
RESEARCH ARTICLE

Generation of TGFBI knockout ABCG2+/

ABCB5+ double-positive limbal epithelial stem

cells by CRISPR/Cas9-mediated genome

editing

Eung Kweon Kim1,2, Seunghyuk Kim2, Yong-Sun MaengID
1,3*

1 Department of Ophthalmology, Corneal Dystrophy Research Institute, Yonsei University College of

Medicine, Seoul, South Korea, 2 Institute of Vision Research, Severance Biomedical Science Institute,

Yonsei University College of Medicine, Seoul, South Korea, 3 Department of Obstetrics and Gynecology,

Institute of Women’s Life Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea

* maengmatthew@gmail.com

Abstract

Corneal dystrophy is an autosomal dominant disorder caused by mutations of the transform-

ing growth factor β-induced (TGFBI) gene on chromosome 5q31.8. This disease is therefore

ideally suited for gene therapy using genome-editing technology. Here, we isolated human

limbal epithelial stem cells (ABCG2+/ABCB5+ double-positive LESCs) and established a

TGFBI knockout using RNA-guided clustered regularly interspaced short palindromic

repeats (CRISPR)/Cas9 genome editing. An LESC clone generated with a single-guide

RNA (sgRNA) targeting exon 4 of the TGFBI gene was sequenced in order to identify poten-

tial genomic insertions and deletions near the Cas9/sgRNA-target sites. A detailed analysis

of the differences between wild type LESCs and the single LESC clone modified by the

TGFBI-targeting sgRNA revealed two distinct mutations, an 8 bp deletion and a 14 bp dele-

tion flanked by a single point mutation. These mutations each lead to a frameshift missense

mutation and generate premature stop codons downstream in exon 4. To validate the

TGFBI knockout LESC clone, we used single cell culture to isolate four individual sub-

clones, each of which was found to possess both mutations present in the parent clone, indi-

cating that the population is homogenous. Furthermore, we confirmed that TGFBI protein

expression is abolished in the TGFBI knockout LESC clone using western blot analysis. Col-

lectively, our results suggest that genome editing of TGFBI in LESCs by CRISPR/Cas9 may

be useful strategy to treat corneal dystrophy.

Introduction

Corneal dystrophies are slowly progressive, symmetric, and unrelated to systemic or environ-

mental factors [1]. Bilateral corneal deposits resulting from these conditions can cause photo-

phobia, tearing, pain, and eventually reduce visual acuity [2]. The advent of genetic analysis

has allowed the identification of transforming growth factor β-induced gene (TGFBI)
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mutations that are associated with specific corneal dystrophies. For example, p.Arg124Leu is

found in Reis-Bücklers corneal dystrophy (RBCD), p.Arg555Gln leads to Thiel-Behnke

corneal dystrophy (TBCD), p.Arg124Cys causes lattice corneal dystrophy type 1 (LCD1),

p.Arg555Trp results in granular corneal dystrophy type 1 (GCD1), and p.Arg124His occurs in

granular corneal dystrophy type 2 (GCD2) [1]. Overall, 57 mutations in the TGFBI gene have

been associated with corneal dystrophies.

Based on published studies, p.Arg124His (GCD2) is the most frequently observed muta-

tion in the Asian population, with the second most common mutation likely to be either

p.Arg124Cys (LCD1) [3] or p.Arg555Trp (GCD1) [4]. A Japanese report, for example, found

that the GCD2 mutation accounted for up to 72% of patients in their study population [3, 4].

Our group has identified 21 individuals that are homozygous for this mutation in Korea and

calculated that heterozygotes are likely to account for 1 out of every 870 Korean people [5, 6].

China was distinct from other Asian countries in that the GCD1 mutation was most fre-

quently identified in TGFBI corneal dystrophy patients, followed by the LCD1 and GCD2

mutations [7]. Further, in Western countries, LCD1 was most common genetic variant in this

disease.

The corneal epithelium arises from, and is maintained by, limbal epithelial stem cells

(LESCs) in the basal layer of the corneal limbus. These multiply slowly giving rise to transient

amplifying cells (TACs), which migrate superficially while becoming more and more differen-

tiated [8–10]. Limbal stem cell deficiency (LSCD) can arise for a number of reasons, including

burn, injury, and infection. Due to a lack of corneal donor tissue and the decreased of graft

survival after penetrating keratoplasty, stem cell therapies based on the autologous or homolo-

gous expansion of LESCs has been proposed in severe cases of LSCD [11].

LESCs are identified by expression of ΔNp63α along with a high nuclear to cytoplasmic

ratio [12, 13]. ABCG2 (ATP binding cassette sub family G member 2) positivity detected in

LESCs as well as several other cells exist in the suprabasal limbus and these markers used to

identify the LESC population based on their staining ability in clusters of stem-like cells in the

limbus [14, 15].

ABCB5 (ATP-binding cassette subfamily B member 5) is a regulator of limbal stem cell

behavior and is required for corneal development [16]. ABCB5 was mainly expressed in basal

layer cells of the mouse limbus. In human eyes, ABCB5+ cells were located in the basal layer of

the limbus and co-expressed ΔNp63α− a known expressed in epithelial stem cells [16, 17],

including human limbal stem cells[18, 19].

Recently, we isolated ABCG2+/ABCB5+ LESCs and confirmed differentiation of LESC

into corneal epithelial cell [17]. The ABCG2+/ABCB5+ LESCs that we established displayed

powerful stem cell activity, continuous growth, and high telomerase activity. Moreover,

ABCG2+/ABCB5+ LESCs expressed the core transcription factors Oct4, Sox2, c-Myc, and

Klf4, which are also expressed in multipotent stem cells [17]. These data indicate that the

ABCG2+/ABCB5+ LESCs that we established have powerful stem cell activity and may be

used to regenerate corneal epithelia. Based on these data, knock out of mutant TGFBIp in

ABCG2+/ABCB5+ LESC from corneal dystrophy patients may be treatment strategy for cor-

neal dystrophy patients.

Recently, an RNA-mediated adaptive immune system found in bacteria and archaea,

known as clustered regularly interspaced short palindromic repeats (CRISPR) has been used

to develop a revolutionary technology for gene editing in cells and organisms [20–25]. This

CRISPR/Cas9 system uses the bacterial Cas9 protein, combined with a short single-guide RNA

(sgRNA), which together can be used to generate targeted double-stranded breaks in the

genomic DNA [26]. Additionally, cytoplasmic microinjections of in vitro transcribed mRNA

combined with the CRISPR/Cas9 technology have been successfully used for genome
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modifications (correction of genetic disorders or disruption of the mutated gene) in cells, as

well as in several types of mammalian embryos [27–30].

Because corneal dystrophy is commonly caused by dominant mutations in the TGFBI gene,

we hypothesize that this disease is suited for gene therapy with genome-editing technology.

Here, we present the use of CRISPR/Cas9 gene editing to knock out endogenous human

TGFBI expression at the genome level in ABCG2+/ABCB5+ double-positive LESCs, resulting

in the establishment of a TGFBI gene knockout clone. Our results suggest that genome editing

of TGFBI in human LESCs by CRISPR/Cas9 may be useful strategy to treat corneal dystrophy.

Materials and methods

ABCG2+/ABCB5+ double-positive LESCs culture

Human corneal tissue was harvested from healthy corneas from the eye bank after penetrating

or lamellar keratoplasty. The age, gender and health of donors are listed in Table 1. Donor con-

fidentiality was maintained in accordance with the Declaration of Helsinki and was approved

by the Severance Hospital IRB Committee (CR04124), Yonsei University. ABCG2+/ABCB5+

double-positive LESCs were isolated as previously described.[17] In brief, Fresh corneoscleral

tissue was cut into four similar segments in a 60-mm culture dish containing HBSS (HBSS:

Hank’s balanced salt solution), and each segment was digested with 15 mg/mL Dispase II

(Roche, Rotkreuz, Switzerland) in SHEM (CELLnTEC Advanced Cell Systems AG, Bern, Swit-

zerland) with 100 mM sorbitol (Sigma-Aldrich, St Louis, MO) at 4˚C for 18 hours. Under a

dissecting microscope, an already loose limbal epithelial sheet was separated by inserting and

sliding a noncutting flat stainless-steel spatula into a plane between the limbal epithelium and

the stroma. Isolated limbal epithelial cells were seeded on specific matrix [5% matrigel (BD

Biosciences, Bedford, MA) and 0.05 mg/ml human fibronectin (Sigma-Aldrich, St Louis,

MO)] coating plate and cultured with CnT-20 medium (CELLnTEC Advanced Cell Systems

AG, Bern, Switzerland). After 3 days, limbal epithelial cells were cultured with 10% Serum

DMEM (Invitrogen, Carlsbad, CA) medium and changed at every 2 days. After 8–10 days,

highly proliferative cell colonies were washed with PBS two times and treated with 1 mL Accu-

tase (Sigma-Aldrich, St Louis, MO). Single cells were seeded onto plates coated with a matrix

of Matrigel and fibronectin and cultured in DMEM containing 10% FBS. The highly prolifer-

ative cells that attached to the new plate were designated limbal epithelial stem cells (LESCs).

After 48 hours, The LESCs were treated with Accutase and sorted by FACS analysis using

ABCG2+ antibodies (Abcam, Cambridge, MA) and ABCB5+ antibodies (Thermo fisher

Table 1. Human donor information.

Male (N = 3) Female (N = 3)

Mean age 37.6±11.02 31±7.8

Systolic blood pressure (mmHg) 120±9.8 115±10.5

Diastolic blood pressure(mmHg) 75±12.5 73±11.3

BMI (kg/m2) 19.9±3.4 20.1±5.9

Hemoglobin (g/dl) 14.5±0.7 14.0±0.4

Glucose level(mg/dl) 81±5.9 80±4.7

Creatinine (mg/dl) 0.9±0.11 0.8±0.12

AST(IU/L) 21±2.2 20±2.3

ALT(IU/L) 20±2.4 19±2.1

γGTP(IU/L) 45±3.5 23±2.7

Proteinuria Normal Normal

https://doi.org/10.1371/journal.pone.0211864.t001
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scientific, Rockford, IL). The ABCG2+/ABCB5+ double-positive cells were cultured using

mass culture methods and were named ABCG2+/ABCB5+ double-positive LESCs.

LESC transfection

Transfections were performed in 24-well cell culture plates with confluencies of approximately

60–70% using 1.5 μg of the TGFBI-targeting sgRNA (TCAGCTGTACACGGACCGCACGG) plas-

mid, 1 μg of the Cas9 plasmid, and 10 μl of Lipofectamine Reagent (Invitrogen, Carlsbad, CA),

or negative control using only 1 μg of the Cas9 plasmid, and 10 μl of Lipofectamine Reagent,

according to the manufacturer’s instructions. Transfected cells were cultured for 24 h; these

were then harvested, diluted in cell culture medium to approximately 1 cell/100 μl, and re-

plated in 96-well cell culture plates. Once individual colonies were apparent in 66 of two

96-well plate, these were cultured in separate wells of 24-well plates and, subsequently, further

expanded in 6-well and 60 mm plates until cell numbers were sufficient for genomic DNA

extraction and western blot analyses.

Design of sgRNA/Cas9 vectors

Basically, we focused on granular corneal dystrophy type 2 (GCD2). Substitution of arginine

for histidine at codon 124 (p.Arg124His) is associated with this disease. Therefore, we chose

exon 4 as the target of sgRNA in both NHEJ to knockout and HDR to correct the mutation.

Custom-designed CRISPR/Cas9 vectors, targeting one specific region of exon 4 of the TGFBI
gene, were obtained from Toolgen (South Korea). First, four sgRNA-target sites were selected

by an algorithm, and one of the sgRNA-target sites was selected by an algorithm that suggests

sites with minimal risk to generate off-target effects and by mismatched sensitive nuclease

assay (T7E1 assay). Selected sgRNA-target sites have the best cutting efficiency and fewer

predicted off-target sites. Single-guide (sg) RNAs targeting the TGFBI gene were under the

regulation of a U6 promoter, whereas expression of the Cas9 enzyme was driven by a cytomeg-

alovirus promoter.

DNA mismatch-specific (T7E1) endonuclease assay

LESCs transfected with the TGFBI-targeting sgRNA plasmid and the Cas9 plasmid were har-

vested after 3 days of growth, and genomic DNA was extracted using the QIAamp DNA Blood

Kit (QIAGEN, Valencia, CA). A region of the TGFBI gene exon 4 was amplified with genomic

DNA-specific primers (forward primer, 5’-GTTCACGTAGACAGGCATTTGA-3’; reverse

primer, 5’-GCCTTTTCTAAGGGGTTAAGGA-3’). Homoduplex PCR products were then

denatured and rehybridized using step-down annealing conditions to generate homo- and het-

eroduplexes, and the duplex mixture was treated with T7E1 nuclease for 1 h at 37˚C (New

England Biolabs, Ipswich, MA). The reaction was stopped using 1.5 μl of 0.25 M EDTA, and

the products were analyzed on a 2% agarose gel.

Western blot

Cells were grown to near confluency in 60 mm plates. Growth medium was then removed,

and the cells were rinsed twice with phosphate buffered saline (PBS) prior to lysis with a radio-

immunoprecipitation assay (RIPA) buffer, supplemented with phosphatase and protease

inhibitors. Insoluble cell debris was removed by centrifugation for 15 min at 13,000 rpm and

4˚C, and the protein levels were adjusted based on a bicinchoninic acid colorimetric (BCA)

assay. Equal amounts of protein were separated using 10% sodium dodecyl sulfate-polyacryl-

amide gel electrophoresis (SDS-PAGE) and transferred to a polyvinyl difluoride (PVDF)

CRISPR/Cas9-mediated knockout of TGFBI in human limbal epithelial stem cells
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membranes. These membranes were blocked in tris-buffered saline with Tween 20 (TBST)

containing 5% skim milk and incubated with the primary anti-hTGFBI antibody (1:3,000,

Abfrontier, Seoul, South Korea) overnight at 4˚C. Blot membranes were then incubated with

anti-rabbit secondary antibody (1:5,000, Thermo scientific, Rockford, IL, USA) in 5% skim

milk in TBST, and the immunoreactive bands were visualized with a chemiluminescent

reagent as recommended by Amersham Biosciences, Inc.

Statistical analysis

Each experiment was repeated at least three times in triplicate. Data were performed using

GraphPad Prism 5 software. Measurements are presented as means ± SE. Comparisons

between two groups were analyzed by Student’s t-test. Multiple comparisons were performed

by one-way ANOVA followed by either Dunnett’s or Tukey’s post hoc test.

Results

CRISPR/Cas9-mediated modification of TGFBI in LESCs

We first identified an appropriate target site in TGFBI for gene editing by screening 20 bp tar-

get sequences and 3 bp protospacer associated motif (PAM) sequences in exon 4 of the human

TGFBI gene that was filtered by the Toolgen company to minimize off-target cross-reactivity.

From a list of several candidates, we chose a target sequence spanning bases 354–373 of the

human TGFBI cDNA. On the minus strand, these nucleotides are positioned immediately 5’ to

the trinucleotide PAM sequence “CGG” (Fig 1a). Once identified, an oligo pair containing the

guide sequence was cloned into the pRGEN-U6 vector to produce the pRGEN-U6-TGFBI

plasmid; we also obtained the pRGEN-Cas9-CMV expression vector, which expresses the Cas9

enzyme, from the Toolgen company.

We chose to use primary human ABCG2+/ABCB5+ double-positive LESCs as the model

system for generating TGFBI knockout cells using the CRISPR/Cas9 system. Novel limbus-

derived, highly proliferative ABCG2+/ABCB5+ double-positive LESCs were established in our

previous research.[17] To test the effectiveness of the TGFBI-targeting sgRNA at triggering

Cas9-mediated gene editing at the target site, LESCs were transiently co-transfected with the

pRGEN-U6-TGFBI sgRNA plasmid and the pRGEN-Cas9-CMV vector. This resulted in the

generation of a heterogeneous total population of edited and non-edited cells. At 72 h post-

transfection, we extracted total genomic DNA from this population and PCR-amplified a

genomic region containing the target site in exon 4 of TGFBI. We then denatured and re-

annealed the PCR amplicons in a thermal cycler to generate heteroduplex pairs and subjected

these rehybridized products to digestion with T7E1 nuclease. The T7E1 enzyme selectively rec-

ognizes and cleaves mismatched bracket sites and heteroduplexes harboring indels [31]. Since

CRISPR/Cas9 complexes trigger double-stranded breaks and imperfect non-homologous end

joining (NHEJ) near the PAM [21], we predicted that T7E1 digestion of mismatches in the tar-

get site should generate DNA fragments of ~227 bp and ~284 bp in size. As shown in Fig 1b,

the results of this T7E1 efficiency assay suggested that the TGFBI-targeting sgRNA was

functional.

We therefore attempted to isolate single LESC clones targeted by the TGFBI sgRNA by co-

transfecting LESCs with the sgRNA and Cas9 protein expression plasmids and culturing indi-

vidual clones derived from a single cell each in 96-well plates. These clones were allowed to

grow until colonies formed, with fresh media provided every 2 days. Single clones were then

dissociated and moved to 24-well plates and, subsequently, to 6-well plates. Genomic DNA

was isolated from each clone, and PCR reactions were performed as described above. The

CRISPR/Cas9-mediated knockout of TGFBI in human limbal epithelial stem cells
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products were rehybridized, treated with T7E1 nuclease for 1 h at 37˚C, and analyzed on a 2%

agarose gel. We found that the F11 single LESC clone was T7E1 nuclease positive, and pro-

duced a PCR product that was cleaved to yield products of ~280 and ~220 bp (Fig 1c).

We next compared the indel sequences found near the TGFBI sgRNA target site in the F11

single LESC clone to the corresponding region in wild-type LESCs using Sanger sequencing,

and observed overlapping peaks in the sequencing chromatographs (Fig 2). From these data,

we determined that two different mutations were present, an 8 bp deletion and a 14 bp dele-

tion flanked by one point mutation, and these were present in both the forward (Fig 2a) and

reverse (Fig 2b) sequencing reactions. We did not observe a single wild type TGFBI sequence

in either the forward or reverse sequencing results from the F11 single LESC clone. Intrigu-

ingly, these mutations both lead to a frameshift missense mutation and the formation of a pre-

mature stop codon downstream in exon 4.

Fig 1. Evaluation of the sgRNA/Cas9-mediated TGFBI modifications in LESCs. (a) Schematic diagram of the TGFBI partial protein coding

region and the locus targeted by the sgRNA/Cas9 complex. The sgRNA-targeting site is presented in red, and the PAM sequence is shown in

green and underlined. Amino acid sequence was presented under nucleotide sequence. (b) Targeting efficiency test for the genome editing

constructs. Genomic PCR (gPCR) products spanning TGFBI exon 4 were amplified from a heterogeneous population of LESCs that were

transfected with or without the TGFBI-targeting sgRNA and Cas9 expression plasmids. Denaturation of these products, followed by

rehybridization and treatment with T7E1 nuclease for 1 h at 37˚C results in bands of ~280 bp and ~220 bp, indicated with arrows. This is

consistent with the predicted cleavage sizes of 284 bp and 227 bp. M, marker. (c) Screening of single clones from LESCs transfected with

TGFBI-targeting sgRNA and Cas9 expression plasmids. Single cells were cultured in 96-well plates until colonies were visible, with media

changes every 2 days. These were dissociated and moved first to 24-well plates and then to 6-well plates, and gPCR products spanning exon 4

of TGFBI were amplified from individual single cell clones. The gPCR products were denatured, rehybridized, and treated with T7E1 nuclease

for 1 h at 37˚C, and the products were analyzed on a 2% agarose gel. LESC clone F11 was found to be T7E1 nuclease positive, producing

cleavage products of ~280 bp and ~220 bp. Arrows indicate bands resulting from T7E1 nuclease cleavage.

https://doi.org/10.1371/journal.pone.0211864.g001
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Validation of TGFBI knockout LESCs

Because our F11 single LESC clone generated by the TGFBI-targeting sgRNA contained two

distinct types of mutation (i.e., an 8 bp deletion and a 14 bp deletion with an adjacent point

mutation, Fig 2a and 2b), we wondered whether this clone has mono-allelic CRISPR-mediated

8bp deletion or 14bp deletion with single point mutation or rather, if some cells has bi-allelic

8bp deletion and others has bi-allelic 14bp deletion with single point mutation. To answer this

question, we subcloned single cells from the F11 single LESC clone in 96-well plates and

obtained four single cell subclones, which we termed F11-1, -2, -3, and -4. We then extracted

genomic DNA from these subclones and amplified PCR products spanning exon 4 of TGFBI.
PCR products from each single cell clone, as well as a mixture of the PCR product obtained

from wild type LESCs and a single cell clone, were rehybridized, treated with T7E1 nuclease,

and analyzed on a 2% agarose gel. We predicted that if the F11 single LESC clone has a mono-

allelic CRISPR-mediated 8bp deletion or 14bp deletion with single point mutation, the T7E1

assay would be positive for both the single cell clones and the mixed reaction, containing PCR

products from wild type LESCs and the single cell clones. Conversely, if some cells has bi-

Fig 2. Insertion/Deletion (indel) analysis for the F11 single LESC clone. Sanger sequencing of gPCR products spanning exon 4 of TGFBI
and containing the TGFBI sgRNA target site to identify indels in the F11 single LESC clone. (a) Results of the forward sequencing reaction.

The wild-type (WT) sequence was identified in control LESCs, and two distinct mutant sequences, an 8 bp deletion and a 14 bp deletion

flanked by a single point mutation, were identified in the F11 clone. These mutations each lead to a frameshift missense mutation and the

generation of a premature stop codon downstream of the target site in exon 4. The 20-nt sgRNA target site, 3-nt PAM sequence, and stop

codon site are highlighted in red, green, and purple, respectively. Deletions (-) or nucleotide mutation (m) are shown to the right of each

allele. (b) Results of the reverse sequencing reaction. The WT sequence was identified in control LESCs, and the two mutant sequences

described in (a, b) were identified in the F11 single LESC clone.

https://doi.org/10.1371/journal.pone.0211864.g002
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allelic 8bp deletion and others has bi-allelic 14bp deletion with single point mutation, some of

which contain the 8 bp deletion and some of which contain the 14 bp deletion/single point

mutation, the T7E1 assay would be positive only for the mixed reactions containing PCR prod-

ucts from wild type LESCs and the single cell clones. We found that both the PCR products

from the single cell clones and the mixed PCR products from wild type LESCs and the single

cell clones were cleaved by T7E1 nuclease (Fig 3a and 3b), suggesting that the F11 clone has

mono-allelic CRISPR-mediated 8bp deletion or 14bp deletion with single point mutation.

To further validate our hypothesis, we analyzed sequences near the TGFBI sgRNA target

site in the F11 single LESC clone and in the four single cell subclones, F11-1, -2, -3, and -4,

using Sanger sequencing (Fig 3c). We found that all cells possessed the same sequences and

mutations, that is, the 8 bp deletion and the 14 bp deletion flanked by a single point mutation,

near the TGFBI sgRNA target site. Therefore, we conclude that the F11 single LESC clone is

composed of homogeneous population of cells that contain two distinct TGFBI loci.

The predicted consequence of both the 8 bp deletion and the 14 bp deletion flanked by a

single point mutation in the F11 clone is a frameshift, which generates four new amino acids

and a premature stop codon downstream of alanine 127 or alanine 125, respectively (Fig 2).

Fig 3. Validation of TGFBI knockout LESCs. (a, b) The F11 LESC clone was single-cell cultured in 96-well plates, and individual

subclones were allowed to reach 80% confluency, with media changes every 2 days. Genomic DNA was extracted from four F11

subclones, F11-1, -2, -3, and -4, and gPCR products spanning exon 4 of TGFBI were amplified. These were denatured, rehybridized,

and treated with T7E1 nuclease for 1 h at 37˚C, both individually and when mixed with the gPCR products from WT LESCs, and the

resulting fragments were analyzed on a 2% agarose gel. Cleavage products of 278 bp and 219 bp were present after T7E1 nuclease

treatment of products from individual F11 subclones, and fragments of 284 bp, 278 bp, and 219 bp were generated by T7E1 nuclease

treatment of mixed reactions with gPCR products from WT LESCs. M, marker. (c) Results of forward and reverse sequencing

reactions of gPCR products spanning TGFBI exon 4 from single subclones of the F11 LESC clone. Both mutant sequences found in

the F11 parent were identified in all single cell subclones. (d) TGFBI protein levels in cell lysates (35 μg) from WT LESCs and the F11

single LESC clone were determined by Western blot analysis using an anti-TGFBI primary antibody and an anti-β-actin antibody, as

a loading control. Arrowheads indicate the position of the band corresponding to the TGFBI protein. Intact TGFBI protein is absent

in the F11 clone.

https://doi.org/10.1371/journal.pone.0211864.g003
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Thus, this LESC clone lacks the intact wild-type allele, and all of the genomic DNA sequences

that were identified contained deletions that create nonfunctional gene products. To confirm

the loss of TGFBI protein (TGFBIp) expression in the knockout cells, we performed a western

blot analysis on total protein lysates from normal LESCs and the F11 single LESC clone using

the human TGFBI polyclonal antibody and the β-actin antibody, as a loading control (Fig 3d).

Our data show the complete lack of detectable TGFBIp expression in the F11 single LESC

clone, thus confirming the generation of a TGFBI knockout cell line using the CRISPR/Cas9

system.

In Fig 3D, TGFBIp showed two bands. Based on our previous studies, TGFBIp showed one

or two bands (68kDa and additional smaller size bands) by western blotting, dependent on

the cell conditions or cell type [32–35]. However, we are unsure why TGFBIp showed one or

two bands. There are two possibilities. One is that the cells express two isoforms of TGFBIp

depending on cell conditions or cell type. Another is that the cells express an enzyme that

modifies TGFBIp depending on the cell condition or cell type. Our current results suggest that

the cells express an enzyme that modifies TGFBIp under different cell conditions. (unpub-

lished data). Therefore, TGFBIp showed one or two bands on the western blot. We are cur-

rently verifying this hypothesis.

Discussion

Transforming growth factor beta-induced gene (TGFBI; BIGH3; bigh3) encodes transforming

growth factor beta-induced protein (TGFBIp), composed of 683 amino acid residues. TGFBIp

is known to expressed ubiquitously in various organs including pancreas, heart, skin, liver

[36], bone [37], endometrium [38], kidney [39], tendon [40], and blood plasma [41].

TGFBIp is thought to play important roles in physio-pathologic responses by mediating cell

adhesion [36, 42–44] migration [42, 43], proliferation and differentiation [44]. TGFBIp medi-

ate cell adhesion and/or spreading through integrins α1β1, α3β1, ανβ3, ανβ5, α6β4, and αmβ2

[43, 45–49] and also associated with metastasis and suppression of malignant tumors [42, 50,

51]. Recently, our report suggested that TGFBIp increases migration, adhesion and differentia-

tion of lymphatic endothelial cells so that inhibition of TGFBIp expression resulted in reduc-

tion of tumor lymphangiogenesis. These effects finally inhibited the metastasis of TGFBIp-

producing tumors [34, 35]. We also reported that TGFBIp increases the migration and adhe-

sion of endothelial progenitor cells through integrins α4 and α5 [52]. In the cornea, TGFBIp is

expressed mainly in the epithelium [53], and up-regulated significantly during wound healing

of the cornea, and increased the mucins expression [54, 55].

In cornea, mutation of TGFBI gene induces 5q31- linked autosomal dominant corneal dys-

trophies [56]. These diseases are characterized by accumulation of deposits in the cornea,

often culminates in blindness due to the accumulation of protein deposits in the cornea.

Munier et al. recognized the relationships between TGFBI mutations and specific corneal dys-

trophies [1]: p.Arg124Leu is found in Reis-Bücklers corneal dystrophy (RBCD), p.Arg555Gln

leads to Thiel-Behnke corneal dystrophy (TBCD), p.Arg124Cys causes lattice corneal dystro-

phy type 1 (LCD1), p.Arg555Trp results in granular corneal dystrophy type 1 (GCD1), and p.

Arg124His occurs in granular corneal dystrophy type 2 (GCD2) [1]. Overall, 57 mutations in

the TGFBI gene have been associated with corneal dystrophies.

Immunohistological studies showed that wild-type TGFBIp exists mainly in the extracellu-

lar space of corneal epithelial cells [53], while mutant TGFBIp is abundant in the pathologic

deposits in TGFBIp-related corneal dystrophies [53]. TGFBIp presents in both a free soluble

form and a covalently bound state [57]. The soluble TGFBIp may serve a regulatory function,

while the bound state TGFBIp may exhibit as anchors for cells in the ECM. Therefore,
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interaction between TGFBIp and collagen is important for understanding the pathobiology of

TGFBI-linked corneal dystrophies. However, the role of wild- and mutant-type TGFBIp in

corneal epithelial cells is largely unknown, despite its clear expression in the cornea.

Over the years, our understanding of the pathogenesis of TGFBI-related corneal dystro-

phies has advanced significantly, but much remains to be learned. Currently, several surgical

techniques have tried to treating visually significant deposits in corneal dystrophy patients.

However, recent efforts have focused on the development of topical medications that might

prevent the deposition of mutant TGFBIp and/or dissolve existing deposits. Gene therapy

using RNA interference (RNAi), which can silence a disease-associated mutant allele, has been

investigated to treat diseases such as corneal dystrophy. In using of RNAi for gene suppression,

there are two commonly used methods: small interfering RNAs (siRNAs), and short hairpin

siRNAs (shRNAs). Yuan et al. generated a shRNA, which was able to reduce the levels of

TGFBIp in a transformed HEK 293 cell line transfected with a TGFBI expression plasmid [58].

Courtney et al. further developed an allele-specific siRNA targeting the TGFBI-Arg124Cys

LCD1 variant, and this was able to reduce both the mutant TGFBI expression and amyloid

aggregate formation in vitro [59]. Because TGFBIp plays multiple physiological roles, however,

the non-specific nature of this siRNAs raises concerns regarding the safety of their clinical

application.

The CRISPR/Cas9 system has, in recent years, been extensively applied for gene editing in

various organisms [22, 28, 60, 61]. This system uses the Cas9 protein combined with a sgRNA,

which together, promote targeted double-stranded breaks in the genomic DNA [26]. Genome

modification by CRISPR/Cas9 has dramatically accelerated in the genomic editing field and

has successfully been employed to correct the Duchenne muscular dystrophy of mouse [29].

Ultimately, gene therapy with tools such as CRISPR/Cas9 system may provide an effective

treatment strategy to repair the gene sequences mutated in TGFBI-related corneal dystrophies.

LESCs are located in the basal layer of the corneal limbus [62, 63] and are responsible for

the repair [64, 65] and maintenance of the corneal surface [66, 67]. Disease and injury can lead

to a deficiency of LESCs, resulted the corneas becoming opaque, vascularized, and inflamed.

Cultured LESC therapy was first described in 1997 [68], and LESCs cultured from either

patients or donors have been used to successfully treat LSCD.

Corneal dystrophy is commonly caused by dominant mutations in the TGFBI gene, and

thus, we hypothesize that this is a disease ideally suited for gene therapy with genome editing

technology. Here, we co-transfected human ABCG2+/ABCB5+ double-positive LESCs with

plasmids expressing the TGFBI-targeting sgRNA (pRGEN-U6-TGFBI) and the Cas9 protein

(pRGEN-Cas9-CMV) and isolated a single TGFBI gene knockout LESC clone. This clone

(F11) was shown to comprise a homogeneous population of cells, each of which contains two

distinct TGFBI loci, one with an 8 bp deletion and another that has a 14 bp deletion flanked by

a single point mutation. Intriguingly, both these mutations lead to a frame-shift missense

mutation and generate premature stop codons downstream in exon 4. In addition, we per-

formed whole-genome sequencing to analyze the CRISPR/Cas9-system based off-target effects.

However, F11 single clone cells showed no off-target effects on the genome. Therefore, we sug-

gest that the selected sgRNA is safe for use in the treatment of stem cells from patient’s. The

successful knockout of TGFBI was confirmed by western blot, which showed the complete lack

of detectable TGFBIp expression in the F11 single LESC clone. These findings confirm the

generation of a TGFBI knockout LESC cell line using the CRISPR/Cas9 system, and to our

knowledge, our study is the first report describing the successful targeting of TGFBI using this

technology.

Collectively, our results suggest that CRISPR/Cas9 genome editing targeting the TGFBI
gene in human ABCG2+/ABCB5+ double-positive LESCs may be applied therapeutically in
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corneal dystrophy patients. Specifically, we predict that autologous transplantation of LESCs

containing either a TGFBI gene knockout or a corrected TGFBI allele represents a feasible

treatment strategy for corneal dystrophy patients. We also anticipate that the cell clones

described in this report will be useful to the research community studying the pathogenesis of

corneal dystrophy diseases. Importantly, the CRISPR/Cas9-mediated genome editing

described here can now easily be adapted for the generation of additional TGFBI knockout

clones in other cell lines, and future studies will be aimed at correcting the TGFBI gene muta-

tions present in corneal dystrophy using advanced CRISPR/Cas9 systems. When combined

with more conventional in vitro cell manipulation approaches, these new tools may not only

facilitate the identification of both the cellular function of TGFBI and signaling pathways criti-

cal for corneal dystrophy diseases but also provide new treatment options for patients suffering

from this disease.

Conclusions

Genome editing of TGFBI in human ABCG2+/ABCB5+ double-positive LESCs by CRISPR/

Cas9 may be useful strategy to treat corneal dystrophy, and these new tools may not only facili-

tate the identification of both the cellular function of TGFBI and signaling pathways critical

for corneal dystrophy diseases but also provide new treatment options for patients suffering

from this disease.
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