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Abstract

Objectives

Professional sporting organisations invest considerable resources collecting and analysing

data in order to better understand the factors that influence performance. Recent advances

in non-invasive technologies, such as global positioning systems (GPS), mean that large

volumes of data are now readily available to coaches and sport scientists. However analys-

ing such data can be challenging, particularly when sample sizes are small and data sets

contain multiple highly correlated variables, as is often the case in a sporting context. Multi-

collinearity in particular, if not treated appropriately, can be problematic and might lead to

erroneous conclusions. In this paper we present a novel ‘leave one variable out’ (LOVO)

partial least squares correlation analysis (PLSCA) methodology, designed to overcome the

problem of multicollinearity, and show how this can be used to identify the training load (TL)

variables that influence most ‘end fitness’ in young rugby league players.

Methods

The accumulated TL of sixteen male professional youth rugby league players (17.7 ± 0.9

years) was quantified via GPS, a micro-electrical-mechanical-system (MEMS), and players’

session-rating-of-perceived-exertion (sRPE) over a 6-week pre-season training period.

Immediately prior to and following this training period, participants undertook a 30–15 inter-

mittent fitness test (30-15IFT), which was used to determine a players ‘starting fitness’ and

‘end fitness’. In total twelve TL variables were collected, and these along with ‘starting fit-

ness’ as a covariate were regressed against ‘end fitness’. However, considerable multicolli-

nearity in the data (VIF >1000 for nine variables) meant that the multiple linear regression

(MLR) process was unstable and so we developed a novel LOVO PLSCA adaptation to

quantify the relative importance of the predictor variables and thus minimise multicollinearity
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issues. As such, the LOVO PLSCA was used as a tool to inform and refine the MLR

process.

Results

The LOVO PLSCA identified the distance accumulated at very-high speed (>7 m�s-1) as

being the most important TL variable to influence improvement in player fitness, with this

variable causing the largest decrease in singular value inertia (5.93). When included in a

refined linear regression model, this variable, along with ‘starting fitness’ as a covariate,

explained 73% of the variance in v30-15IFT ‘end fitness’ (p<0.001) and eliminated

completely any multicollinearity issues.

Conclusions

The LOVO PLSCA technique appears to be a useful tool for evaluating the relative impor-

tance of predictor variables in data sets that exhibit considerable multicollinearity. When

used as a filtering tool, LOVO PLSCA produced a MLR model that demonstrated a signifi-

cant relationship between ‘end fitness’ and the predictor variable ‘accumulated distance at

very-high speed’ when ‘starting fitness’ was included as a covariate. As such, LOVO

PLSCA may be a useful tool for sport scientists and coaches seeking to analyse data sets

obtained using GPS and MEMS technologies.

Introduction

Professional sporting organisations invest considerable resources collecting and analysing data

to better understand the factors that influence athletic performance. Recent advances in wearable

technology and computing power mean that large volumes of data are now readily available to

the applied practitioner [1]. However, while this data is becoming easier to collect, analysing it

can be a challenging task, particularly when sample sizes are small (i.e. limited by squad size) and

the data is highly correlated–something that can lead to instability when applying standard least

squares regression techniques, making it difficult to draw firm inference [2–3]. With respect to

this, global positioning system (GPS) and micro-electrical-mechanical-system (MEMS) data can

be particularly problematic [4–5]. GPS and MEMS are often used to measure an athlete’s move-

ment, from which speed, distance travelled, and acceleration can be computed using standard

mathematical algorithms. For example, a player’s velocity and acceleration are simply the first

and second derivatives of the distance travelled. Consequently, these variables are not indepen-

dent, but instead are highly correlated. It is therefore not surprising that strong correlations have

been reported between variables widely used to assess training load (TL) [4–5].

Whilst individual measured variables are collected when acquiring performance data, these

are often grouped together to represent latent constructs such as ‘fitness’, ‘fatigue’ or ‘techni-

cal-tactical performance’. For example, a rugby league coach might represent ‘attacking perfor-

mance’ using variables such as the ‘number of metres run’, ‘tackle breaks’ or ‘kick return

metres’ [6]. Conversely, a sports scientist might assess the TL imposed using data acquired

from GPS or MEMS [4]. However, quantifying the relationships within and between these var-

ious latent constructs can be challenging because the individual variables used to quantify, for

example, TL in athletes, have been shown in a meta-analysis to possess substantial correlations

[5], making them prone to multicollinearity issues [3,5]. Nevertheless, when attempting to

understand relationships between the latent constructs used in sports performance,
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multicollinearity issues are often ignored, with the tendency being instead to rely on univariate

analysis [7–10]. However, univariate analysis has the inherent drawback that it assumes that

the variables are independent and does not allow for any covariance within the data, some-

thing that can be a major weakness. Furthermore, it is not possible using univariate analysis to

‘capture’ any information that may be associated with the covariance between the variables,

something that might be particularly important when considering the effect that changes in

prescribed training mode across a training period might have on the relationships between TL

variables [4–5, 11–12]. Consequently, when analysing TL data it is important to allow for

covariance in the data in order to ensure that appropriate inference is drawn and that errone-

ous conclusions are not reached.

When more sophisticated analysis is used, multiple linear regression (MLR) is generally the

tool used by practitioners to quantify the strength of relationships within TL data. It is common

practice when performing MLR to retain only those predictor variables that ‘confidently

explain’ the behaviour of the response (dependent) variable, with variables that fail to reach a

required level of significance excluded. While this approach works well when the predictor vari-

ables are weakly correlated with each other, problems can occur when strong correlations are

present and variable inflation factors (VIFs) are>10 [13–15]. Multicollinearity over-inflates the

standard errors associated with the respective regression coefficients, causing the p-values to

become very sensitive to changes in model specification, resulting in the whole process becom-

ing unstable. Consequently, multiple competing models may be produced, making it difficult to

be confident about any inference drawn from the various models [2]. In contrast to MLR, singu-

lar value decomposition (SVD) is immune to multicollinearity because it produces a set of

orthogonal composite variables that are completely uncorrelated [16–18]. Although not a statis-

tical technique per se, SVD underpins other techniques such as principal component analysis

(PCA) and partial least squares correlation analysis (PLSCA) [19–20]. PLSCA in particular

appears to have considerable potential with regard to the analysis of small data sets that exhibit

multicollinearity (e.g. sports performance data sets). Because PLSCA incorporates SVD, it has

the great advantage that it is both immune to multicollinearity, and unlike MLR, can cope with

situations where the number of predictor variables exceeds the number of observations. Unlike

MLR, which involves one response (dependent) variable and multiple predictor (independent)

variables, PLSCA sub-divides the data into two blocks (sub-groups) each containing one or

more variables, and then uses SVD to establish the strength of any relationship that might exist

between the two component sub-groups [21]. It does this by using SVD to determine the inertia

(sum of the singular values) of the covariance matrix of the sub-groups under consideration

[17,19,21]. Given that the singular values are proportional to the magnitude of any effect [17],

the higher the value of the singular value inertia observed, the greater the amount of shared

information between the respective sub-groups and the stronger the relationship between the

two. PLSCA is usually accompanied by a one-tailed permutation test generally involving 10,000

random permutations in order to establish the null distribution of the possible inertias and the

likelihood (the odds) of the observed relationship occurring by chance [21].

Although PLSCA has been widely used in neuroimaging [17,19–20,22], it has not been used

in sport science, with the result that its potential in this discipline has not been exploited. We

therefore hypothesised that PLSCA might be a useful tool with which to analyse small sport

performance data sets. As sport scientists regularly seek to identify the TL variables that best

relate to training outcome measures, we designed the study presented here with the aim of

investigating the relationship between the accumulation of TL (quantified using multiple col-

lection methods), and 30–15 intermittent fitness test (30-15IFT) performance achieved by 16

professional youth rugby league players following a 6-week training period. The overall aim of

the study was to establish whether or not PLSCA, coupled with a novel ‘leave one variable out
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(LOVO)’ adaptation, might be a useful tool for analysing TL data sets where multicollinearity

issues are problematic. More specifically, we wanted to know if the above methodology could

identify which accumulated TL variables best relate to 30-15IFT performance following

6-weeks of training.

Leave one variable out PLSCA example

In order to explain the linear algebra underpinning PLSCA and to highlight the LOVO adapta-

tion, we shall first consider a small dataset (Table 1) containing publicly available data collected

from the twelve teams competing in the European Super League during the 2017 season

(https://rugby-league.com/superleague/stats/club_stats). In this data set we have two outcome

variables for the season: total league points accumulated and total match score difference; and

three performance related variables: the number of missed tackles; the number of tackle busts;

and the number of clean breaks. If for example, we wanted to establish whether or not a rela-

tionship exists between these two groups of variables, we could perform PLSCA to assess the

amount of shared information common to the two and use this to quantify the strength of any

relationship.

PLSCA is generally performed by first mean centring and standardizing the data to unit

variance [23] and then dividing it into two matrices, in this case a [12×2] matrix, X, containing

the variables total league points accumulated and total score difference, and a [12×3] matrix,

Y, containing the number of missed tackles, the number of tackle busts, and the number of

clean breaks. The pattern of relationships between the columns of X and Y can be stored in a

[3×2] covariance matrix, R, [21] which is computed as follows:

R ¼ YTX ¼

� 0:770 1:765 2:200

0:007 0:465 � 0:433

� 0:161 � 0:591 � 0:248

0:796 0:827 0:124

� 0:818 � 0:580 0:542

� 0:746 0:337 0:727

0:820 0:049 � 0:898

� 0:782 1:275 0:820

1:897 � 0:090 0:170

0:617 � 1:561 � 0:155

0:772 � 1:348 � 1:222

� 1:631 � 0:548 � 1:547

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

T

�

2:104 2:274

0:866 0:405

0:000 0:079

� 0:371 � 0:906

0:371 0:328

0:371 0:405

� 0:248 0:162

0:495 0:115

0:248 0:162

0:495 0:115

0:248 0:103

� 1:362 0:026

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

¼

� 2:984 � 1:864

8:985 6:408

8:739 9:043

2

6
6
4

3

7
7
5ð1Þ

SVD of the matrix, R, yields three orthogonal matrices: a [3×2] left singular vector matrix,

U, containing the saliences (weights) for matrix, Y; a [2×2] right singular vector matrix, V, con-

taining the saliences (weights) for matrix, X; and S, a [2×2] diagonal matrix containing the sin-

gular values [21].

R ¼ USVT ¼

� 0:204 0:342

0:645 � 0:658

0:736 0:671

2

6
6
4

3

7
7
5�

17:021 0:000

0:000 1:617

" #

�
0:754 � 0:656

0:656 0:754

" #T

ð2Þ

The quantity of common information shared between X and Y can be directly quantified by
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computing the inertia, ø, (i.e. the sum of all the non-zero singular values) common to the two

sub-groups, as follows [21]:

φ ¼
Xn

i

si ¼ 17:021þ 1:617 ¼ 18:638 ð3Þ

where; n is the number of non-zero singular values of matrix R; and si is ith diagonal element of

matrix S. Singular value inertia is an effect size, which directly relates to the strength of the

relationship between the two sub-groups X and Y (i.e. the greater the magnitude of the inertia

to more shared information common to X and Y).

The statistical significance of the calculated inertia value can then be assessed using a

permutation test in which the rows of Y are randomly permutated 10,000 times [21], to

produce the null distribution of all the possible inertia values that could occur just by

chance, as shown in Fig 1. From this it can be seen that an inertia value of �18.638 only

occurred 11 times in 10,000 simulations. This equates to a p-value of 0.0011 and indicates

that, perhaps unsurprisingly, a very strong relationship exists between the match perfor-

mance and season outcome variables, something that is unlikely to have occurred by

chance.

Having established that a strong relationship exists between the performance variables

and season outcome, it is possible to interrogate the data further to identify which variables

are most influential. In order to do this in a systematic manner, we developed a novel

LOVO strategy, mirroring similar approaches adopted for SVD [18] and random forests

[23], which involved repeating the PLSCA several times, with a different Y variable excluded

from the analysis on each occasion. By observing the effect of each successive omission on

the magnitude of the inertia, it is possible to assess the relative contribution of each perfor-

mance variable to league outcome. In the example above, when the ‘number of missed tack-

les’ is omitted from the analysis, the inertia falls only marginally to 18.178, suggesting that

this variable is not particularly influential. However by comparison, when the ‘number of

tackle busts’ and the ‘number of clean breaks’ are omitted, then the inertia falls to 13.854

and 11.786 respectively, indicating that these two variables are much stronger predictors of

league outcome.

Materials and methods

Participants

An observational research study was conducted in which the accumulated TL of sixteen male

professional youth rugby league players (age [y]: 17.7 ± 0.9; height [cm]: 179.6 ± 5.5; body

mass [kg]: 87.0 ± 8.8) was quantified via GPS, MEMS and session-rating-of-perceived-exertion

(sRPE) during a 6-week pre-season training period. Immediately prior to and following this

training period, participants undertook the 30–15 intermittent fitness test (30-15IFT), which

was used to determine a players ‘starting fitness’ and ‘end fitness’. The content of the training

and testing periods was prescribed by the coaching staff and included 3 to 4 field-based ses-

sions per week comprising technical-, tactical-, sprint-, interval- and small-sided-games-

based-training. The total number of recorded field training sessions was 273 with players par-

ticipating in 17 ± 3 sessions. All procedures performed in the study were in accordance with

the Leeds Beckett University ethics board which approved of the study prior to data collection

and which conformed to the 1964 Helsinki Declaration. Informed consent was obtained from

all participants prior to data collection.
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Procedures

The 30-15IFT was conducted on artificial turf following two days of complete rest and prior to

any additional training as per previous methods [24]. Players possessed familiarity with the 30-

15IFT as part of their regular monitoring practices. The 30-15IFT comprised 30 second shuttles

run over 40m, with 15 seconds of recovery. The speed of the test was controlled by an audible

sound. At this time of the sound, players were required to be within a 3 m tolerance zone at

either end or the middle of the 40 m shuttle. The start speed of the test was 8 km�h-1 and

increased by 0.5 km�h-1 following each successive shuttle. The test terminated when players

were no longer able to maintain the required speed of the test or when they did not reach the 3

m tolerance zone on three consecutive occasions. The last completed velocity during the test

Fig 1. Singular value inertial value (indicated by dotted line) computed from the observed data and the null-distribution of the inertia computed using

a permutation test with 10,000 permutations.

https://doi.org/10.1371/journal.pone.0211776.g001
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was taken as v30-15IFT. The v30-15IFT achieved prior to the start of the training period was

deemed to be each players ‘starting fitness’ whilst the v30-15IFT achieved at the completion of

the six-week training period was deemed to be each players ‘end fitness’.

All external training load measures were collected concurrently during each training ses-

sion using 10 Hz GPS devices with in-built 100 Hz tri-axial accelerometer, gyroscope and mag-

netometer (Optimeye S5, Catapult Innovations, Melbourne, Victoria; firmware version: 7.17).

This data was downloaded into specialist software (Catapult Sprint v5.1.7, Catapult Innova-

tions, Melbourne, Victoria). The device was positioned between the scapulae within a manu-

facturer designed vest according to typical procedures. Each player wore the same unit for

each session to limit potential between-unit variability in the data collected [25]. The mean

number of satellites and horizontal dilution of precision (HDOP) during the data collection

period was 15 ± 3 and 0.8 ± 0.6 respectively [25].

Derived from GPS, the total distance (m) covered during the ~17 training sessions was fur-

ther differentiated into the distances (m) covered at arbitrary speed thresholds of low- (0 to 3

m�s-1; SZ1), moderate- (3.1 to 5 m�s-1; SVZ2), high- (5.1 to 7 m�s-1; SZ3) and very-high-speeds

(> 7.1 m�s-1; SZ4). The minimum effort duration for each of the speed zones were set at 1 sec-

ond [26]. An individualised high-speed threshold (IndSZ) was also calculated for each player,

which was defined as the distance covered above the terminal speed achieved during the 30-

15IFT prior to commencement of the training programme. Between the players, this speed

threshold ranged from 4.58 to 5.41 m�s-1.

Derived from the tri-axial accelerometer, total session PlayerLoad is a modified vector mag-

nitude and is expressed as the square root of the sum of the squared instantaneous rate of

change in acceleration in each of the three axes (X, Y, and Z) and divided by 100 [27]. This was

further differentiated into four zones relating to low- (0 to 1 AU; PLZ1), moderate- (1.1 to 2

AU; PLZ2), high- (2.1 to 3 AU; PLZ3) and very-high (>3 AU; PLZ4) accumulation of Player-

Load. All PlayerLoad variables were expressed in arbitrary units (AU). PlayerLoad has previ-

ously been shown to possess acceptable reliability [27]. sRPE was calculated for each player

during the study period using the method of Foster et al. [28]. Exercise intensity for sRPE was

determined using the Borg category ratio-10 scale, with players providing this ~15 to 30 min-

utes following the cessation of the session [28]. This was then multiplied by the training-ses-

sion duration to calculate the sRPE training load in AU.

Statistical analysis

In order to assess the strength of the relationships between the variables, we first undertook

Pearson correlation analysis and then performed MLR analysis with ‘end fitness’ as the

response variable and all the other variables included as predictors. VIF values were then cal-

culated for each of the respective predictor variables, with those>10 identified as being partic-

ularly problematic [13–15].

In the study, PLSCA was used as a filtering tool to by-pass any multicollinearity problems

and identify those variables that were most influential in predicting improvements in fitness.

This involved performing a baseline PLSCA (as described above) with the variables divided

into two groups: an ‘output’ sub-group containing the variables ‘starting fitness’ and ‘end fit-

ness’, and a ‘predictor’ sub-group comprising all the TL variables. We included both the ‘fit-

ness’ variables in the ‘output’ group, because collectively they contained more information

about improvements in fitness than would have been the case if just the difference in the fitness

level had been used. Once the baseline inertia (i.e. the calculated inertia with all the predictor

variables included in the model) and its associated p value were calculated, the whole PLSCA

process was then repeated with one predictor variable omitted from the analysis and the new
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inertia and p value noted. This process was repeated with a different predictor variable omitted

each time (as described above), until the contribution of all the variables had been evaluated

individually. Having done this, those variables that were deemed influential were used to con-

struct refined PLSCA and MLR models. Improvements derived from refining the baseline

PLSCA model were assessed using the Chi- square test and Cramer’s V. MLR analysis was per-

formed with ’end fitness’ as the response variable and ’starting fitness’ as a covariate, as recom-

mended by Allison [29]. All analysis was undertaken using a combination of in-house

algorithms written in Matlab (version R2016b: utilising the ‘Statistics and machine learning’

toolbox) (Math-Works, Natick, MA) and R (version 3.3.2: utilising the packages: ‘psych’; ‘car’;

and ‘pracma’) (open source software). For all analyses, p values<0.05 were deemed

significant.

Results

The TL descriptive results are presented in Table 2 along with the study data collected for each

of the 16 subjects.

Pearson correlation analysis (Table 3) revealed multiple strong correlations between the

predictor variables in the data, suggesting that the data exhibited considerable multicollinear-

ity, something that was confirmed by the extremely high VIF values obtained when MLR anal-

ysis was performed (Table 4). From Table 4 it can be seen that all but one (i.e. sRPE) of the

predictor variables exhibited a VIF>10, with most having values >1000. However, despite

numerous strong relationships in the data, ‘end fitness’ was only significantly positively corre-

lated with the variables ‘SZ4’ (r = 0.738, p = 0.001) and ‘starting fitness’ (r = 0.784, p<0.001)

(Table 3).

The results of the LOVO PLSCA (Table 5) revealed that the greatest decrease in measured

(computed) inertia compared with baseline occurred when the variables SZ3 (1.945) and SZ4

(5.926) were omitted from the PLSCA model, indicating that these were the most influential

variables, as illustrated by Fig 2. When only these predictor variables were used to construct

the PLSCA model (Table 6), the p value achieved was 0.015, indicating that the matrix contain-

ing the predictor variables SZ3 and SZ4 shared a considerable amount of information with the

output matrix containing the variables ‘starting fitness’ and ‘end fitness’ and that therefore

they were likely to be the best predictors of end fitness. Given that ‘starting fitness’ can be

Table 1. League outcome and match performance data for the teams in the European Super League (season 2017).

Team League Points Score difference Number

of missed

tackles

Number

of tackle

busts

Number

of clean

breaks

Castleford Tigers 40 391 1523 918 208

Leeds Rhinos 30 76 1588 796 153

Wigan Warriors 23 21 1574 697 157

Warrington Wolves 20 -145 1654 830 165

Wakefield Trinity Wildcats 26 63 1519 698 174

Salford Red Devils 26 76 1525 784 178

Huddersfield Giants 21 35 1656 757 143

Hull FC 27 27 1522 872 180

St Helens 25 25 1746 744 166

Leigh Centurions 12 12 1639 606 159

Widnes Vikings 11 -269 1652 626 136

Catalans Dragons 15 -220 1451 701 129

https://doi.org/10.1371/journal.pone.0211776.t001
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treated as a covariate, this implies that SZ3 and SZ4 were likely to be the best predictors of end

fitness.

When the variables SZ3 and SZ4 were subsequently used, together with ‘starting fitness’ as

a covariate, to construct linear regression models (Table 7), it was found that the multicolli-

nearity problems disappeared, with all the VIF values being <2.5. Furthermore, the models

produced were particularly strong, both exhibiting adjusted r2 values >0.7. Of the two models

produced, the one containing just the predictor variable SZ4 and ‘starting fitness’ (i.e. MLR

Model 1) was the strongest, possessing an Akaike information criterion (AIC) value of 28.3

(lower than the AIC value of 30.1 for MLR Model 2, which also included variable SZ3), indicat-

ing that these two variables were the most influential in predicting end fitness, corroborating

the results of the LOVO PLSCA.

Discussion

The overall aim of the study was to evaluate the extent to which PLSCA might be helpful when

analysing TL data that exhibited considerable multicollinearity. As such, we wanted to identify

the TL variables that best related to 30-15IFT performance in young rugby league players fol-

lowing 6-weeks of training. With respect to this, the specific findings of the current study

revealed perhaps unsurprisingly, that ‘starting fitness’ is an important covariate of ‘end fitness’,

with a strong positive correlation between the two–something that others have observed [30–

31]. The strongest regression model (Table 7; MLR Model 1) suggests that professional youth

rugby league players with a lower starting fitness require a lower accumulation of distance at

very-high speed (> 7 m�s-1) (compared to players with a higher starting fitness) to elicit a

Table 2. Training load (TL) data and termination speed during 30–15 intermittent fitness test for 16 professional youth rugby league players.

Player ID TD SZ1 SZ2 SZ3 SZ4 PL sRPE IndSZ PLZ1 PLZ2 PLZ3 PLZ4 Start Fitness End Fitness

1 53844 36323 14962 2196 358 7115 16027 4674 1985 3504 1269 358 16.5 18.0

2 70550 43477 22926 3682 464 8241 18848 7072 2471 4569 1051 151 16.5 17.5

3 55967 35915 16397 3376 278 5665 11952 4521 2335 2516 544 270 17.0 17.5

4 57847 35950 18612 2713 535 5798 17276 3960 2168 2806 522 270 17.0 19.0

5 42585 28529 11444 2260 352 4453 12475 3950 2001 1932 360 161 17.0 18.0

6 63157 41285 17447 3876 520 6492 15594 4712 2699 3126 530 138 17.5 19.5

7 63540 40009 18602 4227 699 6394 14806 5453 2665 2819 673 238 17.5 20.0

8 63833 41708 18462 3090 567 6955 13744 4180 2692 3484 630 150 17.5 19.0

9 47832 29853 13184 3885 897 4988 12059 4379 2145 2353 381 109 17.5 19.0

10 67531 42024 20176 4491 840 7221 15251 5152 2805 3215 845 356 18.5 19.5

11 54425 34689 16342 2911 483 5655 15039 2870 2270 2766 460 160 18.5 19.0

12 62172 39659 17703 4094 705 6072 16563 4574 2766 2670 514 123 18.5 20.0

13 76006 45183 23589 6133 1100 8041 13024 8178 2688 3776 1157 421 19.0 20.5

14 35828 21557 10290 2989 992 3524 14590 2982 1362 1601 318 242 19.0 20.5

15 52281 33999 15164 2272 633 5928 14316 3279 2204 2956 568 200 19.5 19.5

16 47583 28391 15613 3154 425 4546 11090 2919 2102 1967 378 100 19.5 20.0

Mean 57186 36159 16932 3459 616 6068 14541 4553 2335 2879 638 215 17.9 19.2

SD 10579 6491 3626 1012 240 1294 2102 1442 386 750 292 98 1.0 1.0

Abbreviations: TD = total distance (m); SZ1 = speed zone 1 (0 to 3 m�s-1; [m]); SZ2 = speed zone 2 (3.1 to 5 m�s-1; [m]); SZ3 = speed zone 3 (5.1 to 7 m�s-1; [m]);

SZ4 = speed zone 1 (> 7.1 m�s-1; [m]); PL = PlayerLoad (AU); PLZ1 = PlayerLoad Zone 1 (0 to 1 AU); PLZ2 = PlayerLoad Zone 2 (1.1 to 2 AU); PLZ3 = PlayerLoad

Zone 3 (2.1 to 3 AU); PLZ4 = PlayerLoad Zone 4 (> 3.1 AU); sRPE = session-rating-of-perceived-exertion; IndSZ = Individualised speed zone (> 30–15 intermittent

fitness test termination speed).

https://doi.org/10.1371/journal.pone.0211776.t002
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comparable incremental improvement in end fitness (e.g. +1 km�h-1 in v30-15IFT) following

6-weeks of training. This model suggests, for example, that a professional youth rugby league

player with a starting v30-15IFT of 17.5 km�h-1 would require an accumulation of 350m at

very-high speed over 6-weeks to improve their v30-15IFT by 1 km�h-1 compared to 1050m for a

player with a starting fitness of 20.5 km�h-1. As such, this regression model could be used to

translate TL data (in conjunction with starting fitness) into practical targets for the applied

practitioner working with youth rugby league players. However, it is important to note that

this relationship (and associated MLR model) was observed within a single team, meaning the

variability between players in the accumulated distances at very-high-speed are specific to the

context of the training modalities prescribed by the coaching staff at this club [32]. We there-

fore recommend that future researchers conduct randomised control trials with appropriate

comparator arms in order to consolidate or refute our findings regarding the importance of

Table 3. Results of the Pearson correlation analysis between training load variables, starting fitness and end fitness.

TD SZ1 SZ2 SZ3 SZ4 PL sRPE IndSZ PLZ1 PLZ2 PLZ3 PLZ4 Starting

Fitness

End

Fitness

TD (r value) 1.000 0.979 0.965 0.683 0.157 0.925 0.403 0.796 0.875 0.841 0.666 0.342 -0.140 0.022

TD [p value] NA [0.000] [0.000] [0.004] [0.560] [0.000] [0.122] [0.000] [0.000] [0.000] [0.005] [0.195] [0.605] [0.937]

SZ1 (r value) 0.979 1.000 0.907 0.569 0.038 0.938 0.433 0.738 0.895 0.857 0.668 0.307 -0.239 -0.079

SZ1 [p value] [0.000] NA [0.000] [0.021] [0.889] [0.000] [0.094] [0.001] [0.000] [0.000] [0.005] [0.248] [0.372] [0.771]

SZ2 (r value) 0.965 0.907 1.000 0.656 0.143 0.882 0.414 0.775 0.776 0.824 0.648 0.335 -0.083 0.026

SZ2 [p value] [0.000] [0.000] NA [0.006] [0.597] [0.000] [0.111] [0.000] [0.000] [0.000] [0.007] [0.205] [0.761] [0.922]

SZ3 (r value) 0.683 0.569 0.656 1.000 0.651 0.483 -0.044 0.749 0.616 0.341 0.345 0.335 0.226 0.457

SZ3 [p value] [0.004] [0.021] [0.006] NA [0.006] [0.058] [0.872] [0.001] [0.011] [0.197] [0.191] [0.205] [0.401] [0.075]

SZ4 (r value) 0.157 0.038 0.143 0.651 1.000 0.048 -0.048 0.317 0.066 -0.017 0.065 0.309 0.511 0.738

SZ4 [p value] [0.560] [0.889] [0.597] [0.006] NA [0.860] [0.860] [0.232] [0.807] [0.951] [0.810] [0.244] [0.043] [0.001]

PL (r value) 0.925 0.938 0.882 0.483 0.048 1.000 0.487 0.792 0.722 0.965 0.858 0.418 -0.278 -0.180

PL [p value] [0.000] [0.000] [0.000] [0.058] [0.860] NA [0.056] [0.000] [0.002] [0.000] [0.000] [0.108] [0.296] [0.505]

sRPE (r value) 0.403 0.433 0.414 -0.044 -0.048 0.487 1.000 0.261 0.195 0.568 0.399 0.088 -0.347 -0.149

sRPE [p value] [0.122] [0.094] [0.111] [0.872] [0.860] [0.056] NA [0.329] [0.468] [0.022] [0.126] [0.745] [0.188] [0.582]

IndSZ (r value) 0.796 0.738 0.775 0.749 0.317 0.792 0.261 1.000 0.552 0.731 0.749 0.469 -0.264 -0.054

IndSZ [p value] [0.000] [0.001] [0.000] [0.001] [0.232] [0.000] [0.329] NA [0.027] [0.001] [0.001] [0.067] [0.323] [0.843]

PLZ1 (r value) 0.875 0.895 0.776 0.616 0.066 0.722 0.195 0.552 1.000 0.590 0.346 0.056 -0.060 0.076

PLZ1 [p value] [0.000] [0.000] [0.000] [0.011] [0.807] [0.002] [0.468] [0.027] NA [0.016] [0.190] [0.835] [0.824] [0.780]

PLZ2 (r value) 0.841 0.857 0.824 0.341 -0.017 0.965 0.568 0.731 0.590 1.000 0.828 0.301 -0.336 -0.281

PLZ2 [p value] [0.000] [0.000] [0.000] [0.197] [0.951] [0.000] [0.022] [0.001] [0.016] NA [0.000] [0.257] [0.204] [0.292]

PLZ3 (r value) 0.666 0.668 0.648 0.345 0.065 0.858 0.399 0.749 0.346 0.828 1.000 0.662 -0.280 -0.202

PLZ3 [p value] [0.005] [0.005] [0.007] [0.191] [0.810] [0.000] [0.126] [0.001] [0.190] [0.000] NA [0.005] [0.293] [0.453]

PLZ4 (r value) 0.342 0.307 0.335 0.335 0.309 0.418 0.088 0.469 0.056 0.301 0.662 1.000 -0.018 0.079

PLZ4 [p value] [0.195] [0.248] [0.205] [0.205] [0.244] [0.108] [0.745] [0.067] [0.835] [0.257] [0.005] NA [0.948] [0.771]

Starting Fitness (r value) -0.140 -0.239 -0.083 0.226 0.511 -0.278 -0.347 -0.264 -0.060 -0.336 -0.280 -0.018 1.000 0.784

Starting Fitness [p value] [0.605] [0.372] [0.761] [0.401] [0.043] [0.296] [0.188] [0.323] [0.824] [0.204] [0.293] [0.948] NA [0.000]

End Fitness (r value) 0.022 -0.079 0.026 0.457 0.738 -0.180 -0.149 -0.054 0.076 -0.281 -0.202 0.079 0.784 1.000

End Fitness [p value] [0.937] [0.771] [0.922] [0.075] [0.001] [0.505] [0.582] [0.843] [0.780] [0.292] [0.453] [0.771] [0.000] NA

Abbreviations: TD = total distance (m); SZ1 = speed zone 1 (0 to 3 m�s-1; [m]); SZ2 = speed zone 2 (3.1 to 5 m�s-1; [m]); SZ3 = speed zone 3 (5.1 to 7 m�s-1; [m]);

SZ4 = speed zone 1 (> 7.1 m�s-1; [m]); PL = PlayerLoad (AU); PLZ1 = PlayerLoad Zone 1 (0 to 1 AU); PLZ2 = PlayerLoad Zone 2 (1.1 to 2 AU); PLZ3 = PlayerLoad

Zone 3 (2.1 to 3 AU); PLZ4 = PlayerLoad Zone 4 (> 3.1 AU); sRPE = session-rating-of-perceived-exertion; IndSZ = Individualised speed zone (> 30–15 intermittent

fitness test termination speed).

https://doi.org/10.1371/journal.pone.0211776.t003
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the interaction between the distance accumulated at very-high speed and a players starting ‘fit-

ness’ to improving prolonged intermittent running ability in team sport athletes.

Consistent with previous research [4–5,8–11], the findings of the current study indicate

that variables commonly used to assess TL tend to be highly correlated (Table 3) and thus con-

tain considerable shared information. As such, they violate assumptions regarding multicolli-

nearity (Table 4), which can be problematic when performing MLR analysis [13–14]. While

multicollinearity issues can be addressed by removing variables with a ‘high VIF’ value, this

has the disadvantage that it is rather piecemeal and involves making subjective decisions

regarding VIF exclusion criteria and the variables to be excluded. Alternatively, principal com-

ponent regression (PCR) can be used [33–34]. However, while PCR is immune to multicolli-

nearity, it has the great disadvantage that it requires the construction of composite predictor

variables, which are difficult to interpret. In response to this, we developed the LOVO PLSCA

methodology presented above as an alternative for analysing multicollineated data sets. The

results of the current study suggest that the LOVO PLSCA strategy is well suited to the analysis

of highly correlated sports performance data, suggesting that it might be a useful tool for

researchers and practitioners seeking to better understand the factors that influence sports

performance.

The LOVO PLSCA approach echoes that of the ‘decrease in Gini impurity’ strategy fre-

quently used with random forests to quantify variable importance [23]. As such, it represents a

new orthogonal approach for quantifying variable importance that is immune to multicolli-

nearity and can be used as a variable filtering tool prior to MLR. Furthermore, unlike MLR,

which struggles when the number of predictor variables exceeds the number of subjects or

observations [35]., PLSCA is not affected by this problem. With PLSCA it is possible to explore

the relationship between multiple predictor variables and multiple response variables, enabling

complex relationships within the data to be evaluated–something that may be of great value

when investigating broad latent constructs such as ‘strength’, ‘fatigue’ or ‘technical-tactical per-

formance’. Say for example, we wanted to evaluate the relationship between, ‘fatigue’ status

(measured using the variables: ‘change in countermovement jump height’; ‘perceived recov-

ery’; and ‘6 second watt bike test’) and ‘physical performance’ (measured using the variables:

‘v30-15IFT’; ‘40 metre maximal sprint speed’; and ‘3 repetition maximal squat and bench

Table 4. Baseline multiple linear regression model with end fitness as the response variable, showing the calculated variable inflation factors (VIFs).

Response

Variable

Predictor Variables Coefficient

(b)

Significance

(p value)

VIF Model Metrics

Adj r2 (p value)

End Fitness Intercept 1.289e+01 0.426 NA 0.562 (0.324)

TD 1.322e-03 0.876 224288.3

SZ1 -8.480e-04 0.920 83232.3

SZ2 -1.172e-03 0.886 24699.2

SZ3 -1.529e-03 0.853 1930.9

SZ4 2.432e-03 0.765 104.0

PL -1.206e-03 0.985 203338.7

sRPE -3.599e-05 0.823 3.2

IndSZ -2.923e-04 0.670 26.1

PLZ1 -3.033e-03 0.962 17170.2

PLZ2 -2.006e-03 0.975 65129.4

PLZ3 4.597e-03 0.945 10600.5

PLZ4 -7.791e-03 0.905 1131.4

Starting Fitness 3.200e-01 0.691 18.0

https://doi.org/10.1371/journal.pone.0211776.t004
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press’). With PLSCA it would be possible to investigate the relationship between the four

‘physical performance’ variables and the three ‘fatigue’ variables, something that would be dif-

ficult using a more conventional approach.

Although LOVO PLSCA can be used to assess the relative importance of predictor vari-

ables, because it is not a regression technique it cannot explicitly predict the response variables

from a set of predictor variables [19]. In order to do this a related technique, partial least

squares regression (PLSR), has been developed [19,21]. While consideration of PLSR is beyond

the scope of the current paper, it is worth noting that PLSR shares many similarities with PCR

Table 5. Results of the LOVO PLSCA showing the effect on singular value inertia of omitting variables one at a time.

PLSCA

Model

Response

variables

Predictor

variables

No. of subjects

included

No. of

simulations

Measured

inertia

Change in inertia

compared to baseline

Significance

p value

PLSCA

Baseline

End Fitness,

Starting

Fitness

TD, SZ1, SZ2, SZ3, SZ4, PL, sRPE, IndSZ,

PLZ1, PLZ2, PLZ3, PLZ4

16 10000 25.096 NA 0.271

Omit TD End Fitness,

Starting

Fitness

SZ1, SZ2, SZ3, SZ4, PL, sRPE, IndSZ,

PLZ1, PLZ2, PLZ3, PLZ4

16 10000 24.785 0.311 0.240

Omit SZ1 End Fitness,

Starting

Fitness

TD, SZ2, SZ3, SZ4, PL, sRPE, IndSZ,

PLZ1, PLZ2, PLZ3, PLZ4

16 10000 24.512 0.584 0.253

Omit SZ2 End Fitness,

Starting

Fitness

TD, SZ1, SZ3, SZ4, PL, sRPE, IndSZ,

PLZ1, PLZ2, PLZ3, PLZ4

16 10000 24.967 0.129 0.232

Omit SZ3 End Fitness,

Starting

Fitness

TD, SZ1, SZ2, SZ4, PL, sRPE, IndSZ,

PLZ1, PLZ2, PLZ3, PLZ4

16 10000 23.151 1.945 0.774

Omit SZ4 End Fitness,

Starting

Fitness

TD, SZ1, SZ2, SZ3, PL, sRPE, IndSZ,

PLZ1, PLZ2, PLZ3, PLZ4

16 10000 19.170 5.926 0.547

Omit PL End Fitness,

Starting

Fitness

TD, SZ1, SZ2, SZ3, SZ4, sRPE, IndSZ,

PLZ1, PLZ2, PLZ3, PLZ4

16 10000 24.352 0.744 0.261

Omit sRPE End Fitness,

Starting

Fitness

TD, SZ1, SZ2, SZ3, SZ4, PL, IndSZ, PLZ1,

PLZ2, PLZ3, PLZ4

16 10000 23.897 1.200 0.273

Omit

IndSZ

End Fitness,

Starting

Fitness

TD, SZ1, SZ2, SZ3, SZ4, PL, sRPE, PLZ1,

PLZ2, PLZ3, PLZ4

16 10000 24.308 0.788 0.260

Omit PLZ1 End Fitness,

Starting

Fitness

TD, SZ1, SZ2, SZ3, SZ4, PL, sRPE, IndSZ,

PLZ2, PLZ3, PLZ4, Starting Fitness

16 10000 24.913 0.183 0.233

Omit PLZ2 End Fitness,

Starting

Fitness

TD, SZ1, SZ2, SZ3, SZ4, PL, sRPE, IndSZ,

PLZ1, PLZ3, PLZ4

16 10000 23.906 1.190 0.278

Omit PLZ3 End Fitness,

Starting

Fitness

TD, SZ1, SZ2, SZ3, SZ4, PL, sRPE, IndSZ,

PLZ1, PLZ2, PLZ4

16 10000 24.325 0.771 0.258

Omit PLZ4 End Fitness,

Starting

Fitness

TD, SZ1, SZ2, SZ3, SZ4, PL, sRPE, IndSZ,

PLZ1, PLZ2, PLZ3

16 10000 24.996 0.100 0.224

Abbreviations: TD = total distance (m); SZ1 = speed zone 1 (0 to 3 m�s-1; [m]); SZ2 = speed zone 2 (3.1 to 5 m�s-1; [m]); SZ3 = speed zone 3 (5.1 to 7 m�s-1; [m]);

SZ4 = speed zone 1 (> 7.1 m�s-1; [m]); PL = PlayerLoad (AU); PLZ1 = PlayerLoad Zone 1 (0 to 1 AU); PLZ2 = PlayerLoad Zone 2 (1.1 to 2 AU); PLZ3 = PlayerLoad

Zone 3 (2.1 to 3 AU); PLZ4 = PlayerLoad Zone 4 (> 3.1 AU); sRPE = session-rating-of-perceived-exertion; IndSZ = Individualised speed zone (> 30–15 intermittent

fitness test termination speed).

https://doi.org/10.1371/journal.pone.0211776.t005
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in so much that both techniques are primarily used for prediction and require the construction

of composite predictor variables, albeit using different methodologies. As such, PLSR suffers

from the same drawback as PCR, namely that the models produced are difficult to interpret

because the predictors are not the original measured variables. By comparison, PLSCA, when

used as a filtering tool and combined with MLR, overcomes any multicollinearity problems

and is much easier to interpret.

Conclusions

The findings of the current study demonstrate that multicollinearity is a major limiting factor,

which has the potential to compromise analysis of TL data. However, this problem can be

Fig 2. Variable importance plot showing the decrease in singular value inertia attributable to each predictor variable.

https://doi.org/10.1371/journal.pone.0211776.g002
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overcome by using an orthogonal PLSCA approach, which is immune to multicollinearity,

thus enabling the user to quantify the strength of the relationships between the respective vari-

ables. Using LOVO PLSCA we were able to identify those variables that were most influential

in explaining improvements in player fitness. This enabled us to remove irrelevant variables

and so overcome any multicollinearity issues. This allowed us to produce a robust MLR model

for predicting ‘end fitness’, from which we inferred that ‘starting fitness’ and the accumulation

of distance at ‘very-high speed’ across a 6-week period of training were the most influential

predictors of end fitness in professional youth rugby league players. As such, PLSCA appears

to be a useful tool for filtering out irrelevant information and identifying those variables that

should be included prior to any given MLR analysis.
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PLSCA

model

Response

variables

Predictor

variables

No. of subjects

included

No. of

simulations

Measure

inertia

Significance

p value

Chi-square

(p values)

[Cramers

V]

PLSCA

Baseline

End Fitness,

Starting Fitness

TD, SZ1, SZ2, SZ3, SZ4, PL, sRPE, IndSZ,

PLZ1, PLZ2, PLZ3, PLZ4

16 10000 25.096 0.271 NA

PLSCA

Model 1

End Fitness,

Starting Fitness

SZ4 16 10000 13.459 0.007� 709.5

(<0.0001)

[0.188]

PLSCA

Model 2

End Fitness,

Starting Fitness

SZ3, SZ4 16 10000 16.419 0.015� 2030.8

(<0.0001)

[0.319]

Abbreviations: TD = total distance (m); SZ1 = speed zone 1 (0 to 3 m�s-1; [m]); SZ2 = speed zone 2 (3.1 to 5 m�s-1; [m]); SZ3 = speed zone 3 (5.1 to 7 m�s-1; [m]);

SZ4 = speed zone 1 (> 7.1 m�s-1; [m]); PL = PlayerLoad (AU); PLZ1 = PlayerLoad Zone 1 (0 to 1 AU); PLZ2 = PlayerLoad Zone 2 (1.1 to 2 AU); PLZ3 = PlayerLoad

Zone 3 (2.1 to 3 AU); PLZ4 = PlayerLoad Zone 4 (> 3.1 AU); sRPE = session-rating-of-perceived-exertion; IndSZ = Individualised speed zone (> 30–15 intermittent

fitness test termination speed).

� p values less than 0.05 considered significant for one-tailed test

https://doi.org/10.1371/journal.pone.0211776.t006

Table 7. Results of refined MLR models with respective variable inflation factors.

MLR model Response

Variable

Predictor Variables Coefficient

b (95% CI)

Standard

Coeff. (beta)

Significance

(p value)

VIF Model

Adj R2
Model p value AIC

MLR Model 1 End Fitness Intercept 8.555 (3.172–13.939) NA 0.004 NA 0.733 <0.001 28.3

SZ4 0.002 (0.000–0.003) 2.477e-07 0.011 1.35

Starting Fitness 0.528 (0.196–0.850) 1.606e-03 0.004 1.35

MLR Model 2 End Fitness Intercept 8.303 (2.453–14.153) NA 0.009 NA 0.714 <0.001 30.1

SZ3 6.082e-05 (0.000–4.495e-04) 5.879e-08 0.739 1.78

SZ4 1.675e-03 (0.000–3.530e-03) 6.820e-06 0.073 2.29

Starting Fitness 0.537 (0.207–0.877) 0.515 0.005 1.39

https://doi.org/10.1371/journal.pone.0211776.t007
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