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Abstract

Predictive models have been developed for influenza but have seldom been validated. Typi-

cally they have focused on patients meeting a definition of infection that includes fever. Less

is known about how models perform when more symptoms are considered. We, therefore,

aimed to create and internally validate predictive scores of acute respiratory infection (ARI)

symptoms to diagnose influenza virus infection as confirmed by polymerase chain reaction

(PCR) from respiratory specimens. Data from a completed trial to study the indirect effect of

influenza immunization in Hutterite communities were randomly split into two independent

groups for model derivation and validation. We applied different multivariable modelling

techniques and constructed Receiver Operating Characteristics (ROC) curves to determine

predictive indexes at different cut-points. From 2008–2011, 3288 first seasonal ARI epi-

sodes and 321 (9.8%) influenza positive events occurred in 2202 individuals. In children up

to 17 years, the significant predictors of influenza virus infection were fever, chills, and

cough along with being of age 6 years and older. In adults, presence of chills and cough but

not fever were highly specific for influenza virus infection (sensitivity 30%, specificity 96%).

Performance of the models in the validation set was not significantly different. The predictors

were consistently found to be significant irrespective of the multivariable technique. Symp-

tomatic predictors of influenza virus infection vary between children and adults. The scores

could assist clinicians in their test and treat decisions but the results need to be externally

validated prior to application in clinical practice.

PLOS ONE | https://doi.org/10.1371/journal.pone.0212050 February 11, 2019 1 / 14

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Vuichard-Gysin D, Mertz D,

Pullenayegum E, Singh P, Smieja M, Loeb M

(2019) Development and validation of clinical

prediction models to distinguish influenza from

other viruses causing acute respiratory infections

in children and adults. PLoS ONE 14(2): e0212050.

https://doi.org/10.1371/journal.pone.0212050

Editor: Eric HY Lau, The University of Hong Kong,

CHINA

Received: September 28, 2018

Accepted: January 10, 2019

Published: February 11, 2019

Copyright: © 2019 Vuichard-Gysin et al. This is an

open access article distributed under the terms of

the Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the manuscript and its Supporting

Information files.

Funding: The author(s) received no specific

funding for this work.

Competing interests: The authors have declared

that no competing interests exist.

http://orcid.org/0000-0002-1115-4035
https://doi.org/10.1371/journal.pone.0212050
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0212050&domain=pdf&date_stamp=2019-02-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0212050&domain=pdf&date_stamp=2019-02-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0212050&domain=pdf&date_stamp=2019-02-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0212050&domain=pdf&date_stamp=2019-02-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0212050&domain=pdf&date_stamp=2019-02-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0212050&domain=pdf&date_stamp=2019-02-11
https://doi.org/10.1371/journal.pone.0212050
http://creativecommons.org/licenses/by/4.0/


Background

Upper respiratory tract viral infections pose a substantial burden to the healthcare system [1–

3]. During influenza seasons the number of outpatient visits for influenza in the U.S are esti-

mated to range from 4.2 to 16.7 million which constitutes only a fraction of all medically

attended cases of influenza-like-illness [4]. The average annual direct and indirect medical

costs have been estimated to be $3.2 billion and 8.0 billion US dollar, respectively [5]. Influenza

can lead to complications including hospitalization and death [6]. Since anti-viral therapy is

available for influenza, predicting influenza can have important healthcare benefits.

Antigen-based rapid influenza diagnostic tests render results within minutes, are inexpen-

sive and simple to apply. They are used as point-of-care diagnostic tests and show reasonable

performance for ruling in influenza infection. However, their value for test and treat decisions

is still limited because of the rather low sensitivity requiring more expensive molecular assays

to reliably exclude the diagnosis of influenza [7, 8]. For influenza negative test results, the US

Centers for Disease Control and Prevention (CDC) algorithm to assist in clinical decision-

making recommends to rely on clinical signs and symptoms as well as on epidemiological

information to guide further management [9].

However, there are a wide variety of symptoms associated with acute respiratory infection

(ARI) including fever, chills, headache, myalgia, cough, sore throat, hoarseness, stuffed or

runny nose, and sinus pain [10]. Clinical predictors for influenza have been broadly investi-

gated [11–16]. Some of the limitations include single season studies or early discontinuation of

surveillance [15, 16], and spectrum bias due to fever as part of the inclusion criteria [12, 13,

15]. None of these studies applied any form of internal validation.

The diagnostic performance of studies using clinical signs and symptoms to diagnose influ-

enza has been reviewed and concluded that no combination of symptoms can accurately diag-

nose influenza, except in elderly where fever plus cough had a significantly increased

likelihood of influenza [17]. However, the included studies were heterogenous with respect to

age groups, countries of origin and design which may have lowered precision. Current clinical

case definitions as issued by the CDC or the World Health Organization (WHO) comprise

fever and cough or sore throat, but recent studies indicate that they do not perform sufficiently

well [18, 19]. Aiming to diagnose influenza virus infection with higher accuracy we developed

and validated symptom-based predictive scores in a population with a broader spectrum of

ARI symptoms and laboratory confirmed diagnosis of influenza and other respiratory virus

infections. This could be of interest from an infection control perspective if transmission of

influenza virus to a susceptible population at risk for influenza complications is a concern and

precaution measures should be promptly implemented.

Patients and methods

We conducted a secondary analysis of a prospective cluster randomized controlled trial where

Canadian Hutterite children and adolescents were vaccinated with either inactivated trivalent

influenza vaccine (ITIV) or hepatitis A vaccine as a control in order to determine indirect pro-

tection to vaccine non-recipients [20].

The population included children and adults of Canadian Hutterite communities in the

provinces Alberta, Saskatchewan, and Manitoba. The study began in September 2008,

extended over 3 influenza seasons, and ended in July 2011. Signs and symptoms of respiratory

infection including body temperature were recorded on a daily checklist. A family representa-

tive, usually the mother, was responsible for filling in the checklist for all the family members.

To ensure optimal accuracy of the reported symptoms only older children and young adults

could get their own diary if they were willing to fill it out. Trained study nurses visited the
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study colonies two times weekly, checked the diaries for missing data, and completed them

with the family representative if required. ARI was defined as having at least 2 of the following

symptoms: chills, cough, ear ache, fatigue, fever (� 38.0 C), headache, muscles aches, runny

nose, or sore throat. A nasopharyngeal swab was obtained by the study nurse in all individuals

that fulfilled the criteria for ARI and had 2 or more signs that were new since the last visit.

The respiratory specimens were examined by real-time polymerase chain reaction

(RT-PCR) for the presence of influenza viral RNA.

Written informed consent was obtained. Individuals aged 16 years and older were required

to sign. For enrolled children aged 15 years and younger, a signature had to be provided on the

consent form by a parent, official guardian or family representative. In addition, all children

aged 7 to 15 years had to read and sign an assent form, that was written in a simpler language,

in order to fully enroll in the study. The study was approved by the Hamilton Integrated

Research Ethics Board.

Statistical analyses

We subdivided the data into two datasets, one for children (0–17 years) and the other for

adults (18 years and older). Each dataset was then randomly split into a derivation set used for

model development and an independent validation set to test the derived model performance.

A larger derivation group of approximately 66% was chosen to preserve the power when con-

ducting multivariable analyses. Assuming that there would be fewer variables in the final

model a validation group of 34% of the original dataset was deemed appropriate. For the pur-

pose of this analysis, only the first seasonal ARI episode that occurred during the influenza sur-

veillance period was considered.

We performed univariable logistic regression for the comparison of demographic and clini-

cal factors between the influenza and non-influenza groups and tested the crude associations

first in each season separately and then pooled over all three seasons. Variables of interest

included sex, seasonal history of receipt of influenza vaccine, age (in children), and all symp-

toms suggestive of ARI. All variables but age in children were dichotomized as present or

absent whilst age in children was categorized into 0–5 years and 6–17 years in accordance with

previous studies [15, 21].

We generated multivariable predictive models for the presence of influenza versus non-

influenza virus-related ARI in children and adults using logistic regression as our primary

analysis. Variables significant (P< .01) in the univariable analysis were entered into the multi-

variable analysis. Sex in adults, and age category (0 to 5 years vs. 6 to 17 years) and sex in chil-

dren were predefined for entering multivariable regression models irrespective of their

significance. In addition, fever, cough, and sore throat were considered a priori as clinically

important due to their wide application in case definitions. For building of multivariable

regression models, we used forward stepwise selection. We further applied generalized esti-

mating equations (GEE) using the variables derived from the logistic regression model to

account for repeated ARI episodes in different seasons in the same individual. Only the final

models were then applied to the validation set. For each final GEE model, we generated coeffi-

cient-based point scores by dividing all regression coefficients by the coefficient with the small-

est absolute value and rounding up to the nearest integer as previously published [22]. We

then constructed ROC curves from the scores for the prediction of influenza virus infection

and determined different cut-points to find optimal combinations of sensitivities and

specificities.

As a sensitivity analysis we generated classification trees. One major advantage of this tech-

nique is the relatively simple integration of complex interactions that are usually avoided in
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parametric models [23]. We entered all predictors of interest into the classification tree models

and applied the Gini index to reduce node impurity [24]. Point scores do not allow for the

integration of interaction effects; thus, we did not assign point scores to the final classification

tree models as this would have negated the advantageous characteristic of classification trees.

The ROC curves were therefore constructed from the predicted probabilities of the final classi-

fication tree models. In the absence of a score we chose the sensitivities of the final classifica-

tion tree models close to the sensitivities at the cut-points of the scores in the GEE models and

determined the corresponding specificities along the ROC curves constructed from the pre-

dicted probabilities. From the sensitivities and specificities in the classification tree models we

derived the remaining predictive indices analogous to the indices of the GEE models. Finally,

the performance of the two multivariable models was compared by visually inspecting the

ROC curves. Accuracy was classified according to the magnitude of the area under the ROC

curve (AUC): 0.90–1.00 (excellent), 0.80–0.89 (good), 0.70–0.79 (moderate), and< 0.70

(poor). All statistical analyses were performed using IBM SPSS for Windows version 23.0 [25]

and R software version 3.3.0 [26].

Results

Between December 2008 and June 2011, 3332 first seasonal ARI episodes were observed. Of

these, 44 episodes had to be excluded due to a missing outcome (either influenza diagnostic

was not performed, or the result was indeterminate). There were eventually 3288 first seasonal

ARI episodes in 2202 remaining subjects which accounted for 321 (9.8%) influenza A or B pos-

itive events. The frequencies and proportions of the various demographic predictors in the

influenza positive and negative first seasonal episodes in the children and adults’ derivation

sets pooled over all three seasons are depicted in Table 1. The proportion of influenza A virus

infection and the distribution of influenza A subtypes was similar across the two age catego-

ries, children and adults. Overall, fever was less frequently reported in adults than in children

and the proportion of children with laboratory confirmed influenza that reported fever was

higher than the proportion of influenza positive adults with fever (48.7% versus 19.4%, respec-

tively) (Fig 1A and 1B.).

The results of the univariable and multivariable logistic regression analyses are shown in

the appendix (S1 Table and S2 Table for children, S4 Table and S5 Table for adults).

Table 1. Characteristics of influenza positive and negative first seasonal episodes in the children and adult derivation set, influenza seasons 2008–2011. Values are

indicated as numbers and percentages, n (%).

Children (0–17 years) Adults (18 years and older)

Influenza A or B Influenza A or B

negative positive negative positive

n = 1089 n = 152 n = 883 n = 67

Influenza A subtypes:

A/H1N1 seasonal n.a. 15 (9.9) n.a. 11 (16.4)

A/H3N2 n.a. 63 (41.4) n.a. 31 (46.3)

A/H1N1 pandemic n.a. 35 (23.0) n.a. 12 (17.9)

Female subjects 642 (59.0) 82 (53.9) 631 (71.5) 39 (58.2)

Influenza vaccine 802 (73.6) 103 (67.8) 275 (31.1) 11 (16.4)

Age category (6–17 years) 685 (62.9) 104 (68.4) n.a. n.a.

Age category (18–49 years) n.a. n.a. 649 (73.5) 58 (86.6)

Heart or lung disease 56 (5.1) 5 (3.3) 77 (8.7) 4 (6.0)

n.a. not applicable

https://doi.org/10.1371/journal.pone.0212050.t001
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Prediction of influenza A or B infection in children

Presence of fever, chills, and cough, and being between 6 and 17 years old (versus< 6 years)

were significant predictors for influenza A or B infection in the derivation set of the GEE

model for children (Table 2). The corresponding estimates of the coefficients are listed in the

Fig 1. Symptoms of acute respiratory infection in laboratory confirmed influenza negative and positive children (a.) and adults (b.).

https://doi.org/10.1371/journal.pone.0212050.g001
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appendix (S3 Table). When dividing the point score of the GEE model into different cut-

points, it became evident that the presence of at least 3 predictors, which corresponds to a

point score of 5 or more, was highly specific (85%) with a positive predictive value of 31%.

Conversely, choosing a lower cut-point of 3, which corresponds to the presence of either fever

or at least two other significant predictors, increased the sensitivity from 55% to 85% at the

cost of a markedly lower specificity of 44% and a positive predictive value of only 16%. Assum-

ing a prevalence of influenza A or B virus infection of 10%, the presence of fever alone or a

point score of 3 would result in a children’s post-test probability of being influenza positive of

only 9.9% considering the likelihood ratio of 1.5. Conversely, for the presence of at least 3 pre-

dictors (or a score of 5) a children’s post-test probability for being influenza A or B positive

would be 29.1%. The performance of the GEE model in the derivation set was moderate (AUC

0.76; 95% CI 0.72–0.80). In the validation cohort the AUC was 0.70 (95% CI 0.63–0.77), the

difference, however, was not statistically significant (p = .166).

In the classification tree model fever was the most important predictor of influenza A or B

followed by chills. Cough, runny nose and sex were additionally selected as important predic-

tors. The classification tree model thereby unveiled potential interaction effects since these lat-

ter predictors, cough and sex, depended on the presence or absence of either chills and/or

runny nose, respectively in the previous nodes (S1 Fig). No interaction was detected with age.

Performance of the classification tree model was moderate in both the derivation (AUC 0.77;

95% CI 0.73–0.81) and the validation set (AUC 0.74; 95% CI 0.67–0.80), respectively, and the

difference was not statistically significant (p = .450) (Table 2).

When comparing the two multivariable models by visualizing the ROC curves none of the

predictive models showed clear superiority regarding performance (Fig 2A and 2B.).

Prediction of influenza A or B infection in adults

In the GEE model the presence of chills, cough, and myalgia turned out to be significant pre-

dictors of influenza A or B infection in adults. According to the magnitude of their beta-coeffi-

cients, 2 points were assigned to each, chills and cough, and one point was assigned to myalgia

for a total of 5 points (Table 3; S6 Table). A score of 4 or higher which corresponded to the

Table 2. Summary of models for the prediction of influenza A/B virus infection in children (ages 0 up to 17 years).

Models Predictors Score Set AUC p-value‡ Cut-point Sens. Spec. PPV� NPV� pos. LR neg. LR

(95% CI)

GEE Age 6–17 years 1 Deriv. 0.76

(0.72–0.80)

0.166 3 85% 44% 16% 96% 1.5 0.34

Chills 2 5 55% 85% 31% 94% 3.7 0.53

Cough 2 Valid. 0.70

(0.63–0.77)

3 83% 40% 15% 95% 1.4 0.42

Fever 3 5 50% 84% 28% 93% 3.1 0.59

Classification tree n.a. Deriv. 0.77

(0.73–0.81)

0.450 n.a. 82% 53% 18% 82% 1.7 0.34

Fever

Chills 36% 92% 36% 92% 4.5 0.70

Cough

Runny nose Valid. 0.74

(0.67–0.80)

n.a. 80% 51% 17% 95% 1.6 0.39

Male sex 34% 92% 34% 92% 4.3 0.72

AUC = area under the (receiver operating characteristic) curve; GEE = Generalized Estimating Equations; LR = likelihood ratio; n.a. = not applicable; NPV = negative

predictive value; PPV = positive predictive value.

‡ z-test for the differences between two independent AUCs

� assuming a prevalence (~pre-test probability) of influenza virus A or B infection of 11%.

https://doi.org/10.1371/journal.pone.0212050.t002
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presence of at least chills and cough yielded a specificity of 96% and a positive predictive value

of 34% in the derivation set. The corresponding (positive) likelihood ratio of this score was 5.8.

Assuming an adult’s pre-test probability of having influenza of 7%, the presence of chills and

cough which is equal to a point score of 4 would have resulted in a post-test probability (risk)

of 30% for being influenza A or B positive in this adult based on a (positive) likelihood ratio of

5.8. The model performance was moderate with an AUC of 0.78 (95% CI 0.72–0.85). Applying

the GEE model to the validation cohort resulted in a similar performance as indicated by an

AUC of 0.79 (95% CI 0.71–0.87; p = .866).

Presence of chills, cough, and myalgia were also identified as significant predictors in the

classification tree model. However, it also identified the presence of sinus problems and

sore throat as significant variables for the prediction of influenza A or B infection (Table 3).

It further discovered potential interaction effects between cough and myalgia, since myalgia

had only a predictive value for the diagnosis of influenza A or B in the presence but not in

the absence of cough (S2 Fig). The performance of the classification tree model in the deri-

vation set was good with an AUC of 0.80 (95% CI 0.75–0.86), whereas performance was

only moderate in the validation set (AUC 0.75; 95% CI 0.65–0.85). The difference, however,

was not statistically significant (p = .410). Overall, visual comparison of the ROC curves

across the models showed consistently moderate performance irrespective of the multivari-

able modelling technique and neither of the models clearly outperformed the other one (Fig

3A and 3B.).

Discussion

Our results demonstrate robustly that in children fever, chills and cough are the key symptom-

atic predictors along with age from 6 to 17 years for the diagnosis of influenza virus infection

whereas the essential predictors in adults were chills, cough, and myalgia but not fever. The

almost equal performance of the two models in a second, independent cohort, underpins the

validity of the results.

How our results compare to previous studies

Our results are consistent with previous studies that showed an independent association of

fever and cough with influenza virus infection in children [19, 21]. However, fever was elimi-

nated from both models in the adult data set. From a pathophysiological perspective, it seems

reasonable that fever would be significant in children but not in adults, since it indicates a

strong innate immune response.

With that finding our study differs from prior studies that were conducted in one influenza

season only and in patients predominately infected with influenza A/H3N2 [11, 13]. Reviewing

clinical signs and symptoms in patients during the 2009 pandemic influenza A/H1N1 revealed

that mild illness without fever occurred in 8–23% of infected patients whereas fever was the

predominant symptom in hospitalized patients or was only a significant predictor of influenza

A/H3N2 but not for influenza A/H1N1 [11, 27]. As a result of our less stringent inclusion

criteria, we noted that the overall number of febrile episodes in the adult population (56 of 950

episodes or 5.9%) was rather low and that the majority (56 of 67 or 83.6%) of laboratory con-

firmed influenza episodes in our adult outpatient population were indeed afebrile. Together

with the fact that influenza A/H3N2 was predominant only in season one and three but not in

season two and that the majority of influenza episodes in adults were related to influenza sub-

types other than influenza A/H3N2 may explain why fever was, overall, not selected as an

important predictor. The total number of positive influenza episodes was, however, too small

to adjust for influenza subtypes.
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Overall, the differing results could be explained by the broader spectrum of symptoms in

our study population and the larger variety of underlying pathogens which eventually facili-

tated the discriminative ability of these predictors to be detected. Since only a handful of

Fig 2. Comparison of ROC curves among the two different models, GEE and classification tree, for the prediction of influenza A/B I children (a. derivation set; b.

validation set).

https://doi.org/10.1371/journal.pone.0212050.g002
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participants required medical attention [28] we cannot rule out that the absence of fever in a

majority of individuals was due to a milder course of influenza virus infection as has earlier

been suggested [29]. On the other hand, more recent work has also shown that older adults

being admitted to hospitals with laboratory confirmed influenza have lower body temperature

than required for fulfilling the WHO definition of ILI [18].

In addition, sore throat was considered a priori in our multivariable models to be consistent

with current ILI case definitions but was consecutively eliminated when adjusted for covari-

ates. Although we have no biological explanation, our finding is in line with recent classifica-

tion tree results from a large cohort of children and adults for the prediction of influenza virus

infection [30]. These and our findings raise concern about the usefulness of the WHO’s and

CDC’s case definitions either for surveillance reason or application in hospital settings. It

seems possible, that a considerable proportion of symptomatic individuals in the community

can transmit influenza unconsciously to susceptible individuals at risk of complications. This

could be of relevance for healthcare settings were healthcare workers or visitors are potential

sources of influenza virus transmission to susceptible patients.

How our results could be applied in clinical practice

Although the common fever-and-cough rule validated by Boivin and colleagues [12] has been

proven useful, our results show that it may not be comprehensive enough. With our study

spanning over different seasons and in context with surveillance data confirming that influ-

enza virus is circulating but without knowledge of the specific subtype(s), individuals without

fever, especially adults, have to be considered to have influenza. With the lower and higher

cut-points depending on the type and number of present predictors we demonstrated the con-

siderable change in the magnitude of the predictive indexes. The main disadvantage of various

rapid influenza diagnostic tests is their low sensitivity [7]. Provided that an increase in cer-

tainty would change management, the lower cut-point of our scores thereby could serve as

threshold for complementary laboratory diagnosis whereas the higher cut-point could make

any further diagnostic testing futile and could, therefore, potentially safe costs. The scores

Table 3. Summary of models for the prediction of influenza A/B virus infection in adults.

Model Predictors Score Set AUC p-value‡ Cut-point Sens. Spec. PPV� NPV� pos. LR neg. LR

(95% CI)

GEE Chills 2 Deriv. 0.78

(0.72–0.85)

0.866 2 90% 38% 10% 98% 1.5 0.26

Cough 2 4 30% 96% 34% 94% 5.8 0.59

Myalgia 1

Valid. 0.79

(0.71–0.87)

2 94% 29% 9% 91% 1.3 0.21

4 38% 92% 26% 95% 4.8 0.67

Classification tree Chills n.a. Deriv. 0.80

(0.75–0.86)

0.410 n.a. 87% 53% 12% 98% 1.8 0.26

Cough 46% 92% 30% 96% 5.8 0.59

Myalgia

Sinus problems Valid 0.75

(0.65–0.85)

n.a. 81% 53% 11% 97% 1.7 0.36

Sore throat 37% 92% 26% 95% 4.6 0.68

AUC = area under the (receiver operating characteristic) curve; GEE = Generalized Estimating Equations; LR = likelihood ratio; n.a. = not applicable; NPV = negative

predictive value; PPV = positive predictive value.
‡ z-test for the differences between two independent AUCs

� assuming a prevalence (~pre-test probability) of influenza virus A or B infection of 7%.

https://doi.org/10.1371/journal.pone.0212050.t003
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Fig 3. Comparison of ROC curves among the two different models, GEE and classification tree, for the prediction of influenza A/B in adults (a. derivation set; b.

validation set).

https://doi.org/10.1371/journal.pone.0212050.g003
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could also guide decisions on whether or not additional isolation precaution measures needed

to be implemented before a laboratory test result would be available.

Study limitations

Our study has some limitations. First, the low number of influenza positive events in children

aged 0 to 5 years precluded us from analyzing this age group separately. Therefore, we cannot

make a statement about any significant predictors for this specific age group. Second, the clas-

sification trees illustrated that interaction effects might be present which were not considered

in our primary analysis. These results need to be interpreted with caution since the method is

not as robust as the GEE model. Single tree models are unstable to small changes in the learn-

ing data which may result in high variability of the predictions [31]. We therefore regarded the

classification tree models as sensitivity analyses to confirm the obtained results from the GEE

models. In addition, the biological plausibility of such interactions remains uncertain and inte-

gration of these interaction effects did not increase the model’s accuracy. Thus, by adding to

the models’ complexity they would rather challenge the models’ applicability in clinical

practice.

Third, it is known that simple data-splitting is a less stringent validation method than e.g.

splitting the groups with respect to time [32]. However, our aim was to generate a general pre-

diction rule that holds true irrespective of the season and, thereby, ignores the potential influ-

ence of different circulating strains, an information that is not necessarily available.

Eventually, any prediction rule needs to be tested and validated in an external group of

patients to ensure that it maintains its predictive power. The Canadian Hutterite community

has been used as a model to understand herd immunity and the epidemiology of influenza for

over 10 years. It is clearly a unique community. However, it does allow for a more in-depth

exploration of epidemiologic aspects of how influenza spreads than most mainstream commu-

nities. Social structures even within mainstream society vary greatly and in fact the Hutterites

might share more in common with other rural communities than other rural communities

share with inner city neighbourhoods for example. In terms of the clinical predictors and test-

ing in this study, we are not aware of any biological or even social factors that would prevent

generalizability to other communities. Application of a new clinical prediction rule, even if

externally validated, requires a population similar to the one the rule has been developed and

validated. It is important to assure that the clinical prediction rule has relevant influence on

decision-making. Neither of these requirements are fulfilled by this study, with the latter usu-

ally requiring an impact analysis ideally by means of a randomized controlled trial.

Conclusion

Predictors of influenza virus infection vary between children and adults. Fever, chills, and

cough along with age from 6 to 17 years were strong predictors of influenza virus infection in

children whereas chills, cough and myalgia were found to be most predictive of influenza virus

infection in adults. Common definitions for influenza-like illness such as the fever and cough

rule cannot universally be applied. The derived scores would be simple to apply in clinical

practice and could guide further laboratory testing, but their generalizability and impact on

clinical decision-making remains to be determined.
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