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Abstract

Mathematical models for signaling pathways are helpful for understanding molecular mech-

anism in the pathways and predicting dynamic behavior of the signal activity. To analyze the

robustness of such models, local sensitivity analysis has been implemented. However, such

analysis primarily focuses on only a certain parameter set, even though diverse parameter

sets that can recapitulate experiments may exist. In this study, we performed sensitivity

analysis that investigates the features in a system considering the reproducible and multiple

candidate values of the model parameters to experiments. The results showed that although

different reproducible model parameter values have absolute differences with respect to

sensitivity strengths, specific trends of some relative sensitivity strengths exist between

reactions regardless of parameter values. It is suggested that (i) network structure consider-

ably influences the relative sensitivity strength and (ii) one might be able to predict relative

sensitivity strengths specified in the parameter sets employing only one of the reproducible

parameter sets.

Introduction

Mathematical models for signal transduction pathway can support the understanding of

molecular mechanism in the pathway and predict the dynamic behavior of molecular activity

[1–6]. To construct a complete mathematical model, we require information pertaining to the

experimentally known pathway, time-course and dose response of molecular activity, and

model parameters such as phosphorylation and binding rates in a system. However, some of

this information, in particular, the model parameters, is difficult or impossible to obtain or

measure experimentally. Therefore, we must estimate the model parameter values to recapitu-

late experiments in simulations [7–9].

Signal molecules in signal transduction pathway transmit extra-cellular information into

transcription factors by activation, such as phosphorylation and ubiquitination. We can mea-

sure such activities but their values are relative abundances and not absolute abundances. A

mathematical model must recapitulate the dynamic behaviors based on such experimentally

relative abundances (Fig 1) [2, 3, 10]. However, some candidate parameter sets that can
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recapitulate the dynamic behavior of activities in experiments can be estimated because the

combinations of the parameter values with the same dynamic behavior exist or the experimen-

tal data include noise and fluctuation.

To analyze the robustness of a model, sensitivity analysis has been implemented previously

[11]. Local sensitivity analysis investigates an infinitesimal change in the target of a parameter

set that can recapitulate experiments and can support features under a specific condition with

known experiments. However, the sensitivity depends on the parameter values of the model.

The common features for models with various reproducible candidates of model parameters

are unclear.

In this study, we estimate diverse reproducible parameter values by parameter evaluation

and analyze their characterization using local sensitivity analysis, focusing on the different

and common features of sensitivity from reproducible parameter sets. The results show that

although different reproducible model parameter values have absolute differences with

respect to sensitivity strengths, specific trends of some relative sensitivity strengths exist

between reactions regardless of parameter values. To the best of our knowledge, this is the

first study to quantitatively investigate sensitivity and its relationships in reproducible

parameter sets.

Materials and methods

Mathematical models and parameter estimation

We used four models, as seen in the signaling pathway model (Fig 2A) [12]. These network

structures resemble signaling hubs in well-known signaling pathways, such as p53, MAPK, or

NF-κB pathway, and involve a reversible reaction (M1), a cycle (M2), a negative feedback loop

(M3), and an incoherent feedforward loop (M4). The models are formulated considering

Michaelis–Menten and mass action. These models have input signal patterns s of 10 different

stimulations (Fig 2B). These input signal patterns express different combinations of “fast” and

“slow” initiation and decay phases and can have specific respective effects on reactions in sig-

naling hubs [12]. The functions and parameters of the input signal patterns are defined in S1

Fig. X� is the output.

Fig 1. Overview of sensitivity analysis in signaling pathway model. (A) Overview of sensitivity analysis. (B) Values of signal activity measured experimentally

are scaled in mathematical model.

https://doi.org/10.1371/journal.pone.0211654.g001
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First, we performed stochastic simulations using the Chemical Langevin equation (CLE)

[13] with the original parameter values reported in Behar et al. [12] (Fig 2A), and generated

activity value sets every 30 min as control data. For the stochastic simulation, the CLE was inte-

grated using the Euler–Maruyama algorithm [14] that reproduces the discrete Wiener process.

dXðtÞ ¼
PM

j¼1
vjajðXðtÞÞdt þ

PM
j¼1
vj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ajðXðtÞÞ

q
dWjðtÞ; ð1Þ

where vj indicates the stoichiometry, M is the number of reactions, aj(X(t)) is the propensity

function for a reaction, and Wj (t) for 1≦j≦M are independent Wiener processes with gaussian

noise N(0, 1).

To obtain the diverse parameter values in parameter estimation, the control data used were

the stochastic simulation results in each parameter estimation round. Then, we used asynchro-

nous genetic local search with distance independent diversity control (AGLSDC)—which

combines local search with global search—[15] as the parameter estimation method, and esti-

mated 1000 candidate sets for the control data. The fitness function was used as the cosine

error [3] to obtain not the absolute values, but the dynamic behavior of the control data.
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Fig 2. Network and mathematical model in signaling hub. (A) M1: Reversible reaction, M2: Cycle reaction, M3: Negative feedback loop, M4: Incoherent

feedforward loop [12]. (B) Stimulation patterns of s in (A).

https://doi.org/10.1371/journal.pone.0211654.g002
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where N is the number of stimulation patterns, i.e., 10 in this case; x!simulation;i is a vector for val-

ues of X� in stimulation pattern i, obtained every 30 min for 300 min of the simulation; x!control;i

is a vector for values of X� corresponding to the control data in stimulation pattern i;
x!simulation;i � x

!
control;i is the inner product of x!simulation;i and x!control;i, and |�| denotes the magni-

tude of a vector. A low fitness means that the dynamic behaviors of the molecules in the simu-

lation are similar to the ones in the control data. A scaling factor a ¼ j x̂!control;ij=j x
!

simulation;ij,

where j x̂!control;ij is the mean of 1000 stochastic simulations, simulated with respect to the con-

trol data, can be calculated and scaled to the closest scale of the simulation to the control data

(Fig 1B) [2, 3, 16].

In addition to the parameter estimation AGLSDC, we performed random sampling to col-

lect 10000 parameter sets that could and could not recapitulate control data. Here, we defined

positive data (reproducible parameter sets) as follows: a simulation produces positive data if it

passes in standard errors from the averages x̂!control;i every 30 min into the control data, which

are calculated in the 1000 stochastic simulations. Otherwise, the data are negative. In this

study, all the parameters were estimated in the range of log(-15) to log(5).

Sensitivity analysis

The sensitivity of output X� to the i-th parameter was calculated as follows:

@lnqðpÞ
@lnpi

¼
@qðpÞ
@pi

pi
qðpÞ

; ð3Þ

where pi is the value of the i-th parameter, p is a vector p1, p2, . . ., pn, and q(p) is a target func-

tion. In this study, the target function used is a time-course integral of X�, which is a represen-

tative value of the dynamic behavior [17]. The sensitivity was numerically calculated with a

0.1% increase in the reaction rates.

Implementation

We used the CVODE (http://computation.llnl.gov/casc/sundials/main.html) solver to perform

numerical integration in the simulation. For the abovementioned analysis, the parameter sets

involving errors in calculation by CVODE were excluded.

Results

Distribution of reproducible parameter sets in parameter space

We obtained positive data using AGLSDC and random sampling as follows: 546 in M1, 504 in

M2, 112 in M3, and 169 in M4. These simulations can recapitulate dynamic behaviors but they

are not necessarily consistent with the absolute values of the control data (Fig 3A). The esti-

mated parameter sets were distributed in a wide range of values (Fig 3B). To confirm the

details of the parameter values, we investigated the combinations of values of model parame-

ters (S2 Fig). In M1, k1 and k2a in the positive data were correlated with a slight spread. The

green circle of M1 in S2 Fig indicates partial correlation in high values of k1 and km1. These

values supported the spread in k1 and k2a. The relationships between k1 and km1 were also

seen in the other models (M2–M4 in S2 Fig). k3 in M2, M3, and M4 was also spread by km3.

In M3, the parameter values between k2b and k3 or k4 were correlated. In M4, the parameter

space of k2b was expanded by km2. These results indicate that the relationships among repro-

ducible parameter values were correlated or partially correlated and balanced to recapitulate

the control data. In particular, the rate parameters such as k1 and k2 exhibit correlation for
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reproducibility of dynamic behavior in control data, and the Michaelis constants can provide

the expansion of parameter space. These results are consistent with those obtained when we

carried out parameter estimation manually.
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Fig 3. Absolute and scaling time-course dynamics and distribution of parameter values. (A) Time courses of absolute and scaling values in simulation. The gray and

red lines indicate negative data and positive data, respectively. The black point and its error bar indicate the mean and standard deviation in stochastic simulation,

respectively. (B) Distribution of parameter values.

https://doi.org/10.1371/journal.pone.0211654.g003
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Difference in distributions of sensitivity among signal patterns

The section describes the results for the sensitivity analysis of the time-course integral of

X� to positive and negative data and presents their distributions between signal patterns

(Fig 4). In these models, the sensitivities for each reaction were clearly separated into pos-

itive or negative values in all the parameter sets. All the sensitivities of reactions D, DS,

FBA, FFA exhibited negative values. This indicates that the increase in a reaction rate

always causes increase or decrease in X� as per the specific reaction in these network

structures.

In these models, the distributions of sensitivity in positive data were different between

signal patterns (Fig 4). For example, the distributions of sensitivity of reactions A and D

at signal pattern S4 in M1 were smaller than that at S6 in M1. These indicates that the

range of sensitivity strength in positive data depends on the signal patterns. Furthermore,

the distributions of sensitivity among rate parameters were different, which indicates that

the influences of the rate parameters on X� were different. Overall, the distribution of sen-

sitivity for reproducible parameter sets depends on the signal patterns and network

structures.
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https://doi.org/10.1371/journal.pone.0211654.g004
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Statistical separation of sensitivity strengths between reactions at different

signal patterns

Next, we performed principal component analysis (PCA) for the sensitivity strength in each

model to analyze the trends of sensitivity among reactions and signal patterns (Fig 5). In all

the positive and negative data (bottom part of Fig 5), the principle components (PCs) of sensi-

tivity were clearly separated into each reaction compared to those of the positive data (top part

of Fig 5). The result indicates that the sensitivity strengths of each reaction for output X� were

statistically different for all input signals, although the ratios of sensitivity strengths between

reactions were different for different parameter sets (S3 Fig). In fact, the ranges of sensitivity

strength in the negative data were different between reactions compared to differences

between signal patterns (Fig 4). Besides, for the positive data, the PCs of sensitivity were differ-

ent between input signal patterns except for the case of M1. For M1, the sensitivity strengths of

reaction A and D at each signal pattern were similar (Fig 5); this is because the PCs were

almost same between reactions at a given signal pattern (S3 Fig). In the other models, sensitiv-

ity strengths did not exhibit clear trends among reactions and signal patterns.

Dependence of sensitivity strength on parameter values and its relative

trends in a model

Next, we performed the PCA of parameter values to investigate the relative sensitivity strength

of reactions for each parameter set (Fig 6). We present the heatmaps for the zscore of sensitiv-

ity strengths in each parameter set to compare the relative sensitivity strengths between reac-

tions for a given signal pattern. The zscore is calculated from sensitivity strengths of all

reactions at a signal pattern in a model for a parameter set to check whether the sensitivity for

a given reaction is higher or lower than that for other reactions. At signal pattern S3 in M1, the

Fig 5. PCA of sensitivity strength in model. Shape indicates a reaction.

https://doi.org/10.1371/journal.pone.0211654.g005
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sensitivity strengths for reaction A were higher than those for reaction D but the strengths for

reaction D were higher when k2a was high. However, these strengths were nearly equivalent,

as shown in S3 Fig. In M2, the relative sensitivity strengths between the reactions were same in

any given parameter set. In M3, when k2b was high, the sensitivity of reaction FBA was higher,

whereas in the other parameter sets, the sensitivity of reaction A was higher. In M4, when k3

and k4 were high, the sensitivity of reaction D was slightly lower. This indicates that the rela-

tive sensitivity strengths depend on a balance or combination of parameter values. To gain fur-

ther insights, we qualitatively investigated percentages at which a given reaction has higher

sensitivity than another reaction (Fig 7), showing that the sensitivities of some reactions in all

models were always higher or lower than those of other specific reactions and concluding that

these relative sensitivity strengths may be features of reproducible parameter sets. Overall, the

Fig 6. Relationship between model parameter and sensitivity at signal pattern S3. (A) Principal component loading and principal component of parameter sets in

positive data. (B) Relative sensitivity strength of parameter sets at signal pattern S3. The color indicates the zscore of the sensitivity strength between reactions for each

parameter set.

https://doi.org/10.1371/journal.pone.0211654.g006
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results suggest that the relative sensitivity strengths between all reactions in a model are not

necessarily the same for positive data and depend on the balance of parameter values and sig-

nal patterns (Fig 6, S4 Fig), whereas identical trends of the relative sensitivity strengths for spe-

cific reactions are obtained for all reproducible parameter sets (Fig 7, S5 Fig).

Correlation between sensitivity and its target integral

Finally, we calculated the Pearson correlation coefficient between the integral and sensitivity

to investigate the dependency of sensitivity target on the sensitivity strength (Fig 8). A negative

correlation means higher sensitivity strength at lower integral and lower sensitivity strength at

higher integral, while the opposite is true for positive correlation. The correlation coefficients

at the signal pattern S2 and of reaction R in M2 were higher. In these reactions, the sensitivity

strengths depend on the absolute integral without scaling (Fig 3). However, in most cases, the

correlation coefficients exhibited low values. These results suggest that the influence of the

absolute dynamic behavior on sensitivity is slight in most models.

Discussion

We examined diverse parameter sets that can or cannot recapitulate experimental data to

investigate the features of sensitivity in specific network structure and dynamics. We found

that such reproducible parameter sets show different distributions and ranges of sensitivity

strength between reactions and signal patterns. The relative trends of sensitivity strength in

positive data were not necessarily the same between every reaction, but specific relative trends

of sensitivity strength between specific reactions were always observed for reproducible

parameter sets (Figs 6 and 7 and S4 and S5 Figs). These specific relationships of relative sensi-

tivity strengths were found to be reliable sensitivity features for model prediction. Further-

more, these features imply that the prediction of relative sensitivity strengths specified in

positive data may be accomplished using only one reproducible parameter set, because the

trends of relative sensitivity strength are identical across reproducible parameter sets.

In previous work [18], the sensitivity from network topology in steady-state was analytically

solved. It was shown that the network structure or topology determines the qualitatively posi-

tive or negative value of sensitivity. In the present study, all the values of sensitivity at each
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reaction also showed positive or negative trends (Fig 4). This may be approximately proved by

the method given in a previous work [18]. Recently, quantitative or relative sensitivity

strengths between reactions have become indicators for the target molecules of a disease [19].

Usually, the signaling system is important to the dynamic behavior after stimulation. When

steady-state is assumed, we cannot know the dynamics of activity such as damped oscillations

[3]. To understand the effect of reaction on such transient responses is an advantage of sensi-

tivity analysis such as the numerical analysis performed herein. In our analysis, the absolute

sensitivity strength was different for the reproducible parameter sets, but we could confirm

that there are relative trends between sensitivity strengths in positive data.

In numerical analysis, the estimated parameter values depend on parameter estimation

method employed. Therefore, we cannot know whether all parameter sets that recapitulate

experimental data are accurately estimated. In this study, we checked the ranges and distribu-

tions of parameter values (Fig 3B, S2 Fig), which seem to be specific features of reproducible

parameter values in positive data because negative data uses a wide range and shows region of

non-reproducible parameter values. The correlation between model parameter values in posi-

tive data (S2 Fig) may be ascribed to the controlled balance of positive and negative regulation

to fitness in parameter estimation. Differences between the trends of relative sensitivity

strengths obtained for different parameter sets in positive data might be indicative of bifurca-

tion, since simulations in positive data do not ensure exact control data (Figs 6 and 7 and S4

Fig 8. Correlation between sensitivity and its target integral. The size of circle indicates the value of the absolute

correlation coefficient. Red and blue colors indicate positive and negative correlations, respectively.

https://doi.org/10.1371/journal.pone.0211654.g008
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and S5 Figs). The results suggest that the positive data used in this study might be sufficient to

determine the features of sensitivity in these models.

In this study, we focus on the local sensitivity analysis. However, global sensitivity analysis,

which investigates change at a wide range of values in parameters, is also effective to under-

stand the changes in dynamic behaviors for parameter change at a wide range of parameter

values in a model [20]. We will investigate them in the near future. Another task to be consid-

ered in more detail is the parameter estimation. Current parameter estimation methods, such

as genetic algorithms, find it difficult to estimate a large number of unknown parameter values

in a large-scale and complex model. Thus, we used simple models in this study to evaluate the

sensitivity features in estimable reproducible parameter sets. A better parameter estimation

method is however required to understand a complex model.

Supporting information

S1 Fig. Equations (A) and parameters (B) used to define functions S1-10 in input signal pat-

terns.

(PDF)

S2 Fig. Distribution of parameter values in positive and negative data. The blue circle indi-

cates correlation between parameters. The green circle and arrow respectively indicate partial

correlation and its corresponding area to the spread of the parameter. Correlation or partial

correlation between parameter values widens the parameter space in reproducible parameter

sets.

(PDF)

S3 Fig. Ratio of sensitivity between reactions. Ratio of sensitivity for each pair of reactions in

a model. Log2(ratio) = 0 indicates that the sensitivity for the two reactions is equal. Gray

denotes negative data, while red denotes positive data.

(PDF)

S4 Fig. Sensitivity strength at PC for parameter values. PC1 and PC2 in (A) M1, (B) M2, (C)

M3, and (D) M4 correspond to the ones in Fig 6. The color map shows the zscore of the sensi-

tivity strength between reactions at each parameter set.

(PDF)

S5 Fig. Qualitative comparison of sensitivity strength between reactions. The presented val-

ues indicate percentages (%) at which the upper reaction has higher sensitivity than the left

reaction in a given reproducible parameter set. For a given comparison, percentages not add-

ing up to 100% indicate the existence of identical sensitivities.

(PDF)
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