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Abstract

To flexibly meet users’ demands in cloud computing, it is essential for providers to establish

the efficient virtual mapping in datacenters. Accordingly, virtualization has become a key

aspect of cloud computing. It is possible to consolidate resources based on the single objec-

tive of reducing energy consumption. However, it is challenging for the provider to consoli-

date resources efficiently based on a multiobjective optimization strategy. In this paper, we

present a novel migration algorithm to consolidate resources adaptively using a two-level

scheduling algorithm. First, we propose the grey relational analysis (GRA) and technique for

order preference by similarity to the ideal solution (TOPSIS) policy to simultaneously deter-

mine the hotspots by the main selected factors, including the CPU and the memory. Second,

a two-level hybrid heuristic algorithm is designed to consolidate resources in order to reduce

costs and energy consumption, mainly depending on the PSO and ACO algorithms. The

improved PSO can determine the migrating VMs quickly, and the proposed ACO can locate

the positions. Extensive experiments demonstrate that the two-level scheduling algorithm

performs the consolidation strategy efficiently during the dynamic allocation process.

Introduction

Cloud computing is considered one of the most promising technologies to meet customer

demand flexibly. Usually, it includes SaaS, PaaS, and IaaS. Software as a service (SaaS) provides

access to complete applications as a service [1], and platform as a service (PaaS) provides a

platform to develop other applications, such as the Google App Engine (GAE) [2]. Infrastruc-

ture as a Service (IaaS) [3–4] provides an environment to deploy the managed virtual

machines. A reasonable resource allocation strategy can help to consolidate resources and

reduce energy consumption. From the perspective of the providers, the key issue to be solved

is to maximize the utilization by reducing the fundamental costs. As a core technique, virtuali-

zation [5–7] provides an effective way to pack the application requests into the VMs. The

virtualization technique can make full use of the utilization by decreasing the power consump-

tion. Virtual mapping [8] has become one of the core techniques in datacenters, which
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provides a solution to the resource allocation. Generally, the problems to be solved are divided

into two subproblems: when to migrate and where to locate.

Traditionally, researchers have focused more on energy consumption with the single objec-

tive of CPU utilization. The VM placement problem is usually solved by the bin-packing algo-

rithm, which is an NP-hard problem [9–10]. For example, the pMapper system [11] proposed

to determine the power-cost trade-offs by minimizing the costs with the minimum number of

machines using the improved FFD algorithm. Another approach is best fit decreasing (BFD).

Researchers proposed modified best fit decreasing (MBFD), which is an extension of the BFD

method to improve energy efficiency under dynamic workloads [12]. However, these bin-

packing algorithms focus on improving the energy efficiency but ignore other elements, such

as service level agreement (SLA) violation and resource wastage, which have impacts on the

dynamic scheduling process. However, additional elements would make the bin-packing algo-

rithm more complex. Most researchers focus on heuristic algorithms to solve dynamic sched-

uling problems. For example, the simulated annealing virtual machine placement (SAVMP)

approach further improves of first fit (FF) algorithm, which minimizes the total power con-

sumption in the datacenter [13]. It reduces the energy consumption based on CPU utilization;

however, other factors should also be focused, such as the CPU, the memory. In [14], the

genetic algorithm is used to reconfigure resources to minimize the migration cost, which has

the advantage of proposing a weight function that includes the CPU and the memory. How-

ever, the migration cost function always takes the memory as the only optimization objective.

The modified PSO (MPSO) algorithm [15] was introduced to improve the energy efficiency of

the CPU and the disk. It makes use of the utilization and reduces the number of VM migra-

tions. To avoid falling into a local search, several authors have proposed two-phase mecha-

nisms to solve the optimization problem. In [16], the GA-ACO algorithm was proposed to

improve the performance. The GA algorithm is used for the local search, and the ACO algo-

rithm is used to escape the local search to improve the search performance. The proposed

GA-ACO algorithm improved the performance effectively, but it considered fewer factors,

such as the performance. In [17], the optimization model was used to minimize the total cost.

The proposed ACO and GA algorithms are used in the global and local searches. However,

from the perspective of the providers, more elements should be considered during the schedul-

ing process, such as maximizing CPU utilization and memory utilization.

In summary, many researchers have focused on improving energy efficiency [18–20]. How-

ever, few studies have investigated solving the multiobjective optimization problem. Providers

should consider additional factors, such as reducing the power consumption, maximizing the

utilization, and avoiding SLA violations. Hence, we present a two-level algorithm to achieve

lower costs and power consumption, which is shown in Fig 1. The first phase determines the

hotspots by using a proposed score model and then migrates the VMs by using the PSO algo-

rithm. The second phase finds the locations by using the improved ACO algorithm. Generally,

the proposed algorithm aims to maximize the utilization and minimize the energy consump-

tion. The contributions in this paper are as follows.

• First, the proposed method solves the issue of when to migrate. We propose a score model to

determine the hotspots by using the GRA and TOPSIS methods, which simultaneously con-

siders multiple objectives, such as CPU utilization and memory utilization.

• Second, this method migrates the VMs quickly. In this phase, we use the improved PSO algo-

rithm to find the VMs to migrate by considering both CPU utilization and memory utiliza-

tion. The PSO algorithm obtains the results quickly [21].

A novel hybrid algorithm on resource consolidation strategy
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• Thirdly, this method solves the issue of where to migrate. It locates the suitable positions to

reduce the rental costs, SLA violations and power consumption by using the consolidation

strategy, which is implemented by the proposed Ant Colony Optimization (SACO)

algorithm.

The proposed approach improves the performance by simultaneously minimizing the

rental cost and reducing the power consumption. The remainder of this paper is organized as

Fig 1. Two-level hybrid heuristic algorithm.

https://doi.org/10.1371/journal.pone.0211729.g001
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follows. Section 2 presents the research motivation and the current related studies of solving

the dynamic scheduling problem. Section 3 provides the architecture of the resource optimiza-

tion and analyzes the scheduling phases in cloud computing, and Section 4 presents the two-

level hybrid scheduling algorithm in detail. Section 5 presents the results of the extensive

experiments and makes a compares them with the approaches described above. Finally, Sec-

tion 6 provides the conclusions and describes future work.

Related work

Dynamic scheduling strategy

Previous studies on resource consolidation strategies are divided into three main categories:

static strategies [22–23], dynamic scheduling [24–26] and decision-making on the prediction

[27–29]. The traditional static approach can be implemented to meet a varying demand, but it

generates more overheads Halder et al. [30] presented a static consolidating algorithm that

considered CPU utilization and SLA violations. Tiago et al. [31] proposed an LP and heuristics

method to complete the mapping from the VMs to the host, which would reduce the number

of migrations with the minimum penalty. The disadvantage of the static consolidation strate-

gies is that they cause resource wastage to meet sudden load demands. An example of a

dynamic scheduling strategy is the depending on the prediction technique. Cloudscale [32]

achieved adaptive resource allocation with lower resource and energy costs by integrating VM

resources with dynamic voltage and frequency scaling (DVFS) to save energy. Press [33] pro-

posed the fine-grained mechanism, which reduces the resource wastage and SLO violations.

However, the predictive technique is complex, and it is difficult to obtain accurate results with

this technique. In dynamic scheduling strategies, the issue to be solved is when and where to

migrate. Lovász et al. [34] presented a dynamic strategy that uses the greedy and modified

first-fit algorithm and considers the power and response time as the performance metrics.

Seyed et al. [35] proposed an adaptive threshold-based algorithm to detect overloaded hosts,

which considered the optimization based on the energy performance trade-off. The best

method is to determine the adaptive threshold by learning, but the disadvantage is that it

focuses on the energy consumption; additional elements have effects during the dynamic

scheduling process, such as the SLA and migration cost.

Most studies have focused more on the single objective of minimizing energy consumption.

However, more factors should be considered during the scheduling process. For example, pro-

viders also emphasize maximizing the utilization, including the CPU and the memory. In addi-

tion, to reduce SLA violations, the proposed two-level method reduces energy and resource

wastage.

Multiobjective optimization

One of the most important factors in server consolidation algorithms is the energy consump-

tion. However, additional factors (e.g., the cost overhead, memory utilization, and SLA viola-

tions) should also be considered in the optimization algorithm. For example, Leili et al. [12]

proposed an adaptive fuzzy threshold to detect overloaded or underloaded thresholds. The

advantage of the method is that it proposes a double adaptive threshold to determine when the

migration starts or where the VMs migrate. However, the proposed approach uses the energy

and performance as the evaluation metrics. The MISTRAL [36] architecture proposed a strat-

egy to reduce the power consumption and adaptation cost, which implemented the cost deci-

sion-making based on the response time. However, it developed a control architecture to solve

the power trade-offs rather than several objectives. In [37], a multiple objective ant colony sys-

tem algorithm that focuses on two objectives, including the makespan and the user’s budget,
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was presented. This strategy had the advantage of minimizing the rental costs more efficiently;

however, it focused more on maximizing the resource utilization. Additionally, it ignored

other elements, such as the SLA and resource wastage. In [38], the genetic algorithm was pro-

posed to enhance the system provisioning, system performances, system failure and network

overheads. The method considered more factors than the previous methods, but it ignored the

cost overheads. In [39], the CMCVRP optimization model was presented to reduce costs and

energy consumption. The method used cost reduction model to achieve the cost reduction

percentages. In [40], the proposed method allocated the resources to minimize the total

amount of resources while meeting the end-to-end performance requirements for the applica-

tion. The method described in [41] provided a theoretical control solution to the dynamic

capacity provisioning problem that minimizes the total energy cost while meeting the perfor-

mance objective of task scheduling delays. The response time and the temperature also play

important roles in data centers, which can greatly affect the service quality.

Based on the studies presented above, Table 1 provides a list of several consolidation algo-

rithms that are used to solve optimization problems. The main optimization parameters are

the minimization of the energy overheads and the cost overhead and the maximization of the

application performance. We propose a two-level hybrid algorithm. First, the algorithm deter-

mines when to migrate. The proposed score model based on the GRA and TOPSIS methods

achieves the adaptive threshold depending on the CPU utilization and memory utilization.

Second, the hybrid heuristic algorithm includes the PSO and ACO algorithms, which empha-

sizes reducing SLA violations and the energy consumption. In addition, the PSO algorithm

determines the hotspot VMs quickly, and the proposed ACO algorithm focuses on solving the

VM placement problem to reduce SLA violations and the energy consumption.

Background

Description of the main components

We propose a two-phase algorithm to conduct resource allocation in datacenters for cloud

computing. The designed architecture is shown in Fig 2. When the application requests arrive,

the monitoring system collects the data to calculate the threshold. We then take the threshold

as the baseline to efficiently manage and consolidate the resources. The architecture includes a

local scheduling mechanism and a global scheduling mechanism. The global scheduling mech-

anism determines the hotspots by using the score model based on the GRA and TOPSIS

Table 1. Comparison of the consolidation algorithms.

Paper Decision Performance SLA Energy Overheads Utilization

[30] Static No Yes No No Yes

[31] Static No Yes No No No

[32] Prediction No No Yes Yes No

[33] Prediction No Yes No Yes No

[35] Dynamic Yes No Yes No No

[12] Multiobjective Yes No Yes No No

[36] Multiobjective No No Yes Yes No

[37] Multiobjective No No No Yes Yes

[38] Multiobjective Yes No No Yes No

[39] Multiobjective No No Yes Yes No

[40] Multiobjective Yes No No Yes No

[41] Multiobjective Yes No Yes Yes No

https://doi.org/10.1371/journal.pone.0211729.t001
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methods, and the local scheduling mechanism efficiently solves the VM placement problem.

The main components are described in detail as follows.

• Application request

In cloud computing, it is essential to meet the users’ demands at any time. Before the

requests are executed, the providers provision the resources rapidly to meet the users’

demands. The goal of the providers is to reduce the rental cost by maximizing the utilization

and minimizing the energy consumption during the scheduling process.

• Monitoring system

The monitoring system collects the data, including the CPU utilization and the memory

utilization. The collected information is used to calculate the score threshold by using the pro-

posed model, which is described in detail in the next section. When the workload reaches the

specified value, the proposed algorithm implements the efficient resource allocation method

during the dynamic scheduling process.

• Global scheduling

The global scheduling mechanism includes three parts: the triggering part, selection part

and location part. First, the triggering part determines the overloaded hosts and solves the

issue of when to migrate. The selection part then determines which virtual machines are to be

migrated. Finally, the location part solves the issue of where to migrate.

• Local scheduling

Fig 2. The main components of the architecture.

https://doi.org/10.1371/journal.pone.0211729.g002
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The local scheduling mechanism solves the VM placement problem by using the improved

ACO algorithm. In addition, the proposed ACO algorithm emphasizes maximizing the utiliza-

tion, avoiding SLA violations and reducing the power consumption.

The score threshold for hotspot detection

In this section, we present the score model based on the GRA and TOPSIS methods to determine

the hotspots. The upper score threshold is triggered when the hotspot hosts have been located.

The score threshold rule takes the GRA and TOPSIS methods as the multiobjective policy consid-

ering four metrics, as shown in Table 2. The policy scores every PM, including the CPU utilization

and the memory utilization. It also considers two criteria, cost criteria and benefit criteria. For the

cost criteria, we obtain a positive solution when the value is smaller. This is opposite to the benefit

criteria. Furthermore, it is necessary to select the PM with more VMs considering cost and benefit,

which likely reduces the rental cost. Based on the proposed policy, the selected hotspots are those

that exceed the upper score threshold. The policy is described in detail below.

Normalization of the decision matrix: By using the Delphi method [42], it is easier to deter-

mine the key factors, such as the CPU cycle, spare memory, CPU utilization and memory utili-

zation, which are shown in Table 2. Because the data are different in the experiments, the

normalization method uses the average in each column to normalize the decision matrix R,

which is listed in Eq 1.

R ¼

r11 � � � r1n

..

.
� � � ..

.

rm1 � � � rmn

2

6
6
6
4

3

7
7
7
5

ð1Þ

Improved TOPSIS: TOPSIS is the abbreviation for the technique for order preference by

similarity to ideal solution [43]. The improved ideal solutions determine the positive benefit or

cost criteria as listed in Eq 2. The negative value is determined using Eq 3.

Pþj ¼ fðmaxð~rijÞji 2 IÞ; ðminð~rijÞji 2 JÞg ð2Þ

P�j ¼ fðminð~rijÞji 2 IÞ; ðmaxð~rijÞji 2 JÞg ð3Þ

Grey Relational Analysis: Grey theory [44] is an effective way to explore system behavior

using limited information. We describe the GRA method in detail below. First, we determine

the difference between the comparative series rjk and the standard series Pþk or P�k . The distin-

guished coefficient ρ usually has a value of 0.5 and is generally between [0, 1]. The Grey rela-

tional coefficients B+and B− are determined using Eq 4 and Eq 5, respectively.

BþðkÞ ¼
min
j

min
k
jrjk � Pþk j þ rmax

j
max
k
jrjk � Pþk j

jrjk � P
þ
k j þ rmax

j
max
k
jrjk � P

þ
k j

ð4Þ

Table 2. The main parameters of the scheduling process.

Parameter Description Type

CPU Cycle CPU Clock Speed Cost

Spare Memory The rest memory in the PM Cost

CPU% The utilization of CPU in the PM Benefit

MEM% The utilization of memory in the PM Benefit

https://doi.org/10.1371/journal.pone.0211729.t002
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B� ðkÞ ¼
min
j

min
k
jrjk � P�k j þ rmax

j
max
k
jrjk � P�k j

jrjk � P�k j þ rmax
j

max
k
jrjk � P�k j

ð5Þ

We then determine the degree of relation r on the weight coefficients ωmultiplied by the

Grey relational coefficient B(k). The weight coefficients are determined by the analytic hierar-

chy process (AHP) method [45–46]; they are respectively 0.19, 0.28, 0.29 and 0.24. The degrees

of relation r+ and r− are calculated using Eqs 6 and 7, respectively.

rþ ¼
Xm

k¼1

okB
þðkÞ ð6Þ

r� ¼
Xm

k¼1

okB
� ðkÞ ð7Þ

Relative Closeness: Based on the analysis presented above, the ideal solution determines the

related closeness d+ using Eq 8. A higher value indicates that it is closer to the positive solution,

and a lower value is closer to the negative solution. The negative related closeness d− is calcu-

lated using Eq 9.

dþ ¼
r�

rþ þ r�
ð8Þ

d� ¼
r�

rþ þ r�
ð9Þ

Score Model: A server might be overloaded. Multiple objectives should be involved in the

scheduling process; the objectives are shown in Table 2. In this paper, we take the GRA and

TOPSIS methods as the decision strategy to determine the hotspots. The overloaded score

threshold is described by Eq 10, and it represents the point at which when to migrate. The

parameter Ut represents the CPU utilization of the host, and d+ and d− are the positive related

closeness and the negative related closeness, respectively. Similarly, when the score is higher,

the PM can easily show the hotspots.

Scoreþ ¼
dþ � Ut

dþ � Ut þ d� � ð1 � UtÞ
ð10Þ

Proposed structure

In this section, we propose a two-level scheduling algorithm aimed at maximizing the utilization,

avoiding SLA violations and reducing the energy consumption during the scheduling process.

We divide the consolidating algorithm into three parts: the triggering part, selection part and

location part. These parts are described in detail as follows. In the triggering part, we determine

the hotspots by the score model. It describes the time at which the overloaded PMs migrate. In

the selection part, we select the VMs from the overloaded and under-loaded PMs. Besides, we

also quickly select the VMs from the hotspots by the PSO. In the location part, we place the

migrated VMs into the selected positions by the improved Ant Colony Optimization (ACO) algo-

rithm. The hybrid algorithm is shown as Algorithm 1. We provide a detailed description below.
Algorithm 1: The hybrid two-level heuristic algorithm
Input: VM_list and PM_list
Output: Migration_list

A novel hybrid algorithm on resource consolidation strategy
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1. Monitor the PMs and score every PM
2. Score the PM_list by using the proposed score model, and divide the
PMs into overloaded PMs or under-loaded PMs
3. Choose the highest VM according to the highest distance formula
(15) in the overloaded PMs by using the PSO algorithm
4. Choose all of the VMs in the underloaded PMs
5. Obtain the Migration_list of the VMs by using Step 3 and 4
6. Place the selected VMs to determine the reasonable locations by
using the improved ACO algorithm based on multiobjective optimized
model
7. Return the score model

Hybrid algorithm

The hybrid algorithm is a two-level hybrid algorithm. The first level includes a triggering part

and a selection part, and it aims at determining the threshold and the migrated VMs. In addition,

the selected VMs are quickly identified by the PSO algorithm. The second level includes the loca-

tion part to solve the VM placement problem, which is implemented by the ACO algorithm.

In the first level, during the scheduling process, we obtain the score threshold as the trigger-

ing threshold by using the monitoring mechanism. In this phase, we consider both the CPU

and the memory as the key factors to determine the source and target host machines under the

fluctuating workload. If the demands exceed the triggering threshold, more VMs are provided

to supply the demand at any time.

Triggered threshold: The triggering threshold is determined by the score model listed in Eq

10. In general, this host would be considered to be overloaded when the current utilization

exceeds the upper threshold. In the experiments, the upper utilization threshold is usually set

to 0.8. When the value exceeds the upper threshold, the servers are scaled up to meet the

demand. The lower utilization threshold is usually set to 0.2, which is determined by experi-

ments. We then define the score threshold by Theorem 1 and Lemma 1, which are shown as

below. Hence, we determine that the triggered score threshold is greater than 80 percent,

which mostly depends on the CPU utilization Ut and the related closeness d.

Theorem 1. The upper CPU threshold is 0.8 in most experiments. Therefore, during the

dynamic scheduling process, the upper score threshold is higher than 80 percent.

Proof.

First, we take the inverse of Eq 10 on both sides at the same time and obtain Eq 11.

1

Scoreþ
¼
dþ � Ut þ d� � ð1 � UtÞ

dþ � Ut
ð11Þ

A utilization greater than 0.8 indicates an overloaded state. During the experiments, we

find that d+ and d− are 0.49 and 0.51, respectively. They are approximately 0.5 in the dynamic

process. We start the calculation with Eq 12. By taking the inverse again, we determine that the

hotspot score threshold is 80 percent, as shown in Eq 13.

1

Scoreþ
�

0:5� 0:8þ 0:5� 0:2

0:5� 0:8
¼

4þ 1

4
ð12Þ

) Scoreþ �
4

5
ð13Þ

Lemma 1. In the overloaded state, the upper score threshold is greater than 80 percent

based on Theorem 1. Formally, the lower score threshold is (1−Score+), which is less than 20

percent.
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Proof.

The lower score model is listed as Eq 14.

Score� ¼ ð1 � ScoreþÞ ð14Þ

Generally, the uppper threshold arg min(Score+) is achieved, and it is approximately 80 per-

cent in the over provisioning in Theorem 1. We then determine that the lower score arg max

(Score−) is nearly 20 percent in the under provisioning.

Selection part: By determining the triggering threshold, we can select several VMs to

migrate. In the experiments, we find that the CPU more easier reaches a specific value than the

memory. Hence, we use the Euclidean distance method [47] to construct a distance model that

includes both CPU utilization and memory utilization, as described in Eq 15. The selection

policy selects the VM with the greatest distance to migrate by the PSO algorithm to avoid the

overloaded state. The PSO algorithm is described in detail below. In addition, to reduce the

energy consumption, we select all of the VMs hosted in the underloaded PMs to migrate.

• Step 1: Initialize all of the particles. The selection starts in the particles randomly.

• Step 2: For each particle, the fitness value is calculated using Eq 15, which includes the CPU

utilization and memory utilization. If the fitness value is greater than the set value, we set the

current value as pBest in the local search.

distance ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðCPU%Þ
2
þ ðMEM%Þ

2

q

ð15Þ

• Step 3: Choose the particle with the greatest fitness value of the particles as gBest. We then

finish the global search.

• Step 4: Update the velocity and the position using Eqs 16 and 17, respectively. In Eqs 16 and

17, v is the velocity, present is the position, and. c1 and c2 are learning factor, which are equal

to 2 in the traditional PSO algorithm [48].

v ¼ w� vþ c1 � rand� ðpBest � presentÞ þ c2 � rand� ðgBest � presentÞ ð16Þ

present ¼ present þ v ð17Þ

• Step 5: Verify the number of iterations. If the number of iterations exceeds the maximum,

the cycle is terminated.

In the second phase, the emphasis is on solving the VM placement problem. Previous

researchers have focused more on the energy consumption. We propose a solution to obtain

the reasonable positions depending on multiple objectives, including the SLA violations,

resource wastage and energy consumption. These objectives are described in detail below.

SLA: The SLA violations are calculated as the difference between the actual requests and the

allocated requests (AR) divided by the total requests (TR), as shown in Eq 18. That is, the SLA

is defined as the ratio of difference requests to total requests. Eq 18 is described as follows.

SLA ¼
TR � AR
TR

ð18Þ

Resource Wastage: To make full use of the resources, we consider the CPU and the memory
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to define the resource wastage as in Eq 19.When the resource wastageW is large, more

resources are wasted. In Eq 19, UP is the CPU utilization, and Um is the memory utilization. Eq

19 aims to make full of the resources depending on the CPU and the memory.

W ¼
jUp � Umj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðUpÞ
2
þ ðUmÞ

2

q ð19Þ

Energy consumption: Previous studies have shown that idle servers consume approximately

70 percent of their peak power [49]. The energy consumption is given by Eq 20. We perform

the experiments using Inspur Servers, which consume 700 W at full utilization. The idle power

consumption coefficient k is equal to 0.7, and the current host power consumption ranges

from the idle state (490 W) to full utilization (700 W). Pmax represents the peak power, which

is equal to 700 W in the experiments, and u is the CPU utilization.

P ¼ k� Pmax þ ð1 � kÞ � Pmax � u ð20Þ

Proposed optimized model: Based on the objectives presented above, we present the opti-

mization model according to the utilization and energy consumption. We assume that the

datacenter contains m VMs VM = {Vm1,Vm2,. . .,Vmn} and n servers PM = {Pm1,Pm2,. . .,

Pmn}. The issue to be solved is the VM placement problem. In general, we assume that more

VMs are placed in fewer servers. We can then formulate the proposed optimization model.

For example, the first purpose of the optimization is to minimize the SLA violations, as listed

in the Eq 21, in which Si represents whether at the current host is selected or not. The second

purpose is to reduce the resource wastage, which is formalized as Eq 22, in which Up and Um

represent the CPU utilization and the memory utilization, respectively. The third purpose is to

minimize the power consumption, which is given in Eq 23, in which k is the idle power con-

sumption coefficient and is equal to 0.7, and Pmax is the power consumption at full utilization.

The parameter Vi shows whether the virtual machine is selected or not. Uv represents the CPU

utilization of the virtual machine. Constraints 24 and 25 are responsible for the capacity con-

straints of the server, such as CPU and memory capacity. Constraint 26 shows whether the

server or VM is selected or not. When the server is selected, it is equal to 1; otherwise, it is

equal to zero. It is difficult to solve the multiobjective optimization problem. Here, we use the

Pareto efficiency to minimize the SLA violations and energy consumption. Additionally,

Lemma 2 states the Pareto efficiency, which is described in detail as follows.

Minimize
Xn

i¼1

Si � SLA ð21Þ

Minimize
Xn

i¼1

W ¼
Xn

i¼1

Si �
jUp � Umj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðUpÞ
2
þ ðUmÞ

2

q

2

6
4

3

7
5 ð22Þ

Minimize
Xn

i¼1

P ¼
Xn

i¼1

Si � ðk� Pmax þ ð1 � kÞ � Pmax �

Xm

i¼1

ðVi � U
vÞ

Xm

i¼1

Vi

Þ

2

6
6
6
4

3

7
7
7
5

ð23Þ

A novel hybrid algorithm on resource consolidation strategy

PLOS ONE | https://doi.org/10.1371/journal.pone.0211729 February 6, 2019 11 / 25

https://doi.org/10.1371/journal.pone.0211729


Subject to :

Xn

i¼1

Si � U
p � Rcpu

ð24Þ

Xn

i¼1

Si � U
m � Rmem ð25Þ

Si;Vi 2 f0; 1g ð26Þ

Lemma 2. During the scheduling process, we consider solving the optimization problem

with n objectives andm solutions. The multiobjectives are the SLA violations k1, resource

wastage k2 and energy consumption k3. The solution is kept as the dominated solution when it

is not worse than the others in every objective. Eq 27 is listed as below.

Min f ðKÞ ¼ ff1ðk1; k2; . . . ; knÞ; . . . ; fmðk1; k2; . . . ; knÞg Subject to : k 2 fk1; k2; k3g ð27Þ

This process is implemented in detail by using the following fast nondominated algorithm,

which is used as the global search to obtain the optimal solution.

• Step 1: First, all of the solutions are evaluated.

• Step 2: Then, solutionsm1 andm2 are compared according to the three metrics, including

the SLA violations k1, resource wastage k2 and energy consumption k3.

• Step 3: If solutionm1 is better thanm2 for the proposed metrics, it is marked as the domi-

nated solution.

• Step 4: Otherwise, it is marked as the nondominated solution.

• Step 5: All of the solutions are searched until reaching the end.

Description of the improved ACO algorithm

This algorithm is a type of multiobjective scheduling approach, which considers minimiz-

ing the SLA violations, resource wastage and energy consumption. In this approach, we use

the ACO algorithm to obtain reasonable results based on behavior probabilities. In addi-

tion, the proposed ACO algorithm attempts to select the proper positions to place the

selected VMs. The feasible solution is achieved by selecting the suitable PM to place the

VMs by using the multiobjective method. First, the ants choose a path randomly. They

then target the position by using the fitness function Fitbest based on maximizing the utili-

zation and reducing the energy consumption. Second, the pheromone is calculated and

updated. Then, by using the Pareto efficiency, we compare all of the solutions to determine

the dominated solution by minimizing the SLA violations and energy consumption solu-

tion. The detailed resource scheduling pseudocode is described in Algorithm 2. To imple-

ment the ACO algorithm, it is necessary to consider three main factors: the fitness function

model, the pheromone and behavior probabilities. These factors are described in detail

below.

Fitness function: When the ant travels, it forms the feasible solutions. To solve the problem

efficiently, the fitness function is set by maximizing the utilization and minimizing the

resource wastage and the energy consumption. Eq 31 is shown below. The parameters α, β and
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γ are the weight factors for the SLA violation, resource wastage and energy consumption,

respectively. To maximize the utilization, the SLA violation function fitsla is set based on the

CPU utilization. When the utilization is higher than 0.8, fewer SLA violations occur. In Eq 28,

when the utilization decreases, fitsla increases. To minimize the resource wastage, it considers

both the CPU and the memory. In Eq 29, when the resources are utilized fully, fitw avoids wast-

age. The strategy to reduce the energy consumption is formalized in Eq 30. When the utiliza-

tion increases, fitp will increase. Based on Eqs 28–30, we define the fitness function Fit in Eq

31, in which it is necessary to determine the weight factors. By using the AHP method, we take

weight factors α,β,γ as 0.39, 0.35 and 0.26, respectively. The higher the fitness value is, the

more efficient a solution we obtain.

Maximize fitsla ¼
1

1þ eðUcpu� 0:8Þ
ð28Þ

Maximize fitw ¼
jUcpu � Umemj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðUcpuÞ
2
þ ðUmemÞ

2
q ð29Þ

Maximize fitp ¼
Ucpu � ðPidle þ ðPmax � PidleÞ � UcpuÞ=Pmax

Pmax
ð30Þ

Fit ¼ a� fitsla þ b� fitw þ g� fitp ð31Þ

The pheromone: Generally, the proposed ACO algorithm considers two factors, the pher-

mone matrix and the probability matrix. These two factors play important roles during the

scheduling process. In this section, the pheromone is updated by Eq 32. In the initial phase,

the pheromone is equal to the constant C. During the scheduling process, the pheromone

matrix is updated by Eq 32, in which ρ is the pheromone evaporation factor, and Dtbestiu is the

incremental gain. As the incremental gain increases, the solution becomes more feasible.

tiu ¼ ð1 � rÞ � tiu þ4t
best
iu ð32Þ

In Eq 33, the increasing gain Dtbestiu depends on the set multiobjective fitness function Fitbest
that considers the SLA, resource wastage and energy consumption. When the increasing gain

is bigger, a better path is achieved by the pheromone.

4tbestiu ¼

(
Fitbest if planðVMi; PMuÞ 2 path

0 otherwise
ð33Þ

Behavior probabilities: Another important factor is the probability to choose the suitable

approach, which is calculated from the pheromone information. Eq 34 defines the behavior

probability. In Eq 34, when more pheromone is left by the ants, the path becomes more feasi-

ble. In Eq 34, ηiu is the heuristic information, which is applied in the behavior probabilities,

and α and β are the weight factors of the pheromone and heuristic information, respectively.

PkiuðtÞ ¼

taiu � Z
b

iuX

s2allowk

taiu � Z
b

iu

i 2 allowk

0 otherwise

ð34Þ

8
>><

>>:

The heuristic information ηiu is determined by Eq 35. The heuristic information is
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identified by the sum of the variance distances. When the heuristic information is higher, the

probability will be greater.

ZiuðtÞ ¼

X

s2allowk

Varianceði; uÞ i 2 allowk

0 otherwise
ð35Þ

8
><

>:

After the parameters are determined by Eqs 32–35, the proposed ACO algorithm is imple-

mented as shown Algorithm 2.
Algorithm 2: The proposed ACO algorithm
Input: the selected VM = {Vm1,Vm2,. . .,Vmk}
Output: map the selected VMs to the reasonable host
//First, each ant is initialized.
1. Initialize all of the ants
2. Select the path randomly
//Then, the iterations start.
3. While (iter < itermax)
4. For each ant
//Start the evaluation
5. Evaluate the fitness function by using Eqs 32–33
6. if the fitness value is higher,
7. the fitness value is taken as the current value
//The pheromone is updated.
8. Update the pheromone
9. End if
//The probability is updated.
10. Select the path of behavior probabilities by using
Eqs 34–35
11. End For
12. Until all of the VMs are placed in the hosts
13. End iterations
14. In the global search, compare all of the solutions of the
fast nondominated algorithm according to the Pareto efficiency by min-
imizing the energy consumption, the SLA violations and the resource
wastage
15. End

Experiments

Two types of experiments are designed in this paper. One is a simulated experiment, and the

other is a set of real application request experiments. These experiments were implemented on

the CloudStack platform to verify the validity of the proposed algorithm. The results demon-

strate that the proposed algorithm improves not only the CPU utilization and the memory uti-

lization and also reduces the SLA violation and energy consumption.

Experiment settings

In the real-world testing experiments, we implemented the proposed algorithm with 7 PMs.

One PM is installed on the CloudStack platform, and the other six use XenServers running in

the management nodes (2.20 GHz Intel(R) Xeon(R) 8 CPU, 8 G of memory, running CenOs

6.9). We create 18 VMs (1 VCPU, 1 G memory, running CenOs 6.9) in the cluster. In addition,

we divide the experimental settings into three parts. First, to evaluate the approach, we imple-

ment it under different workloads. Second, to analyze the performance, we define the perfor-

mance metrics, including the SLA violation ratio, the energy consumption ratio and the
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resource wastage ratio. Then, to evaluate the proposed algorithm efficiently, we implement it

by using other heuristic algorithms for comparison.

Experiment environment: To verify the proposed algorithm, we set two kinds of scenes in

the experiments. In the first experiment, we used the workload generator memtester [50] to

generate the CPU and memory workloads gradually, which is shown in Fig 3. In the second set

of experiments, the application requests are generated by the TPC-W benchmark [51]. The

second set of experiments implements the workload traces from real web requests, such as

those from the EPA [52] and NASA [53]. We use Jmeter to generate the simulated application

requests, as shown in Fig 4. The Jmeter plugin monitors more parameters, such as the CPU

utilization and the memory utilization.

Fig 3. The designed load from the memtester.

https://doi.org/10.1371/journal.pone.0211729.g003

Fig 4. The simulated realistic workloads.

https://doi.org/10.1371/journal.pone.0211729.g004
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Metrics: The experiments use four performance indicators as metrics, such as SLA violation

ratio slaratio, resource utilization Ucpu, energy consumption ratio pratio and resource wastage

ratio wratio. We then define the SLA violation ratio in Eq 36, which is the feedback of the

requests to verify the SLA violations. The parameter Ucpu represents the CPU utilization of the

server. When the CPU utilization is greater than 0.8, it may be easier to fall into an SLA viola-

tion. The percentage of the energy consumption is defined in Eq 37. The percentage of

resource wastage is defined in Eq 38.

sla ¼
1

1þ eðUcpu� 0:8Þ
; slaratio ¼

Xk

i¼1

slai

totalsla
ð36Þ

pratio ¼

Xk

i¼1

Pi

totalP
ð37Þ

wratio ¼

Xk

i¼1

Wi

totalW
ð38Þ

In these equations, k represents the number of the servers, Pi andWi are the current power

and resource wastage percentages, respectively. totalw and totalP are the total resource wastage

and the total energy consumption, respectively.

Comparison of the algorithms in comparison: To validate the proposed algorithm, we com-

pare it with other algorithms from the perspectives of minimizing the energy consumption

and the SLA violations. The other algorithms are listed in detail below.

• Single objective algorithm: In [54], the single objective approach consolidates the resources

from the perspective of minimizing energy consumption. It is implemented by using the

ACO algorithm. The other goal is to maximize the utilization by using a bin-packing algo-

rithm during the resource allocation, such as the FF (first fit) algorithm.

• Double-objective algorithm: In [55], the authors consolidate the resources based on two

objectives, such as energy consumption and resource wastage. The proposed algorithm is

implemented by using the ACO algorithm.

• Multiobjective algorithm: In [56], the authors proposed the ACO algorithm to consolidate

the resources based on multiple objectives, such as power consumption and SLA violations.

However, it regards these parameters with the equal weights, but the parameters are slightly

different. We propose an improved multiobjective algorithm based on the proposed ACO

algorithm, which considers the SLA violations, resource wastage and energy consumption

with different weight factors by using the AHP method.

These experiments were performed across the cloud platform. A comparison of other algo-

rithms shows the accuracy of the proposed algorithm. We also consolidate resources efficiently

by using the multiobjective method. The experiments use 100 ants and 100 iterations, and the

parameters α and β are set to 2 and 3, respectively, in the experiments.
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Experimental results

To verify the performance of the proposed algorithm, we compare it with other algorithms,

including the single objective algorithm (ACO-U), the double-objective algorithm (ACO-UP)

[55] and the multiobjective algorithm (MACO) [56]. MPSO is similar to the MACO algorithm;

they use the same fitness function, but the MSPO is implemented by using the PSO algorithm.

ACO-U is similar to the FF (first fit) algorithm, which puts the VMs into the PM of the mini-

mal utilization. The experiments are designed with two types of workload; a synthetic load and

a realistic load. The proposed algorithm attempts to simultaneously minimize the resource

wastage and reducing the SLA violations and energy consumption.

Sythetic loads: The designed workloads are composed of three groups. Group 1 represents

the lower variability workload, with the memtesters running in two VMs at nearly full utiliza-

tion. Group 2 proposes slightly higher variability workload, with the memtesters running in

four VMs at nearly full utilization respectively. Group 3 proposes a greater variability work-

load, with the memtesters running in eight VMs at nearly full utilization. The proposed algo-

rithm is evaluated by four metrics: SLA violation ratio, resource utilization, energy

consumption and resource wastage ratio.

SLA violation ratio: The SLA violation rate is one of the performance metrics. Fig 5 shows

the SLA violation ratio for the six methods. The proposed algorithm (SACO) is clearly the best

from the perspective of the SLA violations, such as multiobjective ACO (MACO) and multiob-

jective PSO (MPSO). In addition, the purpose of the ACO-U algorithm is to maximize the uti-

lization to reduce the rental cost. This is the same purpose as the PSO-U algorithm. The intent

of the PSO-P algorithm is to reduce the energy consumption. However, when the workload

increases, the SACO algorithm has advantages and disadvantages; it can achieve the fewer SLA

violations than the other algorithms for Group 1 and Group 2, but when the workload is

higher, it is nearly the same as the other algorithms.

Resource utilization: The purpose of the resource utilization is to maximize the utilization

to reduce the rental cost. Fig 6 shows that the SACO algorithm is better than the other algo-

rithms. When the workload is light (Group 1), it achieves the better consolidation results than

the other algorithms. When the workload is moderate (Group 2), the proposed solution is

superior to the other algorithms; improves the resource utilization and reduces the rental cost.

Fig 5. SLA violation rates under the synthetic loads.

https://doi.org/10.1371/journal.pone.0211729.g005
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When the workload is heavy (Group 3), the proposed algorithm is approximately the same as

the other algorithms. In other words, the results for these three groups are reasonable and

demonstrate the effectiveness of the SACO algorithm.

Energy consumption: A solution to reduce energy consumption is necessary. As shown in

Fig 7, the SACO algorithm obtains the better results for minimizing energy consumption.

With the lighter load (Group 1), the SACO algorithm achieves slightly better results than the

other algorithms. With the higher workload in Group 2, the SACO algorithm is better than the

other algorithms because it considers multiple objectives by using the Pareto policy. When the

generated load in Group 3 is implemented, the performance is nearly to the same as the other

algorithms. Generally, the SACO algorithm is reasonable for the synthetic loads, and it gives

the better results during the scheduling process.

Resource wastage ratio: The resource wastage is the metric used to measure the degree of

resource wastage. This experiment verifies the degree of resource wastage by comparisons

with other methods. The SACO algorithm proposed a resource wastage model that includes

the CPU utilization and the memory utilization, which is designed according to Eq 19. The

other algorithms focus more on the CPU utilization. Fig 8 shows that the SACO algorithm

gives better results. It achieves the lower resource wastage in Group 1, whereas in Groups 2

and 3, it is approximately to the same as other algorithms. This is because these six methods all

consider the CPU utilization similarly. However, the SACO algorithm obtains slightly better

results than the other algorithms.

Realistic loads: The depicted loads are implemented by simulated real-world workloads,

such as those from the EPA and NASA. In these two simulated real-world workload experi-

ments, the EPA workload is taken as the lower variability workload. The NASA workload has a

slightly higher variability. The results are analyzed by the metrics as follows. With the real

workloads, the proposed approach is compared with other ACO algorithms based on one or

multiple objectives. For example, the SACO algorithm is implemented by using the fixed fit-

ness function of different weights. The MACO algorithm [56] takes the set fitness function

with equal weights, and the weight factors are the same. The goal of the ACO-P algorithm [54]

is to reduce the power consumption. The purpose of the ACO-UP algorithm [55] is to

Fig 6. CPU resource utilization under the synthetic loads.

https://doi.org/10.1371/journal.pone.0211729.g006
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maximize the utilization and reduce the energy consumption. The experimental results are

described in detail below.

SLA violation ratio: The SLA violation is one of the performance metrics. In the EPA exper-

iment, as shown in Fig 9, the SACO algorithm obtains slightly worse results for the SLA viola-

tion ratio than the other algorithms because it considers more elements when running under

the lighter load. As shown in Fig 9, with the NASA workload, which is a heavier load, the

results are better than those of the other algorithms. Therefore, the proposed algorithm is

more suitable for minimizing the SLA violations under the heavy loads, such as the NASA

workload.

Resource utilization: Usually, the consolidation algorithm focuses on maximizing the

resource utilization and reducing the rental cost for the providers. As shown in Fig 10, we

Fig 7. Energy consumption under the synthetic loads.

https://doi.org/10.1371/journal.pone.0211729.g007

Fig 8. Resource wastage rates in the synthetic loads.

https://doi.org/10.1371/journal.pone.0211729.g008
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achieve slightly worse results with the EPA wrokload and better results with the NASAwork-

load. The proposed solution (SACO) is more efficient than the others for maximizing the

resource utilization under the heavy loads, such as the NASA workload.

Energy consumption: It is important to solve the energy consumption problem by choosing

a suitable algorithm during the dynamic scheduling process. As shown in Fig 11, the SACO

algorithm is clearly better than the others under the EPA workload. This is because it is easier

to consolidate the resources when running under a lighter load. With the NASA workload, the

SACO algorithm is slightly worse than the others. In addition, the ACO-P algorithm obtains

the better results for minimizing the energy consumption under the NASA workload.

Resource wastage ratio: The degree of resource wastage degree is an indicators of whether

the resources are used efficiently. As shown in Fig 12, the SACO algorithm obtains slightly

Fig 9. SLA violation rates under the realistic loads.

https://doi.org/10.1371/journal.pone.0211729.g009

Fig 10. CPU resource utilization under the realistic loads.

https://doi.org/10.1371/journal.pone.0211729.g010
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worse results than the others under the EPA workload, and it obtains the better results than

the others under the NASA workload. The proposed solution considers more factors. There-

fore, it is clear that the SACO algorithm is more efficient under denser loads, such as the

NASA workload.

In summary, realistic workloads were analyzed using simulated real-world loads, such as

the EPA and NASA workloads. The results show that the SACO algorithm slightly outper-

forms the others because it considers more factors, such as the SLA violations, resource wast-

age and energy consumption. In addition, it provides more efficient solutions for realistic

loads. A summary of the results from the realistic loads is given in Table 3.

Conclusion

Traditional scheduling approaches focus on the energy model to reduce the overhead. How-

ever, additional factors have effects during the scheduling process. In this paper, we develop a

Fig 11. Energy consumption under the realistic loads.

https://doi.org/10.1371/journal.pone.0211729.g011

Fig 12. CPU resource wastage rates under the realistic loads.

https://doi.org/10.1371/journal.pone.0211729.g012
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novel consolidation algorithm that uses multiple objectives, such as minimizing the cost over-

heads [57–58] and the power consumption [59]. First, we determine the hotspots by using the

score model in the data center. When the score threshold reaches a specific value, the hotspots

are identified. The score model solves the issue of when to migrate. Second, we quickly migrate

the VMs by using the PSO algorithm. To save the energy overheads, we take the VMs in the

under provisioning into the migrated list. This solves the question of which VMs should be

migrated. Third, we propose an improved ACO algorithm that simultaneously attempts to

minimize the rental cost and the power consumption. Using the Pareto efficiency leads to bet-

ter quality in solving the resource consolidation problem. This solves the issue of where to

migrate. We can then shut down the idle nodes and minimize the number of nodes. Finally,

we evaluate the algorithm under simulated and real workloads. The results show that the pro-

posed consolidation technique improves the utilization and enhances the scalability.

To enhance the depth of this study, further research will focus on several aspects. First,

additional factors have influences on the dynamic scheduling problem, such as the tempera-

ture and the frequency of the CPU. Second, the scheduling algorithm can be applied in com-

plex environments, such as for scientific workflows in IaaS. Degraded performance is another

future research direction. For example, over long periods of time, data corruption and exhaus-

tion of resources can cause performance degradation. Finally, the energy overhead should be

investigated in detail, potentially by using the adaptive DVFS technique or cooling systems to

manage the temperatures.
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Table 3. The results of the realistic workload by methods.

Objectives EPA NASA

SLA Resource utilization Power SLA Resource utilization Power

ACO-P 0.660 0.133 0.713 0.652 0.163 0.713

ACO-UP 0.655 0.152 0.709 0.649 0.181 0.718

MACO 0.654 0.156 0.705 0.649 0.179 0.717

SACO 0.663 0.117 0.704 0.634 0.179 0.717
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8. Mann Z. Á. Allocation of virtual machines in cloud data centers—a survey of problem models and opti-

mization algorithms. Acm Computing Surveys (CSUR). 2015; 48(1): 11. https://doi.org/10.1145/

2797211

9. Farahnakian F., Ashraf A., Pahikkala T., Liljeberg P., Plosila J., Porres I., & Tenhunen H. Using ant col-

ony system to consolidate VMs for green cloud computing. IEEE Transactions on Services Computing.

2015; 8(2): 187–198. https://doi.org/10.1109/TSC.2014.2382555

10. Li Y., Tang X., & Cai W. Dynamic bin packing for on-demand cloud resource allocation. IEEE Transac-

tions on Parallel and Distributed Systems. 2016; 27(1): 157–170. https://doi.org/10.1109/TPDS.2015.

2393868

11. Verma, A., Ahuja, P., & Neogi, A. pMapper: power and migration cost aware application placement in

virtualized systems. In Proceedings of the 9th ACM/IFIP/USENIX International Conference on Middle-

ware. Springer-Verlag New York, Inc. 2008 Dec; 243–264. https://doi.org/10.1007/978-3-540-89856-6_

13

12. Salimian L., Esfahani F. S., & Nadimi-Shahraki M. H. An adaptive fuzzy threshold-based approach for

energy and performance efficient consolidation of virtual machines. Computing. 2016; 98(6): 641–660.

https://doi.org/10.1007/s00607-015-0474-5

13. Wu, Y., Tang, M., & Fraser, W. A simulated annealing algorithm for energy efficient virtual machine

placement. In Systems, Man, and Cybernetics (SMC), 2012 IEEE International Conference on IEEE.

2012 Oct; 1245–1250. https://doi.org/10.1109/ICSMC.2012.6377903

14. Chuang, I. H., Tsai, Y. T., Horng, M. F., Kuo, Y. H., & Hsu, J. P. A ga-based approach for resource con-

solidation of virtual machines in clouds. In Asian Conference on Intelligent Information and Database

Systems. Springer, Cham. 2014 April; 342–351. https://doi.org/10.1007/978-3-319-05476-6_35

15. Li H., Zhu G., Cui C., Tang H., Dou Y., & He C. Energy-efficient migration and consolidation algorithm of

virtual machines in data centers for cloud computing. Computing. 2016; 98(3): 303–317. https://doi.org/

10.1007/s00607-015-0467-4

16. Lee Z. J., Su S. F., Chuang C. C., & Liu K. H. Genetic algorithm with ant colony optimization (GA-ACO)

for multiple sequence alignment. Applied Soft Computing. 2008; 8(1), 55–78. https://doi.org/10.1016/j.

asoc.2006.10.012

17. Wang Y., Ma X., Liu M., Gong K., Liu Y., Xu M., & Wang Y. Cooperation and profit allocation in two-ech-

elon logistics joint distribution network optimization. Applied Soft Computing. 2017; 56, 143–157.

https://doi.org/10.1016/j.asoc.2017.02.025

18. Boru D., Kliazovich D., Granelli F., Bouvry P., & Zomaya A. Y. Energy-efficient data replication in cloud

computing datacenters. Cluster computing. 2015; 18(1): 385–402. https://doi.org/10.1007/s10586-

014-0404-x

A novel hybrid algorithm on resource consolidation strategy

PLOS ONE | https://doi.org/10.1371/journal.pone.0211729 February 6, 2019 23 / 25

https://doi.org/10.1109/CINE.2015.31
https://doi.org/10.1016/j.jnca.2015.10.004
https://doi.org/10.1016/j.jnca.2015.10.004
https://doi.org/10.1109/JPROC.2013.2287711
https://doi.org/10.1109/UCC.2012.30
https://doi.org/10.1007/s10922-014-9307-7
https://doi.org/10.1007/s10922-014-9307-7
https://doi.org/10.1145/2788397
https://doi.org/10.1016/j.jnca.2015.02.002
https://doi.org/10.1145/2797211
https://doi.org/10.1145/2797211
https://doi.org/10.1109/TSC.2014.2382555
https://doi.org/10.1109/TPDS.2015.2393868
https://doi.org/10.1109/TPDS.2015.2393868
https://doi.org/10.1007/978-3-540-89856-6_13
https://doi.org/10.1007/978-3-540-89856-6_13
https://doi.org/10.1007/s00607-015-0474-5
https://doi.org/10.1109/ICSMC.2012.6377903
https://doi.org/10.1007/978-3-319-05476-6_35
https://doi.org/10.1007/s00607-015-0467-4
https://doi.org/10.1007/s00607-015-0467-4
https://doi.org/10.1016/j.asoc.2006.10.012
https://doi.org/10.1016/j.asoc.2006.10.012
https://doi.org/10.1016/j.asoc.2017.02.025
https://doi.org/10.1007/s10586-014-0404-x
https://doi.org/10.1007/s10586-014-0404-x
https://doi.org/10.1371/journal.pone.0211729


19. Dabbagh M., Hamdaoui B., Guizani M., & Rayes A. Toward energy-efficient cloud computing: Predic-

tion, consolidation, and overcommitment. IEEE network. 2015; 29(2): 56–61. https://doi.org/10.1109/

MNET.2015.7064904

20. Lin X., Wang Y., Xie Q., & Pedram M. Task scheduling with dynamic voltage and frequency scaling for

energy minimization in the mobile cloud computing environment. IEEE Transactions on Services Com-

puting. 2015; 8(2): 175–186. https://doi.org/10.1109/TSC.2014.2381227

21. Xue B., Zhang M., & Browne W. N. Particle swarm optimization for feature selection in classification: A

multi-objective approach. IEEE transactions on cybernetics. 2013; 43(6), 1656–1671. https://doi.org/

10.1109/TSMCB.2012.2227469 PMID: 24273143

22. Manvi S. S., & Shyam G. K. Resource management for Infrastructure as a Service (IaaS) in cloud com-

puting: A survey. Journal of Network and Computer Applications. 2014; 41: 424–440. https://doi.org/

10.1016/j.jnca.2013.10.004

23. Hameed A., Khoshkbarforoushha A., Ranjan R., Jayaraman P. P., Kolodziej J., Balaji P., . . . & Khan S.

U. A survey and taxonomy on energy efficient resource allocation techniques for cloud computing sys-

tems. Computing. 2016; 98(7): 751–774. https://doi.org/10.1007/s00607-014-0407-8

24. Beloglazov A., & Buyya R. Optimal online deterministic algorithms and adaptive heuristics for energy

and performance efficient dynamic consolidation of virtual machines in cloud data centers. Concurrency

and Computation: Practice and Experience. 2012; 24(13): 1397–1420. https://doi.org/10.1002/cpe.

1867

25. Pawar, C. S., & Wagh, R. B. Priority based dynamic resource allocation in cloud computing with modi-

fied waiting queue. In Intelligent Systems and Signal Processing (ISSP), 2013 International Conference

on IEEE. 2013 March; 311–316. https://doi.org/10.1109/ISSP.2013.6526925

26. Mishra M., Das A., Kulkarni P., & Sahoo A. Dynamic resource management using virtual machine

migrations. IEEE Communications Magazine. 2012; 50(9): 34–40. https://doi.org/10.1109/MCOM.

2012.6295709

27. Wang, C. F., Hung, W. Y., & Yang, C. S. A prediction based energy conserving resources allocation

scheme for cloud computing. In Granular Computing (GrC), 2014 IEEE International Conference on

IEEE. 2014 Oct; 320–324. https://doi.org/10.1109/GRC.2014.6982857

28. Liu, N., Lin, X., & Wang, Y. Data center power management for regulation service using neural network-

based power prediction. In Quality Electronic Design (ISQED), 2017 18th International Symposium on

IEEE. 2017 March; 367–372. https://doi.org/10.1109/ISQED.2017.7918343

29. Qazi, K., Li, Y., & Sohn, A. Workload prediction of virtual machines for harnessing data center

resources. In Cloud Computing (CLOUD), 2014 IEEE 7th International Conference on IEEE. 2014

June; 522–529. https://doi.org/10.1109/CLOUD.2014.76

30. Halder, K., Bellur, U., & Kulkarni, P. Risk aware provisioning and resource aggregation based consoli-

dation of virtual machines. In Cloud Computing (CLOUD), 2012 IEEE 5th International Conference on

IEEE. 2012, June; 598–605. https://doi.org/10.1109/CLOUD.2012.86

31. Ferreto T. C., Netto M. A., Calheiros R. N., & De Rose C. A. Server consolidation with migration control

for virtualized data centers. Future Generation Computer Systems. 2011; 27(8): 1027–1034. https://

doi.org/10.1016/j.future.2011.04.016

32. Shen, Z., Subbiah, S., Gu, X., & Wilkes, J. Cloudscale: elastic resource scaling for multi-tenant cloud

systems. In Proceedings of the 2nd ACM Symposium on Cloud Computing. ACM. 2011 Oct; 5. https://

doi.org/10.1145/2038916.2038921

33. Gong, Z., Gu, X., & Wilkes, J. Predictive elastic resource scaling for cloud system. In 2010 International

Conference on Network and Service Management (CNSM). 2010; 9–16. https://doi.org/10.1109/

CNSM.2010.5691343

34. Lovász G., Niedermeier F., & De Meer H. Performance tradeoffs of energy-aware virtual machine con-

solidation. Cluster Computing. 2013; 16(3), 481–496. https://doi.org/10.1007/s10586-012-0214-y

35. Masoumzadeh, S. S., & Hlavacs, H. An intelligent and adaptive threshold-based schema for energy

and performance efficient dynamic VM consolidation. In European Conference on Energy Efficiency in

Large Scale Distributed Systems. Springer, Berlin, Heidelberg. 2013 April; 85–97. https://doi.org/10.

1007/978-3-642-40517-4_8

36. Jung, G., Hiltunen, M. A., Joshi, K. R., Schlichting, R. D., & Pu, C. Mistral: Dynamically managing

power, performance, and adaptation cost in cloud infrastructures. In 2010 International Conference on

Distributed Computing Systems. IEEE. 2010 June; 62–73. https://doi.org/10.1109/ICDCS.2010.88

37. Zuo L., Shu L., Dong S., Zhu C., & Hara T. A multi-objective optimization scheduling method based on

the ant colony algorithm in cloud computing. IEEE Access. 2015; 3: 2687–2699. https://doi.org/10.

1109/ACCESS.2015.2508940

A novel hybrid algorithm on resource consolidation strategy

PLOS ONE | https://doi.org/10.1371/journal.pone.0211729 February 6, 2019 24 / 25

https://doi.org/10.1109/MNET.2015.7064904
https://doi.org/10.1109/MNET.2015.7064904
https://doi.org/10.1109/TSC.2014.2381227
https://doi.org/10.1109/TSMCB.2012.2227469
https://doi.org/10.1109/TSMCB.2012.2227469
http://www.ncbi.nlm.nih.gov/pubmed/24273143
https://doi.org/10.1016/j.jnca.2013.10.004
https://doi.org/10.1016/j.jnca.2013.10.004
https://doi.org/10.1007/s00607-014-0407-8
https://doi.org/10.1002/cpe.1867
https://doi.org/10.1002/cpe.1867
https://doi.org/10.1109/ISSP.2013.6526925
https://doi.org/10.1109/MCOM.2012.6295709
https://doi.org/10.1109/MCOM.2012.6295709
https://doi.org/10.1109/GRC.2014.6982857
https://doi.org/10.1109/ISQED.2017.7918343
https://doi.org/10.1109/CLOUD.2014.76
https://doi.org/10.1109/CLOUD.2012.86
https://doi.org/10.1016/j.future.2011.04.016
https://doi.org/10.1016/j.future.2011.04.016
https://doi.org/10.1145/2038916.2038921
https://doi.org/10.1145/2038916.2038921
https://doi.org/10.1109/CNSM.2010.5691343
https://doi.org/10.1109/CNSM.2010.5691343
https://doi.org/10.1007/s10586-012-0214-y
https://doi.org/10.1007/978-3-642-40517-4_8
https://doi.org/10.1007/978-3-642-40517-4_8
https://doi.org/10.1109/ICDCS.2010.88
https://doi.org/10.1109/ACCESS.2015.2508940
https://doi.org/10.1109/ACCESS.2015.2508940
https://doi.org/10.1371/journal.pone.0211729


38. Guerrero C., Lera I., & Juiz C. Genetic algorithm for multi-objective optimization of container allocation

in cloud architecture. Journal of Grid Computing. 2018; 16(1), 113–135. https://doi.org/10.1007/

s10723-017-9419-x

39. Wang Y., Ma X., Li Z., Liu Y., Xu M., & Wang Y. Profit distribution in collaborative multiple centers vehi-

cle routing problem. Journal of cleaner production. 2017; 144, 203–219. https://doi.org/10.1016/j.

jclepro.2017.01.001

40. Xiong, P., Wang, Z., Malkowski, S., Wang, Q., Jayasinghe, D., & Pu, C. Economical and robust provi-

sioning of n-tier cloud workloads: A multi-level control approach. In Distributed Computing Systems

(ICDCS), 2011 31st International Conference on IEEE. 2011, June; 571–580. https://doi.org/10.1109/

ICDCS.2011.88

41. Zhang, Q., Zhani, M. F., Zhang, S., Zhu, Q., Boutaba, R., & Hellerstein, J. L. Dynamic energy-aware

capacity provisioning for cloud computing environments. In Proceedings of the 9th international conference

on Autonomic computing. 2012, September; ACM. 145–154. https://doi.org/10.1145/2371536.2371562

42. Jairath N., & Weinstein J. The Delphi methodology (Part one): A useful administrative approach. Cana-

dian journal of nursing administration. 1994; 7(3): 29–42. PMID: 7880844

43. Jahanshahloo G. R., Lotfi F. H., & Izadikhah M. Extension of the TOPSIS method for decision-making

problems with fuzzy data. Applied Mathematics and Computation. 2006; 181(2): 1544–1551. https://

doi.org/10.1016/j.amc.2006.02.057

44. Chang C. L., Wei C. C., & Lee Y. H. Failure mode and effects analysis using fuzzy method and grey the-

ory. Kybernetes. 1999; 28(9): 1072–1080. https://doi.org/10.1108/03684929910300295
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