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Abstract

Growing evidence suggests that physical exercise may improve cognitive function in the

short- and long-term. Aerobic exercise has been studied most extensively. Preliminary work

suggests that resistance training also improves cognitive function, particularly executive

function. Conversely, most studies found little dose-effect by intensity. Consequently, cogni-

tive benefits may be elicited, at least in part, by the movement rather than the physical exer-

tion of resistance training. The objective here was to examine and compare acute changes

in executive function after resistance training and a loadless movement control among

young, healthy adults. Twenty-two young healthy adults (mean age 23.4 years [2.4]; 50%

female) completed three conditions, a baseline condition and two experimental conditions

(moderate intensity resistance training, loadless movement control). Participants completed

a computerized modified Stroop task with concurrent electroencephalography (EEG) before

and 10, 20, 30, and 40min after each intervention. Outcomes (incongruent and congruent

response time, accuracy, EEG P3 amplitude and latency) were analyzed using mixed linear

regression models (factors: condition, time, condition*time). There was a main effect of time

for Stroop response time (F4,84 = 3.94, p = 0.006 and F4,84 = 10.27, p<0.0001 respectively)

and incongruent and congruent P3 amplitude (F4,76 = 4.40, p = 0.003 and F4,76 = 5.09, p =

0.001 respectively). Post-hoc analyses indicated that both incongruent and congruent P3

amplitude were elevated at time points up to and including 40min after the interventions

(compared to pre-intervention, p<0.05). Both incongruent and congruent response times

were faster at 10min post-intervention than pre-intervention (p<0.04). There was no main

effect of condition or interaction between condition and time for either outcome (p�0.53).

Similar improvements in executive function were observed after loadless movement and

resistance training, suggesting that movement is at least partially responsible for the bene-

fits to executive function. Future research should continue to probe the influence of move-

ment versus physical exertion in resistance training by including a movement and non-

movement control.
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Introduction

Cognitive function refers to mental processes that are involved in acquiring knowledge and

understanding through thought and experience. Cognitive function is critical to all voluntary

actions, including academic performance, occupational success, and functional independence

[1]. Advancing strategies to improve cognitive function could enhance learning and develop-

ment in early life and reduce the risk of late-life cognitive decline. It is well-established that

physical behaviour is importantly influenced by cognitive resources [2,3]. The reverse also

seems to be true. Accumulating evidence suggests that cognitive function can be altered by

physical behaviour—and, specifically physical exercise [4–6]. Exercise is an appealing

approach to enhance cognitive function, in part because of its widespread health and func-

tional benefits [7].

Exercise guidelines for adults recommend both aerobic exercise and resistance training [8–

10]. However, most studies of cognitive changes with exercise have investigated the influence

of aerobic exercise. There is some evidence that both a single session and a training period of

aerobic exercise improves cognitive function among young and older adults [4,11,12], though

results are inconsistent. Fewer studies have examined the impact of resistance training on cog-

nitive function (eg. [13,14].

Resistant training has broad benefits to metabolic and musculoskeletal health. Preliminary

evidence also suggests that resistance training appears to augment the magnitude of improve-

ments to cognitive function beyond those experienced with aerobic exercise alone [5,14]. Fur-

ther, resistance training alone for 3 to 24 months may improve executive function, selective

attention, and goal planning among older adults compared to a stretching and toning control

group [15–18]. However, these training studies offer little evidence for a dose-effect by either

resistance training intensity or frequency [15,16]. As a result, it is unclear whether it is the

physical exertion required by resistance training that drives the cognitive changes or whether

cognitive changes may be partially driven by the novelty of the intervention or the movement

itself.

Recent studies suggest that cognitive function may also improve acutely after a single bout

of resistance training, though results are variable across studies [13,19–27]. Benefits appear to

be greatest and most consistently observed for elements of executive function, including work-

ing memory, planning, and inhibitory control [13,19–27]. Executive function refers to control

of mental processes to facilitate current goals. In particular, inhibitory control, a component of

executive function that involves the suppression or rejection of irrelevant stimuli to achieve a

goal-related behavior [28,29], was observed to improve after resistance training when mea-

sured with a Stroop or Flanker task (eg. [23,26]).

To leverage the acute cognitive benefits of resistance training, identification of the optimal

dose is of interest. One study of the acute cognitive benefits of resistance training compared

cognition after rest, low, moderate, and high intensity resistance training. For information

processing, there was a linear relationship between resistance training intensity and cognitive

improvements, where higher intensity resulted in greater improvements in information pro-

cessing [21]. However, the relationship between resistance training intensity and executive

function (measured with a Stroop task) was quadratic rather than linear. That is, executive

function improved after all resistance training intensities compared to rest but improvements

were relatively similar across resistance training intensities [21]. This parallels the results from

long-term resistance training studies, which show little to no dose-effects of resistance training

on high-level cognitive functions [15,16]. As a result, it remains unclear whether the short-and

long-term benefits of resistance training on executive function depend on intensity. If not, it is

possible that the movement required by resistance training is at least partially responsible for
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the benefits to executive function. Mechanistically, even loadless movement, if novel, could

alter arousal and, thereby, executive function in the short-term [30].

Use of electroencephalography (EEG) may provide insights into the cortical changes that

underpin changes in executive function after acute resistance training. Event-related potentials

(ERP), in particular, can characterize changes in cortical activity linked to cognitive (or other)

stimuli [31]. Although a number of studies have characterized changes in ERP with aerobic

exercise [32–34], only one study has used ERP to characterize changes following acute resis-

tance training [26]. The study probed the effects of moderate and high intensity resistance

training among healthy young adults on executive function and associated cortical activity (P3

waveform) during a modified Erickson Flanker task [26]. The P3 waveform is one of the most

widely studied ERPs of the scalp. It has a centro-parietal distribution and is thought to reflect

context and memory updating processes that occurs each time new sensory information is pre-

sented and a response is selected. The P3 amplitude appears to depend on capacity to process

relevant stimuli while the P3 latency is thought to reflect processing speed [31,35,36]. Greater

P3 amplitudes were similarly observed after both moderate and high intensity acute resistance

training [26], which is thought to reflect the attentional resources dedicated to the stimuli

[31,32].

The objective of this study was to examine and compare the acute effects of moderate inten-

sity resistance training and loadless movement on executive function among young, healthy

adults. A secondary objective was to understand the time course of effects by assessing execu-

tive function at several time points up to 40min post-intervention. Prior studies have primarily

examined changes in executive function immediately post-exercise or when heart rate returns

near baseline (approximately 40min post-exercise) [4,25,32]. We hypothesized that executive

function would improve after both resistance training and loadless movement, but that

improvements would be greater after resistance training. These investigations will provide

insight into whether the physical exertion of resistance training provides additional benefit to

executive function over loadless movement.

Material and methods

Participants

Twenty-two young healthy adults (aged 20–30 years) were recruited for this study. Participants

were screened for readiness to exercise using the Physical Activity Readiness Questionnaire

(PAR-Q) [37]. Participants who had musculoskeletal disorders that would interfere with resis-

tance training, had concussion(s) in the last year, had epilepsy, or were taking medications

that would alter heart rate or blood pressure were excluded. This study was reviewed and

received ethics clearance by a University of Waterloo research ethics board. All participants

provided written informed consent.

Study design

This study used a repeated measures design to investigate and compare the effects of moderate

intensity resistance training and loadless movement on executive function. Each participant

completed three sessions, a familiarization session and two experimental sessions. The sessions

were completed two weeks apart on the same day of the week and at the same time of day. The

order of the two experimental conditions was randomized. All participants were asked to

refrain from exercise and consumption of stimulants and depressants (e.g., caffeine, ephedrine,

or tetrahydrocannabinol) on the days of testing, which was confirmed upon arrival to the lab.

Baseline protocol. In the baseline session, participants first reported demographic infor-

mation and had height and weight measured. They next reported their past week of physical
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activity using the International Physical Activity Questionnaire (IPAQ) and completed a resis-

tance training questionnaire that probed resistance training frequency, duration, and intensity

over the last 6 months.

Participants then practiced the assessment protocol, which familiarized them to study pro-

tocol, a modified Stroop task, and EEG set up and collection. Exposure to novel experiences

including experimental procedures may alter arousal and, thereby, influence cognitive perfor-

mance. Participants completed 3 blocks of 100 trials of the Stroop task (detailed below), sat for

quiet rest for 30 minutes, and then completed two blocks of the Stroop task 4 more times, sim-

ulating the timing of the assessment protocol.

Participants then completed their 10-RM assessment for each of 5 resistance training exer-

cises (leg press, pull-down, hamstring curl, vertical chest press, bilateral bicep curl, bilateral tri-

cep extension) in accordance with the 10-RM testing procedure of the National Strength and

Conditioning Association [9]. The 10-RMs were used to determine the loads for the subse-

quent resistance training condition. In brief, participants performed 4 to 5 sets of each exercise

at increasing weight with 2 to 3 minutes rest between sets. The increment of weight increase

was dependent on the difficulty of the prior set, as per National Strength and Conditioning

Association testing protocol [9]. The 10-RM was identified from the maximal weight at which

the participant could perform the exercise for no more than 10 repetitions. If a participant

could not complete the full ten repetitions before fatigue, a repetition scheme calculator was

used to estimate their 10-RM [38].

After completing the 10-RM testing, participants were randomized to the order of the sub-

sequent two experimental conditions.

Experimental protocol. Upon arrival, the EEG cap was set up, as described below. Next,

participants completed 3 blocks of 100 trials of the Stroop task. Participants then proceeded to

the training area [approximately 5min delay).

Fig 1 shows the experimental schema. Each intervention took approximately 30min. The

two interventions were similar except for the intensity of training. Both interventions started

with a 5min warm-up. The warm up consisted of exercising on a stationary bike ergometer for

3.5min and then performing 10 jumping jacks and 10 band pull-apart three times. After the

warm up, participants performed two consecutive sets of 10 repetitions for each exercise with

60s of rest between sets and 90s of rest between exercises. During the resistance training con-

dition, participants lifted weights corresponding to 70% of their 10-RM for each exercise,

which aligns with moderate intensity [9]. This intensity was chosen because moderate intensity

resistance training has been used most often in prior research to garner cognitive benefits

[9,13,14,21,23].

During the loadless movement condition, participants performed the movements with the

lowest weight possible on each exercise machine.

Fig 1. Schema of the experimental protocol.

https://doi.org/10.1371/journal.pone.0212122.g001
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After completion of the intervention, participants returned to the assessment area where

impedances of the EEG were checked, which took approximately 8 minutes. Participants then

completed two blocks of 100 trials of the Stroop task at 10, 20, 30, and 40min post-interven-

tion. Each block of 100 trials took approximately 3 minutes to complete. There was a 1-minute

break between the two blocks.

Heart rate was measured using a Polar heart rate monitor and was recorded after each set

during the resistance training and loadless movement conditions as well as 5min before, 30,

and 50min after the intervention. Rating of Perceived Exertion (RPE) was also reported at the

same intervals using the 6–20 scale to confirm intensity of effort [39].

Measures

Stroop task. A computerized modified Stroop task was used to probe executive function

[20,21]. The Stroop stimulus consisted of a written name of a color (red, blue, green, or yellow)

printed in one of four colors (same colors as the words), displayed on a monitor. The partici-

pant responded with one button if the stimulus was congruent (word written in the color that

matches its meaning) and a different button if the stimulus was incongruent (word written in

a different color which does not match its meaning). The ratio of congruent to incongruent sti-

muli was 3:1 within each 100 trial block, which has been shown to magnify the Stroop effect

compared to other ratios [40]. The Stroop effect describes the slowing and diminished accu-

racy of responses to incongruent trials compared to congruent trials [40,41]. The Stroop task

was generated and delivered electronically using Stim2 software [42].

Participants sat 185cm away from a 40-inch computer monitor. Participants were instructed to

look at a small white fixation-cross presented in the middle of a black screen where the target sti-

muli appeared and to respond as quickly as possible to the stimulus when it appeared. The

response pad was placed on a table on their dominant side. Participants responded with their

index for incongruent stimuli and their middle finger for congruent stimuli. The stimulus was

5cm high and 10 to 15cm wide (depending on the word presented). Each stimulus was displayed

for 150ms with a 1000ms response window. There was a 2000ms inter-trial duration. A minimum

response time of 250ms was required for correct responses to eliminate anticipatory responses.

Accuracy and response time were collected using the Stim2 software. Trials with errors or

with no registered response within the 1000ms window were considered incorrect. Response

time was only considered for correct trials. Tasks were performed in a dark room with dividers

on both sides to reduce distraction and horizontal eye movement. Participants wore moldable

earplugs and over-the-ear headphones to reduce auditory noise during the tasks.

Electroencephalography recording. Cognitive control was assessed using a computerized

Stroop task with concurrent monitoring of EEG to capture the P3 waveform. EEG was

recorded during the Stroop task using a 64-channel Quik Cap [42]. The EEG signal was pro-

cessed at the Pz electrode, as identified in the International 10–20 system. Electrodes were also

placed above and below the left eye and lateral to both eyes to create an electrooculogram

(EOG) to capture blinks and eye movements to aid in artifact detection. Electrodes on the mas-

toids were collected as reference electrodes. The impedances for each electrode were less than

5 kO. The EEG signal was sampled at 500 Hz.

Analysis

Electroencephalography analysis. EEG data was analyzed using the Curry Neuroimaging

Suite 7.0.9 and 7.0.10SB software [42]. The EEG signal was filtered with a high pass filter of 0.5

Hz and a low pass filter of 30 Hz. Next, the signal was referenced to the mastoids and epoched

from 100ms prior to stimulus onset to 1000ms post-stimulus. Post-stimulus signal was baseline
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corrected to the pre-stimulus interval. A covariance regression reduction method was used to

subtract artifact contamination due to blinks and other artifacts [43]. Each epoch was then

visually assessed for excessive noise and artifacts. If artifacts were still present within the P3

window, the epoch was rejected from the analysis. Trials with response errors were also

rejected. The remaining trials were averaged.

The P3 amplitude of the averaged epoch was defined as the most positive peak occurring

350 to 750ms after stimulus presentation (μV). P3 latency was defined as the time in ms at

which this maximal positive peak occurred [31].

Statistical analysis. Participant and exercise characteristics are presented as mean and

standard deviations or percent (n), as appropriate. Differences in exercise characteristics across

conditions were determined using a linear mixed model with a main effect of condition and

random effect by participant.

Outcomes (P3 amplitude, P3 latency, Stroop response times and Stroop accuracy) were

evaluated using linear mixed models with a random effect for participants. Factors included

condition (2-level: loadless movement and resistance training) and time (5-level: Pre and 10,

20, 30, 40min post) and condition x time. Analyses for incongruent and congruent conditions

were conducted separately. We analyzed incongruent and congruent conditions separately

since we used a 3:1 congruent to incongruent ratio. As a result, incongruent results would

have been under-represented in combined analyses. However, a Stroop effect was confirmed

for all measurements (F1,18/20>58, p<0.0001). Post hoc analyses of significant main or interac-

tion effects were performed using Tukey’s test. A significance level of p = 0.05 was used for all

analyses. Effect sizes (partial eta-squared, ηp
2) were calculated for each F-statistic using recom-

mended methods [44]. Statistical analyses were run with SAS 9.4.

Results

Participant characteristics. Twenty-two young healthy adults completed the study.

Participants had an average age of 23 years (SD = 2, range: 20–30 years) and 50% (11) were female.

Participant characteristics are displayed in Table 1. All participants completed the study and had

complete data for the Stroop task. Two participants (1 male, 1 female) were removed from EEG

analyses due to technical problems with the data, leaving 20 people with complete data.

Exercise characteristics

Characteristics of participants during the exercise condition are displayed in Table 2. The

exercise intensity (load) was significantly different between conditions (F1,21 = 6703.79,

p<0.0001), as expected. HR and RPE during the resistance training intervention were also

Table 1. Participant characteristics (n = 22).

Characteristics Mean ± SD or % (n)

Age (years) 23 ± 2

Sex (% females) 50% (11)

Education (years) 18 ± 12

Handedness (% right) 95% (21)

Resting HR (bpm) 68 ± 8

IPAQ (Mets-min/wk)

IPAQ High Physical Activity

3931 ± 3065

68% (15)

Current resistance training (% yes) 80% (16)

Any resistance training experience (% yes) 95% (21)

https://doi.org/10.1371/journal.pone.0212122.t001
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significantly different than during the loadless movement control condition (F1,21 = 451.81,

p<0.0001 and F1,21 = 497.92, p<0.0001, respectively), as was heart rate immediately post-inter-

vention (F2,42 = 18.91, p<0.0001).

Stroop task

Response times. Stroop response times by condition, congruency, and time are displayed

in Fig 2. There was a main effect of time for both incongruent and congruent trials (F4,84 =

3.94, p = 0.006, ηp
2 = 0.16 for incongruent; F4,84 = 10.27, p<0.0001, ηp

2 = 0.33 for congruent).

For incongruent trials, post-hoc analyses indicated that response times were faster 10min after

the interventions (585.0±9.8) than pre-intervention (596.4±10.3) (p = 0.04). For congruent tri-

als, post-hoc analyses indicated that response times were faster 10min after intervention (485.0

± 8.7) than at either pre-intervention (502.2± 9.8) (p = 0.0001) or 30min post-intervention

(499.5± 8.6) (p = 0.0044). There was no main effect of condition (F1,21 = 0.68, p = 0.42, ηp
2 =

0.03 for incongruent; F1,21 = 0.71, p = 0.41, ηp
2 = 0.03 for congruent) or condition x time inter-

action effect (F4,84 = 0.96, p = 0.43, ηp
2 = 0.04 for incongruent; F4,84 = 1.45, p = 0.22, ηp

2 = 0.06

for congruent) for either congruency.

Accuracy. Stroop response accuracies by condition, congruency, and time are displayed in Fig

3. Analyses revealed a main effect of time for incongruent trials only (F4,84 = 2.83, p = 0.03, ηp
2 =

0.12). Post-hoc analyses indicated that accuracy was significantly higher for incongruent trials pre

intervention (83.4±2.0) compared to 30min post-intervention (78.1±1.9) (p = 0.023). There was no

effect of condition (F1,21 = 1.33, p = 0.26, ηp
2 = 0.06) or condition x time interaction effect (F4,84 =

0.63, p = 0.64, ηp
2 = 0.03) for incongruent trials. For congruent trials, there was no effect of condi-

tion (F1,21 = 0.75, p = 0.41, ηp
2 = 0.03), time (F4,84 = 1.55, p = 0.19, ηp

2 = 0.07), or condition x time

interaction effect (F4,84 = 0.45, p = 0.74, ηp
2 = 0.02) on Stroop task accuracy.

EEG

The grand averaged ERP waveforms by intervention, time point, and congruency are shown in

Fig 4.

P3 amplitude. P3 amplitudes by condition, congruency, and time are displayed in

Table 3. Analyses of incongruent and congruent trials revealed a main effect of time for both

trial types (F4,76 = 4.40, p = 0.003, ηp
2 = 0.18 for incongruent trials; F4,76 = 5.09, p = 0.001, ηp

2 =

0.21 for congruent trials). Post-hoc analyses of incongruent trials indicated that P3 amplitude

was larger at 30min (14.4±0.7) and 40min (14.6±0.7) after the interventions compared to pre-

intervention (13.0±0.6) (p<0.011). Post-hoc analyses of congruent trials indicated that P3

amplitude was larger at 10min (10.1±0.4) and 40min (10.2±0.4) after the interventions than

pre-intervention (9.3±0.4) (p-for-difference<0.05). There were no effects of condition (F1,19 =

Table 2. Exercise characteristics. Intensity measures by condition (loadless movement vs resistance training) (mean ± SD or % (n)).

Characteristic Loadless

Movement

Resistance Training p-for-difference

% of 10-RM 8 ± 4 70 ± 1 <0.0001

Intervention RPE 7 ± 1 14 ± 1 <0.0001

Pre-exercise HR 72 ± 9 70 ± 8 0.38

Intervention HR 92 ±12 120 ± 13 <0.0001

Immediately Post HR 70 ± 9 78 ± 10 <0.0001

30min Post HR 72 ± 10 76 ± 9 0.002

50min Post HR 71 ± 9 75 ± 10 0.03

https://doi.org/10.1371/journal.pone.0212122.t002
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0.02, p = 0.89, ηp
2 = 0.05 for incongruent; F1,19 = 0.001, p = 0.95, ηp

2 = 5.3�10−5 for congruent

trials) or condition x time interaction effect (F4,76 = 2.45, p = 0.05, ηp
2 = 0.11 for incongruent;

F4,76 = 1.37, p = 0.25, ηp
2 = 0.07 for congruent trials) for either congruency.

P3 latency. P3 latencies by condition, congruency, and time are displayed in Table 4.

There were no significant effect by condition (F1,19 = 2.10, p = 0.16, ηp
2 = 0.10 for incongruent;

F1,19 = 0.05, p = 0.97, ηp
2 = 0.002 for congruent), time (F4,76 = 0.75, p = 0.59, ηp

2 = 0.04 for

incongruent; F4,76 = 1.29, p = 0.28, ηp
2 = 0.06 for congruent), or condition x time interaction

effect (F4,76 = 2.10, p = 0.089, ηp
2 = 0.10 for incongruent; ‘F4,76 = 0.45, p = 0.77, ηp

2 = 0.02 for

congruent) for either congruency.

Discussion

This study investigated and compared the acute effects of moderate intensity resistance train-

ing and loadless movement on executive function. Our results suggest that both resistance

Fig 2. Stroop accuracy. Stroop accuracy (mean±SE) by time, condition, and congruency for: (a) incongruent trials;

and (b) congruent trials.

https://doi.org/10.1371/journal.pone.0212122.g002
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training and loadless movement elicited some improvements in executive function, as indi-

cated by faster response times and greater P3 amplitude during a modified Stroop task. How-

ever, in contrast to our hypothesis, changes in executive function after exercise were similar

between resistance training and loadless movement conditions. This preliminary study sug-

gests that movement may account for at least some of the improvement in executive function

observed after resistance training, though this possibility needs to be further explored.

Resistance training is part of physical activity recommendations with well-documented

benefits to metabolic and musculoskeletal health [8,10]. Emerging research also suggests that

resistance training, when performed acutely or over a period of time, is associated with

improvements in cognitive function, and especially executive function [4,23,26].This was the

first study to examine the effects of resistance training on executive function relative to an

Fig 3. Stroop response times. Stroop response times (mean±SE) by time, condition, and congruency for: (a)

incongruent trials; and (b) congruent trials.

https://doi.org/10.1371/journal.pone.0212122.g003
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active control (loadless movement) rather than a passive control (rest). In our study, changes

in executive function were similar after moderate intensity resistance training and loadless

movement. This is in line with one prior study that observed minimal dose-related changes in

executive function after light, moderate, and high intensity resistance training [21]. Another

Fig 4. Grand averaged ERP. Grand averaged ERP waveforms at the Pz electrode by congruency.

https://doi.org/10.1371/journal.pone.0212122.g004
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study also found similar improvements in executive function and associated cortical process-

ing after moderate and high intensity resistance training [26]. Together, these results suggest

that resistance training may improve executive function, but that movement may account at

least partially for its effects [21]. In contrast, the magnitude of changes in processing speed was

linearly related to exercise intensity in one study [21]. Future work should compare the influ-

ence of resistance training, training intensity, and loadless movement across cognitive

domains. It is possible that the influence of physical exertion during resistance training varies

by cognitive task or domains, as is the case with aerobic exercise [4,8,10,13].

In this study, there was evidence for improvements in executive function between 10 and

30 minutes after resistance training and loadless movement conditions. This is in line with

most prior studies, which observed better executive function after resistance training com-

pared before resistance training or compared to a rest condition [13,19–24,26,27]. While one

study showed no change in executive function after resistance training, it used exhaustive

training (very high intensity [80% of 1-RM] and high repetitions [8–12 repetitions]) [25]. It

may be that exhaustive exercise overcomes any improvements induced by movement or

low to moderate resistance training. Even if resistance training does not require significant

Table 3. P3 amplitudes (μV) for incongruent and congruent trials by condition and time.

Time Loadless Movement Resistance training

Incongruent

Pre 12.9 ± 0.8 13.2 ± 0.8

10min Post 13.6 ± 0.7 14.4 ±0.7

20min post 14.8 ± 0.9 13.6 ± 0.9

30min post 14.2 ± 0.9� 14.6 ± 0.9�

40min post 14.4 ± 0.8� 14.9 ± 0.8�

Congruent

Pre 9.3 ± 0.6 9.1 ± 0.7

10min Post 9.8 ± 0.6� 10.2 ± 0.7�

20min post 9.7 ± 0.7 9.9 ± 0.8

30min post 9.7 ± 0.7 9.7 ± 0.8

40min post 10.4 ± 0.5� 9.9 ± 0.7�

�Significantly different from pre, p<0.05.

https://doi.org/10.1371/journal.pone.0212122.t003

Table 4. P3 latencies (ms) for incongruent and congruent trials by condition and time.

Time Loadless Movement Resistance training

Incongruent

Pre 575.4 ± 14.0 556.7 ± 15.8

10min Post 565.4 ± 15.2 544.5 ±17.1

20min post 553.7 ± 14.2 560.6 ± 15.9

30min post 592.4 ± 16.0 548.9 ± 18.0

40min post 565.0 ± 19.0 529.7 ± 21.3

Congruent

Pre 474.3 ± 18.0 480.6 ± 16.1

10min Post 482.3 ± 19.3 475.0 ± 17.1

20min post 470.9 ± 21.2 479.8 ± 18.8

30min post 466.3 ± 20.8 453.8 ± 18.6

40min post 499.3 ± 19.1 481.2 ± 17.1

https://doi.org/10.1371/journal.pone.0212122.t004
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physical exertion to induce improvement in executive function, it may be that exhaustive resis-

tance training raises cortisol levels sufficiently to induce neural noise [45–47], disrupting

attentional processing and counteracting the beneficial effects of movement. Similarly, very

high intensity or exhaustive aerobic exercise also shows null or negative effects to executive

function [33,48].

This was the first study to examine the effects of resistance training (and movement) over

time after the intervention, where other studies only had one post-intervention assessment. In

this study, post-intervention assessments were performed at 10min intervals up to 40min post-

intervention. Improvements in executive function as indicated by Stroop task response times

were observed only at 10min after the interventions but changes in P3 amplitude were

observed up to 40mins post-intervention. This is in line with literature regarding aerobic exer-

cise, which has observed changes up to 30 minutes after exercise [4,25,32].

In contrast to improvements in Stroop task incongruent response times that occurred only

shortly after the interventions, improvements in P3 amplitude peaked 30 to 40min post-inter-

vention. Why P3 amplitude peaks so late after exercise in contrast to response time is unclear.

No prior studies of either aerobic exercise or resistance training have characterized ERP associ-

ated with cognitive assessments at multiple timepoints post-exercise. It may be that improve-

ments in stimulus classification (as reflected by the P3) peak later than the overall combination

of stimulus classification and motor performance (as reflected by response time). Indeed, one

study observed greater P3 amplitudes but no change in response accuracy when measured

48minutes after acute aerobic exercise (when heart rates were within 10% of baseline),[32] in

line with the present study’s findings. Future studies should use EMG to separate reaction time

versus movement time to examine effects by stimulus processing, reaction time, and move-

ment time.

Resistance training is only one part of the recommended physical activity guidelines [8,10].

Aerobic exercise is also recommended and has been examined more extensively relative to

cognition in both acute and longitudinal interventions [4,11]. Though results are variable, a

recent meta-analysis found that there were immediate and delayed improvements in cognitive

function, and executive function specifically, after aerobic exercise [4]. In one study, Stroop

task performance improved after acute aerobic exercise, which was associated with increased

activation in the dorsolateral prefrontal cortex measured with functional near infrared spec-

troscopy (fNIRS) [49]. Whether this occurs with resistance training or loadless movement is

unclear.

A few studies have compared the effects of resistance training and aerobic exercise with

mixed results. One study showed that acute aerobic exercise improve cognitive function but

acute resistance training did not [25], while another showed that both types of exercise

improved cognitive function compared to a resting control [27]. Doing both may be most ben-

eficial as a meta-analysis indicated that aerobic exercise training interventions that were paired

with resistance training were associated had greater cognitive benefits than those that were not

[5].

Our study has several strengths. It was the first to use an active control to evaluate the effects

of resistance training on executive function. In addition, this study was the first to measure

cognitive changes after resistance training over an extended period after exercise to better

understand the time course of effects. However, the study also has limitations. Though this

study has an active control, we did not include a passive control (rest). Therefore, we cannot

definitively conclude that either resistance training or loadless movement improves executive

function. Further, it is possible that we were underpowered to detect differences between resis-

tance training and this active control, though we estimated our sample size required based on

a recent study [26]. Also, it is possible that participants experienced boredom or mental fatigue
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due to the extended testing period post-intervention, which may have influenced our findings

at later time points. Alternatively, it is possible that the repeated testing induced learning

effects. However, this is unlikely as participants had substantial practice of the Stroop task dur-

ing the baseline session. In addition, our study used a computerized modified Stroop task to

assess inhibitory control. Although this assessment allowed us to carefully lock EEG measures

to the Stroop task, the assessment had some important differences from the standard Stroop

task. Participants had to determine the congruency of the stimuli rather than saying the color

aloud. This may have required less executive function [50]. Even so, the response times are

considerably longer than those typically observed with a Flanker task (for example, [25]), sug-

gesting significant cognitive demand. In addition, our sample was composed of young, fit,

healthy adults, most of whom participated regularly in resistance training (80%). It is possible

that the effects of resistance training versus movement may be different in less trained popula-

tions or in older adults, as used in prior studies [13,23,25,26]. Finally, the loadless movement

condition used the absolute lowest setting for the exercises, meaning there remained some

very minimal resistance. We cannot conclude that this very minimal load is not required for

benefits to executive function.

Our results suggest that minimal physical exertion may be required to elicit improvements

in executive function after resistance training. Future research should extend these preliminary

investigations to better understand the relative influence of movement and physical exertion

on executive function and other cognitive functions, as well as explore underlying mecha-

nisms. Optimistically, our results suggest that movement itself may be beneficial to executive

function, which may be feasible and practical for a broader range of the population. Given the

significant benefits of moderate intensity resistance training to bone and muscle health, how-

ever, it may be wise to continue to include physical exertion in a resistance training regimen

for brain and body health.
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ical exercise on cognitive function in healthy older adults: A systematic review of randomized clinical tri-

als. Ageing Res Rev. Elsevier B.V.; 2017; 37:117–34. https://doi.org/10.1016/j.arr.2017.05.007 PMID:

28587957

15. Cassilhas RC, Viana V a R, Grassmann V, Santos RT, Santos RF, Tufik S, et al. The impact of resis-

tance exercise on the cognitive function of the elderly. Med Sci Sports Exerc. 2007 Aug; 39(8):1401–7.

https://doi.org/10.1249/mss.0b013e318060111f PMID: 17762374

16. Liu-ambrose T, Nagamatsu LS, Graf P, Beattie BL, Ashe MC, Handy TC. Resistance Training and

Executive Functions. Arch Intern Med. 2010; 170(2):170–8. https://doi.org/10.1001/archinternmed.

2009.494 PMID: 20101012

17. Nagamatsu LS, Handy TC, Hsu CL, Voss M, Liu-Ambrose T. Resistance training promotes cognitive

and functional brain plasticity in seniors with probable mild cognitive impairment. Arch Intern Med. 2012

Apr 23; 172(8):666–8. https://doi.org/10.1001/archinternmed.2012.379 PMID: 22529236

18. Tsai C-L, Wang C-H, Pan C-Y, Chen F-C. The effects of long-term resistance exercise on the relation-

ship between neurocognitive performance and GH, IGF-1, and homocysteine levels in the elderly. Front

Behav Neurosci. 2015; 9(February):23.

19. Alves CR, Gualano B, Takao PP, Avakian P, Fernandes RM, Morine D, et al. Effects of acute physical

exercise on executive functions: a comparison between aerobic and strength exercise. J Sport Exerc

Psychol. 2012; 34(4):539–49. PMID: 22889693

20. Chang Y-K, Etnier JL. Effects of an acute bout of localized resistance exercise on cognitive perfor-

mance in middle-aged adults: A randomized controlled trial study. Psychol Sport Exerc. 2009 Jan [cited

2014 Mar 19]; 10(1):19–24.

21. Chang Y-K, Etnier JL, Barella L a. Exploring the relationship between exercise-induced arousal and

cognition using fractionated response time. Res Q Exerc Sport. 2009 Mar; 80(1):78–86. https://doi.org/

10.1080/02701367.2009.10599532 PMID: 19408470

22. Chang Y-K, Chu I-H, Chen F-T, Wang C-C. Dose-response effect of acute resistance exercise on Tower

of London in middle-aged adults. J Sport Exerc Psychol. 2011 Dec; 33(6):866–83. PMID: 22262709

23. Chang Y, Tsai C, Huang C, Wang C, Chu I. Effects of acute resistance exercise on cognition in late mid-

dle-aged adults: General or specific cognitive improvement? J Sci Med Sport. 2014;(17):51–5.

Executive function after resistance training and loadless movement

PLOS ONE | https://doi.org/10.1371/journal.pone.0212122 February 22, 2019 14 / 16

https://doi.org/10.1037/a0038339
http://www.ncbi.nlm.nih.gov/pubmed/25437491
https://doi.org/10.1523/JNEUROSCI.3063-13.2014
http://www.ncbi.nlm.nih.gov/pubmed/24478359
https://doi.org/10.1111/1467-9280.t01-1-01430
https://doi.org/10.1111/1467-9280.t01-1-01430
http://www.ncbi.nlm.nih.gov/pubmed/12661673
http://www.who.int/dietphysicalactivity/factsheet_recommendations/en/
https://doi.org/10.1249/MSS.0b013e3182574e0b
http://www.ncbi.nlm.nih.gov/pubmed/22460477
https://doi.org/10.1016/j.arr.2017.05.007
http://www.ncbi.nlm.nih.gov/pubmed/28587957
https://doi.org/10.1249/mss.0b013e318060111f
http://www.ncbi.nlm.nih.gov/pubmed/17762374
https://doi.org/10.1001/archinternmed.2009.494
https://doi.org/10.1001/archinternmed.2009.494
http://www.ncbi.nlm.nih.gov/pubmed/20101012
https://doi.org/10.1001/archinternmed.2012.379
http://www.ncbi.nlm.nih.gov/pubmed/22529236
http://www.ncbi.nlm.nih.gov/pubmed/22889693
https://doi.org/10.1080/02701367.2009.10599532
https://doi.org/10.1080/02701367.2009.10599532
http://www.ncbi.nlm.nih.gov/pubmed/19408470
http://www.ncbi.nlm.nih.gov/pubmed/22262709
https://doi.org/10.1371/journal.pone.0212122


24. Dunsky A, Abu-Rukun M, Tsuk S, Dwolatzky T, Carasso R, Netz Y. The effects of a resistance vs. an

aerobic single session on attention and executive functioning in adults. PLoS One. 2017; 12(4):1–13.

25. Pontifex MB, Hillman CH, Fernhall B, Thompson KM, Valentini T a. The effect of acute aerobic and

resistance exercise on working memory. Med Sci Sports Exerc. 2009 Apr; 41(4):927–34. https://doi.

org/10.1249/MSS.0b013e3181907d69 PMID: 19276839

26. Tsai C-L, Wang C-H, Pan C-Y, Chen F-C, Huang T-H, Chou F-Y. Executive function and endocrinologi-

cal responses to acute resistance exercise. Front Behav Neurosci. 2014 Jan; 8(August):262.

27. Harveson AT, Hannon JC, Brusseau TA, Podlog L, Papadopoulos C, Durrant LH, et al. Acute Effects of

30 Minutes Resistance and Aerobic Exercise on Cognition in a High School Sample. Res Q Exerc

Sport. 2016; 1367(April):1–7.

28. Hommel B, Ridderinkhof KR, Theeuwes J. Cognitive control of attention and action: issues and trends.

Psychol Res. 2002 Nov [cited 2014 Oct 7]; 66(4):215–9. https://doi.org/10.1007/s00426-002-0096-3

PMID: 12466920

29. Purves D, Cabeza R, Huettel SA, LaBar KS, Platt MS, Woldorff MG. Principles of Cognitive Neurosci-

ence 2nd ed. Sunderland MA: Sinauer Associates Inc; 2013.

30. Brody H. The Placebo Response: Recent Research and Implications for Family Medicine. J Fam Pract.

2000; 49(7):649–54. PMID: 10923577

31. Luck SJ. An Introduction to the Event-Related Potential Technique. Vol. 78, Monographs of the Society

for Research in Child Development. 2005. 388 p.

32. Hillman CH, Snook EM, Jerome GJ. Acute cardiovascular exercise and executive control function. Int J

Psychophysiol. 2003 Jun; 48(3):307–14. PMID: 12798990

33. Kamijo K, Nishihira Y, Hatta A, Kaneda T, Wasaka T, Kida T, et al. Differential influences of exercise

intensity on information processing in the central nervous system. Eur J Appl Physiol. 2004 Jul; 92

(3):305–11. https://doi.org/10.1007/s00421-004-1097-2 PMID: 15083372

34. Kamijo K, Hayashi Y, Sakai T, Yahiro T, Tanaka K. Acute Effects of Aerobic Exercise on Cognitive

Function in Older Adults. J Gerontol Psychol Sci. 2009;356–63.

35. Donchin E, Coles MGH. Is the P300 component a manifestation of context updating? Behav Brain Sci.

1988; 11(3):357–74.

36. Kok A. On the utility of P3 amplitude as a measure of processing capacity. Psychophysiology. 2001; 38

(3):557–77. PMID: 11352145

37. Canadian Society Of Exercise Physiology. Pre-Screening for Physical Activity Participation. [Internet].

2016. Available from: http://www.csep.ca/en/publications/get-active-questionnaire

38. Nikolov I. Rep Scheme Calculator [Internet]. 2015. Available from: https://ivannikolov.com/calculators/

rep-max-calculator/

39. Borg G. Perceived exertion as an indicator of somatic stress. Scand J Rehabil Med. 1970; 2(2):92–8.

PMID: 5523831

40. Bélanger S, Belleville S, Gauthier S. Inhibition impairments in Alzheimer’s disease, mild cognitive

impairment and healthy aging: effect of congruency proportion in a Stroop task. Neuropsychologia.

2010 Jan [; 48(2):581–90. https://doi.org/10.1016/j.neuropsychologia.2009.10.021 PMID: 19879885

41. Lansbergen MM, Kenemans JL. Stroop interference and the timing of selective response activation.

Clin Neurophysiol. 2008 Oct; 119(10):2247–54. https://doi.org/10.1016/j.clinph.2008.07.218 PMID:

18762447

42. Compumedics Neuroscan. Curry Neuroimaging Suite 7.0.10SB. 2015.

43. Moretti D V., Babiloni F, Carducci F, Cincotti F, Remondini E, Rossini PM, et al. Computerized process-

ing of EEG-EOG-EMG artifacts for multi-centric studies in EEG oscillations and event-related poten-

tials. Int J Psychophysiol. 2003; 47(3):199–216. PMID: 12663065

44. Lakens D. Calculating and reporting effect sizes to facilitate cumulative science: A practical primer for t-

tests and ANOVAs. Front Psychol. 2013; 4(NOV):1–12. https://doi.org/10.3389/fpsyg.2013.00001
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