond to areas where the

current measured by the conductive AFM tip is larger than the background, shown in purple.

When the AFM tip is placed on top of a CNT indicated by a hot spot shown in green, the mea-

sured current is as high as i = 1.78 nA ± 0.09 nA with V = 250 mV applied between the tip and the

Pd contact (Fig 4B, red trace (A)). When the tip is placed on the top of the lipid bilayer in a region

associated with purple on the map, minimal current of i = 5.86 pA ± 0.98 pA is measured (Fig 4B,

black trace (B)) confirming that the supported lipid bilayer is a good insulator for the Pd contact.

The current measured in Fig 4B is likely electronic current due to the direct contact of the CNTPs

with the tip, which by pressing on the CNTP also creates a contact with the CNTP and the Pd/

PdHx contact. There is likely a component of H+ current but we estimate that this component is

negligible. From these images, we estimate 1,000 CNTPs per contact, thus the H+ current per

CNTP as measured with the bioprotonic device is ~ 1 pA per CNTPs, which is much smaller than

the one recorded in Fig 4B. Nonetheless, the proton current measured with the CNTPs integrated

in the SLB is comparable with what have measured for gramicidin [36].

Conclusions

In conclusion, we have demonstrated that CNTPs can act as gramicidin mimics when inte-

grated in a bioprotonic device formed by Pd contacts with a single lipid bilayer membrane.

Using buffers with different H+ concentration and K+ concentration we have confirmed that

CNTPs in our devices predominantly conduct a current of H+. Given the ability of CNTPs to

Fig 4. Conductive AFM of SLB with CNTPs channels. (a) The current map for the Pd contact with SLB incorporating CNTPs. The

hot spot (green spot) correspond to higher current (red trace) that represent CNT and the background (purple area) correspond to

negligible amount of current (black trace) which represent SLB membrane. (b) In the IV curve the red trace collected from the green

spot and the back trace collected from the purple area. The green spot has i ~ 1.78 nA ± 0.09 nA and purple area has i ~ 5.86

pA ± 0.98 pA. This current most likely represents the electron conductivity of CNT. (The data are collected from 3 different areas of

the AFM image for both green spot and purple area. The error bars are the root mean square of the displacement of the data from the

average value).

https://doi.org/10.1371/journal.pone.0212197.g004
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penetrate cells, and their high intrinsic proton conductance CNTPs may be used to connect

bioprotonic devices directly with cells to modulate intracellular pH or to create localized pH

gradients in solution.

Supporting information

S1 File. Electronic control of H+ current in a bioprotonic device with carbon nanotubes.

Fig A. (a) Pd contact with SLB incorporating Narrow CNT (0.8nm) with HEPES buffer at

pH = 7.0, is semipermeable to H+, with CNT facilitating the rapid flow of H+ to the Pd/solu-

tion interface. (b) Pd contact with SLB incorporating Narrow CNT with K-HEPES buffer

pH = 7.0, is still semipermeable to H+ and facilitating flow of H+ to the Pd/solution interface.

(c) iH+ versus time plot for V = −250 mV and V = 50 mV. Gray trace SLB, red trace SLB

+ CNT (K-HEPES), black trace SLB+ CNT (HEPES). The change in iH+ for measurements

with potassium (K-HEPES) and without potassium (HEPES) is negligible. (The data are col-

lected from 3 different devices with different dimensions: SLB- K- KEPES pH = 7.0: 3 different

devices of 2 × 50 μm, SLB/ CNTPs- K- KEPES pH = 6.0: 3 different devices of 2 × 50 μm, SLB/

CNTPs- K- KEPES pH = 7.0: 3 different devices of 2 × 50 μm. The error bars are the root

mean square of the displacement of the data from the average value).
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