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Abstract

Best practices in laboratory culture management often include cryopreservation of micro-

biota, but this can be challenging with some virus particles. By preserving viral isolates

researchers can mitigate genetic drift and laboratory-induced selection, thereby maintaining

genetically consistent strains between experiments. To this end, we developed a method to

cryopreserve the model, green-alga infecting virus, Paramecium bursaria Chlorella virus 1

(PBCV-1). We explored cryotolerance of the infectivity of this virus particle, whereby freez-

ing without cryoprotectants was found to maintain the highest infectivity (~2.5%). We then

assessed the cryopreservation potential of PBCV-1 during an active infection cycle in its

Chlorella variabilis NC64A host, and found that virus survivorship was highest (69.5 ±
16.5%) when the infected host is cryopreserved during mid-late stages of infection (i.e.,

coinciding with virion assembly). The most optimal condition for cryopreservation was

observed at 240 minutes post-infection. Overall, utilizing the cell as a vehicle for viral cryo-

preservation resulted in 24.9–30.1 fold increases in PBCV-1 survival based on 95% confi-

dence intervals of frozen virus particles and virus cryopreserved at 240 minutes post-

infection. Given that cryoprotectants are often naturally produced by psychrophilic organ-

isms, we suspect that cryopreservation of infected hosts may be a reliable mechanism for

virus persistence in non-growth permitting circumstances in the environment, such as

ancient permafrosts.

Introduction

Viruses are abundant components of all biological systems and they likely infect every lineage

of eukaryotic algae. Their impact is most readily noticed following infection and lysis of abun-

dant bloom forming algae [1–3], though lytic activity of all algal viruses contributes to signifi-

cant biomass recycling via the ‘viral shunt’ [4]. To date, 65 eukaryotic algal viruses have been

isolated and developed as laboratory strains [5, 6]. Most of these are maintained through serial
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propagation on their respective hosts. Though this has been effective for culturing many

strains over the last few decades [7, 8], each passage allows for genetic mutations that can accu-

mulate in a population [9], leading to a deviation from a standard ‘wild-type.’ Moreover, it is

imperative to control evolution following the development of genetically tractable algal hosts

[10] and (ultimately) virus systems. Although seed-stock systems can be developed without

cryopreservation, many systems are not amenable to this either because the virus particles are

degraded during purification efforts or lose their infectivity during storage. Moreover, it can

take time to achieve axenic status with new virus isolates, thus making contaminating bacterial

activity a significant source of degradation. Thus, a protocol for successful virus cryobiological

preservation that is applicable to a wide variety of algae-virus systems would offer an opportu-

nity to universally improve virus management and distribution in the laboratory.

Cryopreservation is not a new concept in biological sciences. For most protocols, it involves

controlled cooling of biota to sub-freezing temperatures to achieve biological cessation while

preserving viability. This most often manifests as slow-cooling at a rate of 1˚C / min in the

presence of osmoprotectant(s) (e.g., dimethylsulfoxide (DMSO), glycerol) for long-term stor-

age at -130˚C or below [11]. Too slow a cooling rate can result in higher intracellular concen-

tration of osmoprotectants, resulting in toxicity, whereas too fast a cooling rate allows the

formation of intracellular ice crystals which can rupture cell membranes [12]. The thawing

process is typically quick, as microbial death is commonly associated with slow thaw rates.

Though cryopreservation is a standard method for maintaining cellular organisms, it has

rarely been utilized for the preservation of algal viruses.

One eukaryotic algal virus cryopreservation protocol is in existence. It was developed for

HaV, a dsDNA virus that infects the red tide forming dinoflagellate Heterosigma akashiwo
[13]. Researchers investigated a combination of cryoprotectants and storage temperatures with

the highest recovery (8.3% of infectious virus) employing flash freezing of HaV particles sus-

pended in 20% DMSO. This protocol has been adapted for a handful of other algal viruses

with viable recovery ranging from < 1% to 27% [14–16]. The typical low recovery in these pro-

cedures is likely due to physiological differences between viruses and cells including differ-

ences in permeability, osmolarity tolerance, and toxicity to osmoprotectants. It is also clear

that these protocols deviate from the standard method which controls the cooling rate; to our

knowledge this has not been tested as a matter of improving virus particle survival. Owing to

these complications, we decided to take a new approach by investigating cryopreservation

recovery and stability of actively infecting, cell-associated algal viruses.

Chloroviruses are large (> 300 kb) dsDNA viruses in the family Phycodnaviridae [17]. They

are members of the proposed order the Megavirales [18], also known as “giant” viruses, and

remain the best characterized algal-virus system to date. Isolated in the early 1980’s [7], the

prototype chlorovirus Paramecium bursaria Chlorella virus 1 (PBCV-1) has been maintained

through serial propagation on its host, Chlorella variabilis NC64A. PBCV-1 is inactivated by

freezing, though other closely related virus strains, including other chloroviruses, persist

through freeze/thaw events [19, 20]. As a great deal of research has centered on PBCV-1,

including genomics [21], transcriptomics [22, 23], and proteomics [21], it is important to

develop a successful cryopreservation protocol for this strain that may serve as a model for

preserving algal viruses. There are several reports of cryopreservation techniques for eukary-

otic algae [24–28] which might be adapted for the preservation of actively replicating

chloroviruses.

Here, we tested the cryo-potential of chlorovirus PBCV-1 using a protocol that yielded con-

sistent recovery (~50% viable cells) of four strains of algae over 15 years: Chlorella vulgaris C-

27, Chlorella vulgaris M-207A7, Nannochloropsis oculate ST-4, and Tetraselmis tetrathlele T-

501 [29]. Owing to the close relationship between C. vulgaris and C. variabilis, as well as the

Cryopreservation of PBCV-1
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consistent results across unique algae, we elected to determine if these results could be recapit-

ulated in PBCV-1. To test this, we attempted cryopreservation of both the virus particle as well

as the virus replicating in its host.

Materials and methods

Virus particle cryopreservation

Chlorella variabilis NC64A was infected with PBCV-1 during mid-logarithmic growth at stan-

dard culturing conditions (25˚C; continuous light exposure at 30μEin/m2/s) using Modified

Bold’s Basal Medium [30]. Following complete lysis, the viral lysate was pre-filtered through a

sterile, 0.45 μm polycarbonate syringe filter and titered by plaque assay [31, 32] for initial infec-

tivity assessments. Cryoprotectant choice was guided by Nakanishi et al. [29], in which a com-

bination of 5% DMSO (v/v), 5% ethylene glycol (v/v), and 5% proline (w/v) was found to

consistently produce the highest algal recoveries. Stock solutions of each cryoprotectant were

made at a concentration of 30% with sterilized Milli-Q water and combined in a 1:1:1 ratio to

yield a final concentration of 10% for each compound. For virus particle cryopreservation, 1

mL of PBCV-1 particles (7.82x 108 plaque forming units (PFUs) per ml) was added to 1 mL of

ice-chilled cryoprotectant solution contained in a 2-mL cryovial. The cryovials were incubated

on ice for 45 min, then transferred to a freeze-rate controlled container (Mr. Frosty, Thermo

Fisher Scientific Inc., USA) filled with isopropanol for overnight incubation at -80˚C. The next

morning, cryovials were transferred to a -150˚C freezer. At the designated recovery times, vials

were removed from the freezer and set in a 40˚C water bath. After thawing, the samples were

serially diluted ten-fold in 50 mM Tris-HCl (pH = 7.8) and virus infectivity was determined by

plaque assay [31]. Virus viability was calculated as a percentage by comparison to the initial

virus particle stock titer before cryopreservation. Long-term experiments assessed the stability

of virus infectivity in particles stored at -150˚C.

Infected Chlorella cryopreservation

Chlorovirus PBCV-1 was propagated as described above and titered to obtain infectious

PFUs/ml. This virus particle stock was used to infect late-logarithmically growing C. variabilis
NC64A at an M.O.I. of 5, at which point infected cultures were returned to standard incuba-

tion conditions. At 1, 10, 30, 60, 120, 180, 240, 300, and 360 min post-infection (PI), 1 mL

aliquots of infected cells were mixed with 1 mL of ice-chilled cryoprotectants [final concentra-

tion: 5% DMSO (v/v), 5% ethylene glycol (v/v), and 5% proline (w/v)] in duplicates. The mix-

ture was incubated on ice for 45 min, then transferred to a freeze-rate controlled container

(Mr. Frosty, Thermo Fisher Scientific Inc., USA has a -1C/min cooling rate) filled with isopro-

panol for overnight incubation at -80˚C. The next morning, cryovials were immediately trans-

ferred to a -150˚C freezer. At the designated recovery times, vials were removed from the

freezer and placed in a 40˚C water bath. After thawing, the infected cells were pelleted in a Sor-

vall Legend RT Benchtop Centrifuge at 3,700 rpm (~3,000 rcf) for 10 min: (free virus requires

higher speeds for pelleting). Cell pellets were re-suspended in 2 mL of 0.01M HEPES solution

(pH = 6.5). Suspensions were immediately diluted and plaque assayed, plating late-infection

treatments first. Viability was determined as a percentage of the pre-frozen cellular concentra-

tion (3.57 x 106 cells/mL), as only surviving infected cells would be capable of producing pla-

ques. Long-term experiments were conducted in the same manner, though only time points

10, 180, and 240 min PI were collected and assayed. The complete step-by-step method can be

found at protocols.io [33].

Cryopreservation of PBCV-1
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Results

Following the cryopreservation procedures of other algal virus researchers [13–16], we investi-

gated the cryo-potential of the PBCV-1 particle. Cryoprotectant alone treatments elicited a

lethal effect: ~87% of the infectious virus particles were inactivated in the presence of these

chemicals following 24 hr exposure at 4˚C. Given this effect, we decided to freeze PBCV-1 par-

ticles at -150˚C without any cryoprotectants. This resulted in ~2.5% recovery of the infectious

virus population, which was stable for storage periods of up to one year (Fig 1). Seeing room

for improvement, we tested the cryo-potential of PBCV-1 in an infected, cell-associated state.

The PBCV-1 replication cycle requires about 6–8 h to release nascent virus particles [34].

Post-infection sampling times for cryopreservation (10, 30, 60, 120, 180, 240, 300, 360 min PI)

followed similar sampling strategies used in PBCV-1 transcription studies [22, 23]. Specifically,

these time points were collected across distinct physiological phases in the PBCV-1 lifecycle

and thus represent likely unique conditions for cryopreservation. Following 24-h storage of

cryopreserved, infected cells, we found that late stages of infection were more conducive to

virus survival than early stages (Fig 2). Thus, we followed cryo-stability for one year in one

early (10 min PI) and two late infection stages (180 and 240 min PI) (Fig 3). Small day-to-day

fluctuations in virus titers were common, but were typically consistent among treatments, sug-

gesting human error. Despite these fluctuations, the virus particle stock control, 180-min, and

240-min PI treatment yielded an acceptable relative standard deviation (RSD) for these plate

counts [35] across all recovery assessments, indicating cryo-stability (Table 1). Cryo-stability

Fig 1. Cryo-stability of the PBCV-1 particle. Viability of chlorovirus PBCV-1 was determined by plaque assaying viruses that had

been stored as particles either at 4˚C or -150˚C. Green circles represent virus particles stored at 4˚C, while red squares denote virus

particles stored at -150˚C. Error bars are represented as the standard deviation of biological and technical replicates.

https://doi.org/10.1371/journal.pone.0211755.g001
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was not observed in the 10 min PI samples (Table 1). In comparison to virus particle cryopres-

ervation, the cell-associated method yielded significant improvement in survivorship for the

optimal 240-minute treatment (24.9–30.1 fold increases).

Discussion

The current maintenance strategy for chloroviruses involves serial propagation on the alga

host followed by lysate particle storage at 4˚C. Chloroviruses are relatively stable under these

conditions, though even PBCV-1 is known to degrade after several years of storage. In any

case, many algae-virus systems are less amenable to long-term storage at 4˚C. For example,

new algae-virus systems are not always quickly made axenic, and are thus susceptible to degra-

dation from contaminating bacteria. On the other hand, viruses propagated on axenic hosts

can still degrade. For reasons unknown, chloroviruses are more stable in lysates (bacterial-

free) than in particle stocks purified by sucrose density gradients [36], but they always eventu-

ally lose their infectivity. Serial propagation of viruses is therefore often required. Even if this is

done infrequently, it can still promote genetic drift and result in deviation from wild-type sta-

tus. This is concerning for all virus types, though RNA viruses, which have the fastest mutation

rates, would be most susceptible [9, 37]. Beyond considering spontaneous, replication-associ-

ated errors, chloroviruses encode putative enzymes involved in genomic rearrangements. For

Fig 2. Recovery of infectious PBCV-1 frozen at various times after PBCV-1 infection of the C. variabilis NC64A host. Viability

of chlorovirus PBCV-1 was assayed by monitoring plaque formation of cell-associated viruses that were collected at different times

during an active infection cycle of the NC64A host. Open circles denote replicate plaque titers, with the average represented by the

solid line.

https://doi.org/10.1371/journal.pone.0211755.g002
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example, GIY-YIG mobile endonucleases and an IS607 transposon may be involved in inser-

tions/deletions and/or gene loss/duplications observed in genomic comparisons of chloro-

viruses [38, 39]. Thus, maintenance of wild-type strains is important for consistency between

experiments. Virology labs could follow the microbial culture collection strategy, which typi-

cally uses a cryo-banking/seed-stock system for the dissemination of microbial specimens. The

purpose of the seed-stock system is to minimize serial propagation of microbiota. The Ameri-

can Type Culture Collection (ATCC) suggests that consumers transfer their cultures no more

than five-times after propagation from the thawed culture collection stock. Though a

Fig 3. Long-term cryo-stability of PBCV-1 frozen in host cells at various times after infection of its host C. variabilis NC64A.

Infectious chlorovirus PBCV-1 was monitored by plaque assay in virus particle stocks stored at 4˚C (green circles) and in

cryopreserved, PBCV-1-infected host cultures. Blue triangles, yellow squares, and orange diamonds represent virus viability

following storage of infected cells cryopreserved after 240, 180, and 10 minutes PI. Error bars represent the standard deviation

among biological and technical replicates.

https://doi.org/10.1371/journal.pone.0211755.g003

Table 1. Statistical assessment of PBCV-1 infectivity across storage treatments for ~1 year.

Treatment N Average SD RSD 95%CI

Virus Particle Stock (4˚C) 67 75.1 16.9 22.5� 71.1–79.2

Virus Particle Stock (-150˚C) 124 2.53 0.61 24.0� 2.42–2.64

Cell-associated virus 10 minutes PI (-150˚C, +CPA) 79 7.56 3.38 44.7 6.81–8.31

Cell-associated virus 180 minutes PI (-150˚C, +CPA) 82 31.9 10.9 34.2� 29.5–34.3

Cell-associated virus 240 minutes PI (-150˚C, +CPA) 82 69.5 16.5 23.8� 65.9–73.0

+CPA, cryoprotectants present as described in materials and methods section. Asterisks (�) denote an acceptable RSD (i.e., Coefficient of Variation) for plaque assays

based on a 35% threshold used in bacterial plating standards set from chapter 1223 by the U.S. Pharmacopeia and National Formulary.

https://doi.org/10.1371/journal.pone.0211755.t001
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seemingly strict standard, it is not difficult to imagine the consequences of violating this. For

example, the United States Pharmacopeia and National Formulary requires test organisms to

be maintained this way for routine antibiotic efficacy screens, and non-compliance can under-

mine therapeutic treatment [35]. Although there is no direct clinical link to maintaining algal

viruses this way, the logic is consistent with any research requirements. The cryopreservation

protocol described here can help researchers better set up these cryo-banking/seed stock

systems.

Standard cryopreservation techniques are not designed for the unique structure and physi-

ology of virus particles. Indeed, cryoprotectants are classified by their permeability across cell

membranes, which often coincides with their molecular weight [24]. Smaller compounds,

such as ethylene glycol and DMSO, are considered penetrating cryoprotectants, while larger

compounds (e.g. amino acids; L-proline) are typically non-penetrating. That said, the exclu-

sion size threshold has not been established for most viruses so it is not clear which, if any of

these compounds penetrate the viral capsid. It is generally thought that virus capsids are per-

meable to water and ions, though the latter diffuses much slower; this mechanism has been

used to osmotically rupture capsids [40, 41], including PBCV-1 [42]. The final cryoprotectant

solution used for PBCV-1 particle cryopreservation has an estimated osmolarity of ~150 mOs-

moles/L, which is comparable to the storage buffer used for this virus. In light of this, we pro-

pose that the lethal effect the cryoprotectants have on the PBCV-1 particle is not the result of

osmotic stress, and that inactivation instead occurred by toxicity of cryoprotectants or oxida-

tive stress. This would be consistent with viruses not being metabolically active and therefore

unable to repair damage caused by this treatment. It is also consistent with the observation

that Mimivirus, a giant virus relative which also contains an internal lipid membrane, is said to

be inactivated by lipophilic compounds such as DMSO [43]. That said, DMSO is often used as

a stabilizer for freezing of enveloped virus particles [44]. This discrepancy may be due to

unique properties between external and internal membranes, or even system differences

between animal and plant viruses, which imparts resistance in some cases over others. Regard-

less, the mechanism of inactivation may be better ascertained by looking at survivorship of

virion particles via epifluorescent microscopy, flow cytometry [45–47], or using bioassays to

quantify oxidative stress.

Although the algal cell is in a sub-optimal physiological state during infection, it is appar-

ently robust enough to survive and maintain an active infection during cryopreservation. That

said, fewer infectious virus were recovered when the cell was cryopreserved during early infec-

tion stages. This might be explained by differences in adsorption rates and synchronicity of

infection, resulting in fewer infected cells at the start of the experiment. Most, if not all cells are

infected at the later stages of infection (3–4 hr PI). Regardless of any differences in synchronic-

ity, the algal cell will be completely arrested during cryopreservation, and will only continue

the infection cycle after thawing. Internal, mature viruses that have not yet lysed their host cell

might still be inactivated by cryoprotectants, thus reducing viral burst size, but our experi-

ments did not account for this. We also did not account for inefficiencies in infection rates;

though we infected at M.O.I. values based on infectious particle counts, it is possible that all

the cells were not infected. Had we plated the infected cell population prior to cryoprotection

we could have corrected for this in our results. In any case, accounting for infection ineffi-

ciency can only improve PBCV-1 survivorship and the success of our method.

The general classification of cryoprotectants based on membrane permeability is consistent

in the infected cell treatment. Although the C. variabilis NC64A genome encodes a secondary

active transporter for the uptake of proline, radio-labeled solute uptake experiments revealed

that PBCV-1 infection abolishes its activity [48]. With that in mind, the tonicity of the cryo-

protectant mixture would equate to ~90 mOsmoles/L, as only DMSO and ethylene glycol are

Cryopreservation of PBCV-1
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penetrating, and many of the components in the MBBM media would be spent by late-loga-

rithmic growth. This concentration is comparable to buffers routinely used in our lab for han-

dling C. variabilis (40 mOsmoles/L), so there is little concern of osmotic stress. The chances

of osmotic stress were also low considering the consistent success associated with this cryo-

preservation formula across eukaryotic algae, including two Chlorella spp. [29]. Our results are

likely applicable to any algal virus whose host can be cryopreserved. That said, we expect that

researchers may still have to adjust their cryoprotectant mixture to account for system differ-

ences related to osmolarity tolerance and cryoprotectant toxicity. There has also been research

indicating that axenicity impacts cryopreservation survival in microalgae. In this light, it is

possible that the bacterial community produces secondary metabolites which promote survival

[49]. In another scenario, organisms with psychrophilic tendencies might be adapted to freeze

situations and cryoprotectant additives may not be necessary.

The goal of this study was to develop a long-term cryopreservation method for chlorovirus

PBCV-1, but there are also interesting ecological implications of this research. Recent metage-

nomic and isolation efforts indicate that giant viruses of microeukaryotes (e.g., Phycodnaviri-
dae and Mimiviridae) are widely distributed in nature [50, 51], but it is not well understood

how these viruses persist in the environment. Freezing events represent a potential mechanism

of inactivation for some algal viruses, though chlorovirus ATCV-1 is stable during these condi-

tions [19]. In two other studies, a closely related giant virus of the family Mimiviridae [52], as

well as a second giant virus in the family Molliviridae [53], were revived from 30,000 year old

permafrost. Both of these viruses were revived using Acanthamoeba spp., one of the main hosts

for many giant viruses. That said, there have been questions about whether Acanathamoeba
and other protists used for laboratory viral propagation are the natural or primary hosts of

these ancient viruses [54]. Although these viruses might be able to withstand freezing tempera-

tures on their own, the results of this study suggest that a natural host might serve as a better

vehicle for surviving freezing. Indeed, many microbes produce natural cryoprotectants (e.g. L-

proline, trehalose, betatine, etc.) or encode machinery to transport these osmoprotectants into

the cell. Following this thought process, it is possible that environments containing frozen,

infected cells might contain naturally cryopreserved algal-virus systems. These systems may be

deciphered following advances in single-cell sorting and sequencing techniques. Indeed, a sim-

ilar approach has been successfully utilized to identify and sequence single virus genomes in

the ocean [55]. Though this latter study sorted virus particles, flow-cytometry sorting of viral

infected cells may be achieved using fluorescent probes specific for viral marker genes (e.g.,

major capsid protein) or dyes to detect viral-induced host phenotypes (e.g., membrane bleb-

bing). As a proof of concept, viral genetic sequences recovered from Siberian permafrost could

be used to probe for still frozen viral-infected host cells, thereby testing the natural host range

of these viruses.

To our knowledge, this is the first report of successful cryopreservation of a eukaryotic algal

virus during its infection cycle. We expect that respective cellular hosts will provide more suit-

able physiological conditions for cryopreservation and storage of algal viruses that infect

eukaryotic algae. We also recommend that laboratories working with algal viruses establish

cryopreserved seed-stock systems to better preserve wild-type controls for future experimenta-

tion, especially in lieu of future modification of these viral systems.
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