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Abstract

Familial Dysautonomia (FD) is an autosomal recessive congenital neuropathy that results

from a point mutation at the 5’ splice site of intron 20 in the IKBKAP gene. This mutation

decreases production of the IKAP protein, and treatments that increase the level of the full-

length IKBKAP transcript are likely to be of therapeutic value. We previously found that

phosphatidylserine (PS), an FDA-approved food supplement, elevates IKAP levels in cells

generated from FD patients. Here we demonstrate that combined treatment of cells gener-

ated from FD patients with PS and kinetin or PS and the histone deacetylase inhibitor tri-

chostatin A (TSA) resulted in an additive elevation of IKAP compared to each drug alone.

This indicates that the compounds influence different pathways. We also found that pridopi-

dine enhances production of IKAP in cells generated from FD patients. Pridopidine has an

additive effect on IKAP levels when used in combination with kinetin or TSA, but not with

PS; suggesting that PS and pridopidine influence IKBKAP levels through the same mecha-

nism. Indeed, we demonstrate that the effect of PS and pridopidine is through sigma-1

receptor-mediated activation of the BDNF signaling pathway. A combination treatment with

any of these drugs with different mechanisms has potential to benefit FD patients.

Introduction

Familial Dysautonomia (FD) is an autosomal recessive congenital neuropathy that is charac-

terized by abnormal development and progressive degeneration of the sensory and autonomic

nervous systems [1–3]. The gene associated with the disease is IKBKAP, which encodes a

150-kDa protein called IκB kinase complex-associated protein (IKAP) [4,5]. The mutation

observed in 99.5% of FD patients is a transition from T to C at position 6 of the 5’ splice site of

intron 20 [1,6]. This mutation occurs almost exclusively in the Ashkenazi Jewish population,

with carrier frequency ranging from 1 in 32 to as high as 1 in 18 in those of Polish descent

[1,7]. The mutation causes a shift in the splicing pattern of the IKBKAP pre-mRNA. Normally,

exon 20 is constitutively included in the mature mRNA, but in the nervous systems of FD

patients exon 20 is mainly skipped [4,8]. Interestingly, in non-nervous system tissues of FD
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patients, both wild-type (WT) and mutant IKBKAP mRNA are observed in varying ratios [4].

We demonstrated previously that the affinity of the splicing factor U1 for the mutated 5’ splice

site is reduced compared to that for the WT 5’ splice site [9].

The function of IKAP has been interrogated using both cellular and animal models; these

models have also been important in analyses of potential therapeutic agents [10]. Although

IKAP is mostly localized in the cytoplasm, it was initially identified as subunit of the elongator

complex which assists RNA polymerase II in transcription in the nucleus, affecting the tran-

script elongation of several genes [6,11–13]. IKAP is also implicated in regulation of the JNK

signaling pathway [14,15], tRNA modification [16,17], cell adhesion, cell migration, and cyto-

skeleton stability and dynamics [13,18–20]. IKAP is also crucial for oligodendrocyte differenti-

ation and/or myelin formation [21,22], and vascular and neural development during

embryogenesis [19,23,24].

Previous studies have shown that increasing the level of the full-length IKBKAP transcript

is likely to be of therapeutic value. A number of strategies have been identified that increase

the inclusion level of exon 20 in cells derived from FD patients or FD mouse models, and a

platform has been developed to screen for potential small molecules that can affect IKBKAP
splicing [25–29]. We previously demonstrated that phosphatidylserine (PS) elevates IKBKAP
transcription and, as consequence, IKAP protein levels in cells generated from FD patients

(FD cells) and in humanized FD mice [30,31]. PS treatment releases FD cells from cell-cycle

arrest [30], affects genes involved in Parkinson’s disease [31], and improves axonal transport

[20,32]. PS treatment upregulates IKBKAP transcription by CREB and ELK1, which bind to

the IKBKAP promoter region, activation of the mitogen-activated protein kinase (MAPK)

pathway [33]. PS has also been evaluated in a clinical trial in FD patients with positive results

[34]. Thus, fibroblasts generated from FD patients are a valid system for screening of potential

drugs and therapies.

The main goal of this research is to explore therapeutic approaches which will improve the

quality of life for FD patients, either by discovering new therapies or improving the effect of

known ones. A good therapy for FD would therefore be one that either affects the transcription

level or elevates the inclusion level of IKBKAP. We examined the combinations of PS with

additional agents to achieve a synergistic affect. Kinetin, a plant cytokinin, was previously

shown to increase the inclusion levels of exon 20 of IKBKAP in cells derived from FD patients;

however, the effective dosage in FD patients led to severe side effects [30,35–37]. Thus, a low

dose of kinetin combined with PS might be beneficial for FD patients. Inhibition of histone

deacetylase (HDAC) leads to chromatin relaxation and promotes transcription of certain

genes and inclusion of certain exons [38,39]. HDAC inhibitor trichostatin A (TSA) promote

transcription by selectively inhibiting the class I and II mammalian histone deacetylase

[40,41]. HDAC inhibitors have potential in treatment of neurodegenerative disorders as they

play a crucial protective role in neurodegeneration [42]. Here we show that combinations of

PS either with kinetin or with TSA had additive effects on IKAP levels in FD cells. We also

show that pridopidine, which is a dopaminergic stabilizer that has been evaluated as a treat-

ment for Huntington’s disease [43–46], elevates IKBKAP transcription and as consequence

IKAP protein levels. Combinations of pridopidine either with kinetin or with TSA had addi-

tive effects on IKAP levels in FD cells. However, PS and pridopidine did not have an additive

effect on IKAP levels in FD cells, suggesting that these two compounds have the same mecha-

nism of action. We provide evidence that PS activated the sigma-1 receptor (Sig-1R) in FD

cells. This leads to activation of the MAPK signaling pathway by brain-derived neurotrophic

factor (BDNF). Thus, the use of two drugs that act on different pathways have an additive

effect on IKAP level and have potential for treatment of FD patients and possibly other

disorders.

Combinatorial treatment increases IKAP levels in Familial Dysautonomia

PLOS ONE | https://doi.org/10.1371/journal.pone.0211602 March 19, 2019 2 / 15

design, data collection and analysis, decision to

publish, or preparation of the manuscript.

Competing interests: Funding of this work was

provided by Teva Pharmaceutical Industries Ltd. as

well as other sources. The funders had no role in

study design, data collection and analysis, decision

to publish, or preparation of the manuscript. This

support does not alter our adherence to PLOS ONE

policies on sharing data and materials.

Abbreviations: FD, Familial Dysautonomia; IKAP,

IκB kinase complex-associated protein; MAPK,

mitogen-activated protein kinase; BDNF, brain-

derived neurotrophic factor; PS,

phosphatidylserine; HDAC, histone deacetylase;

TSA, trichostatin A; WT, wild type.

https://doi.org/10.1371/journal.pone.0211602


Results

Combined treatments with phosphatidylserine improve treatment effect

observed compared to each drug alone

We evaluated several possible therapeutic agents used in combination for the effect on IKAP

levels in FD cells. We examined combinations of either PS with kinetin, which acts on splicing,

and then with TSA, which is an HDAC inhibitor. In FD cells, the combination of PS and kine-

tin led to elevation in IKAP protein level by 3.33 and 1.56 fold compared to PS and kinetin

alone, respectively (Fig 1A, ���p�0.005 and �p�0.05).

We then evaluated PS and TSA treatment and found that the combination resulted in the

highest elevation of IKAP protein level, and IKAP levels were increased by 1.4 and 1.53 fold

compared to PS and TSA alone, respectively (Fig 1B, ���p�0.005 and �p�0.05). We thus

found that several drugs can elevate IKAP protein level when used in combination compared

to the effect of each drug alone.

Pridopidine elevates IKAP protein levels in cells generated from FD

patients

Pridopidine was developed for symptomatic treatment of Huntington’s disease [45], which,

like FD, is a neurodegenerative disorder. In order to investigate whether pridopidine has an

effect on IKBKAP transcription, FD cells were treated with concentrations of pridopidine

ranging from 0–10,000 nM. We observed the largest increase in IKAP protein and IKBKAP
transcript levels at 500 nM of pridopidine. The addition of 500 nM pridopidine increased

Fig 1. Combined treatments with phosphatidylserine elevates IKAP protein level more efficiently than either drug alone. FD cells were treated for 5 days either

with (A) 50 μg/ml PS or 10 μM kinetin (Kin) or the combination of both drugs, and (B) 50 μg/ml PS or 100 ng/ml TSA or the combination of both drugs. Upper panels:

Western blotting of FD cell lysates after indicated treatments. Proteins were extracted, and western blots were analyzed by using anti-IKAP antibody or HSC-70

antibody; the latter was used as a protein-loading control. Lower panels: Quantification of IKAP fold change levels normalized to HSC70 and relative to control (vehicle

only). All quantifications were done using FusionCapt software. Asterisks denote statistically significant differences (�P� 0.05 and ���P� 0.005) relative to each

control; Student’s t-test.

https://doi.org/10.1371/journal.pone.0211602.g001
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IKBKAP expression levels by 1.43-fold after 5 days of treatment and the amount of IKAP pro-

tein by 4-fold after 10 days of treatment relative to untreated FD cells (Fig 2A and 2B, �p�0.05

and ���p�0.005). Pridopidine did not alter the ratio of the isoform that included exon 20

(WT) relative to the isoform in which exon 20 is skipped (Mut) but rather elevated the total

amount of both isoforms. This suggests that, like PS [30], pridopidine increases IKAP levels

by elevating IKBKAP transcription level rather than by affecting the inclusion level of exon 20

(S1 Fig).

Moreover, as does PS [32], pridopidine affects the levels of acetylated α-tubulin with the

highest effect of 3.12-fold elevation observed at 1000 nM concentration (Fig 2A and 2C,
���p�0.005). Since pridopidine was shown to affect BDNF secretion [45], we examined this

effect in FD cells by incubating the cells with a series of concentrations of pridopidine for 72

hours, and then we analyzed the medium for BDNF. We demonstrate that pridopidine affected

BDNF in FD cells both by elevating the amount of BDNF secreted compared to levels secreted

by untreated cells (Fig 2A and 2D), and by enhancing the expression of several BDNF-induced

genes (S2 Fig).

Combined treatments with pridopidine improve treatment effect observed

compared to each drug alone

We also examined combinations of either pridopidine with kinetin and TSA. In FD cells, pri-

dopidine combined with kinetin led to elevation in IKAP protein level by 3.31 and 1.26 fold

compared to pridopidine and kinetin alone, respectively (Fig 3A, ���p�0.005 and �p�0.05).

Pridopidine combined with TSA elevated IKAP levels by 1.19 and 1.36 fold compared to pri-

dopidine and TSA alone, respectively (Fig 3B, �p�0.05). This indicates that kinetin, like PS,

can elevate IKAP protein level when used in combination compared to the effect of each drug

alone.

Phosphatidylserine activates MAPK signaling pathway through BDNF

signaling in FD cells

We recently showed that PS elevates IKBKAP transcription level through activation of MAPK

pathway and found that inhibition of MEK1 and MEK2 decreased IKBKAP expression [33].

The effects of pridopidine on expression of genes involved in the BDNF signaling pathway are

mediated through the Sig-1R receptor [45,46]. We thus showed that the combination of PS

and pridopidine did not lead to higher levels of IKAP compared to treatment with either drug

alone (Fig 4A). This was not unexpected given that both act on the MAPK pathway. In order

to examine whether PS activates MAPK through Sig-1R, FD cells were treated either with PS

or pridopidine, with or without NE-100, which is a Sig-1R antagonist. Pretreatment with NE-

100 resulted in decreased IKAP levels in cells treated with PS than in cells only treated with PS

(Fig 4B, ��p�0.01). This suggests that the elevation in IKAP levels observed upon PS treatment

is likely due to Sig-1R activation. Although pridopidine activity was shown to be mediated

through Sig-1R [45,46], pretreatment with NE-100 did not alter the levels of IKAP in pridopi-

dine-treated FD cells (Fig 4B). In order to further investigate the effect on IKBKAP we then

examined MAPK/ERK inhibitor U0126 treatment combined with pridopidine. Pretreatment

with U0126 did reduce efficacy of pridopidine treatment (Fig 4C, �p�0.05), demonstrating

that pridopidine influences IKBKAP transcription through the MAPK/ERK signaling pathway.

These results indicate that pridopidine appears to mediate signal transduction that enhances

IKAP production through other cellular receptors in addition to Sig-1R.

Since we demonstrated that the effect of PS on IKBKAP involves Sig-1R and MAPK signal-

ing activation, we asked whether this activation is mediated through BDNF. In order to
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Fig 2. Pridopidine elevates IKAP protein level and affects acetylated α-tubulin levels and BDNF secretion in FD cells. (A-D) FD cells were treated with 0, 10, 100,

500, 1000, and 10,000 nM of pridopidine. Control treatment was done with vehicle only. (A) Western blotting of FD cell lysates with and without pridopidine treatment

for 10 days. Blot was probed using anti-IKAP, anti-acetylated α-tubulin, anti-BDNF, and anti-HSC-70 antibodies. HSC-70 was analyzed as a protein-loading control.

(B) Left panel: Fold change levels of IKAP relative to control analyzed after a 10-day treatment; levels were normalized to HSC70. Right panel: IKBKAP expression levels

relative to control analyzed by qRT-PCR from RNA extracted from FD cells after 5 days of treatment. (C) Fold change levels of acetylated α-tubulin relative to control
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examine BDNF involvement in response to PS treatment we evaluated expression of several

BDNF-induced genes in FD cells. PS treatment enhanced the expression of known BDNF tar-

gets including CDKN1A, HOMER1, RASSF8, EGR1, SRXN1, RGS17, and BAIAP2 (Fig 5).

Thus, PS affects IKBKAP transcription level by activating the BDNF signaling pathway.

Discussion

The main purpose of this study was to identify potential new therapies, and improve the thera-

peutic effect on IKAP in a way that could be beneficial for FD patients. In our pursuit to find a

way to improve the therapeutic effect in FD, we considered different agents with the potential

to affect IKBKAP. Several potential therapies for FD have been investigated including PS [30–

32,34], kinetin [36,37], tocotrienols [47,48], and the green tea component epigallocatechin gal-

late [49]. Other therapy strategies are based on the FD mutation acting by altering gene splic-

ing in the nerve system in a tissue-specific manner [25,27,50–52]. We focused on PS since it is

a well-studied, FDA-approved food supplement that upregulates IKAP production and has no

known side effects; therefore, we sought to identify other compounds that could be used in

combination with PS to benefit patients. Pridopidine was originally developed for symptom-

atic treatment of Huntington’s disease [45], and here we showed that pridopidine elevates

normalized to HSC70 analyzed after 10 days of treatment. (D) Quantification of percent BDNF secretion after a 72-hour incubation with pridopidine. All

quantifications were done using FusionCapt software. Asterisks denote statistically significant differences (�P� 0.05, ��P� 0.01, and ���P� 0.005) relative to control

(vehicle only); Student’s t-test.

https://doi.org/10.1371/journal.pone.0211602.g002

Fig 3. Combined treatments with pridopidine elevates IKAP protein level more efficiently than either drug alone. Western blotting of FD cell lysates after

indicated treatments. Proteins were extracted, and western blots were analyzed by using anti-IKAP antibody or HSC-70 antibody; the latter was used as a

protein-loading control. FD cells were treated for 7 days either with (A) 500 nM pridopidine (PD) or 10 μM kinetin or and the combination of both drugs, and

(B) 500 nM pridopidine or 100 ng/ml TSA or the combination of both drugs. Upper panels: Western blotting of FD cell lysates after indicated treatments.

Proteins were extracted, and western blots were analyzed by using anti-IKAP antibody or HSC-70 antibody; the latter was used as a protein-loading control.

Lower panels: Quantification of IKAP fold change levels normalized to HSC70 and relative to control (vehicle only). All quantifications were done using

FusionCapt software. Asterisks denote statistically significant differences (�P� 0.05 and ���P� 0.005) relative to each control; Student’s t-test.

https://doi.org/10.1371/journal.pone.0211602.g003
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Fig 4. Phosphatidylserine and pridopidine increase IKAP levels in FD cells through the same mechanism. (A) FD cells were treated either with 50 μg/ml of PS or

500 nM of pridopidine or the combination of both drugs. Proteins were extracted and analyzed after 7 days. Left panel: Western blot of extracted proteins analyzed using

anti-IKAP antibody. Right panel: IKAP fold change levels normalized to HSC70 and relative to control (vehicle only). (B) Left panel: Western blotting with anti-IKAP

antibody of lysates of FD cells treated with 50 μg/ml PS, 500 nM of pridopidine, 2 μM sigma-1 receptor inhibitor NE-100, or indicated combinations. Right panel: IKAP

fold change levels normalized to HSC70 and relative to control. (C) Left panel: Western blotting using anti-IKAP antibody of lysates of FD cells treated with 50 μg/ml PS

or 500 nM pridopidine with or without 2 μM MAPK inhibitor U0126. Right panel: IKAP fold change levels normalized to HSC70 and relative to control. All

quantifications were done using FusionCapt software. Asterisks denote statistically significant differences (�P� 0.05 and ��P� 0.01) relative to control (vehicle only

treated cells); Student’s t-test.

https://doi.org/10.1371/journal.pone.0211602.g004
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IKAP levels in FD cells. PS was tested in combination with pridopidine and with several other

drugs that have the potential to increase IKAP production through different mechanisms. We

demonstrated how the combination of either PS or pridopidine with a low concentration of

kinetin had an additive effect on IKAP in FD cells. Although kinetin effectively increases IKAP

levels in FD cells, the drug causes severe side effects [30,35–37]. Our data indicates that use of

kinetin, even at low concentrations, in combination with PS or pridopidine warrants further

testing.

Inhibition of HDACs has been previously linked to anticancer effects [53,54], and recent

studies have demonstrated the synergistic effect of HDAC inhibitors in combination with stan-

dard chemotherapy for treatment of cancer [55,56]. We previously showed that in dorsal root

ganglia, deficiency in IKAP results in elevation of histone deacetylase HDAC6 and reduction

in the level of acetylated α-tubulin. PS acts as an inhibitor of HDAC6, a class II HDAC, result-

ing in elevated α-tubulin levels and enhanced nerve growth factor movement along the micro-

tubules [20,32]. As PS is an inhibitor of a class II HDAC, we tested TSA, a class I inhibitor in

combination with PS and pridopidine. Additive effects were observed in both cases, demon-

strating the therapeutic potential of combining treatments with different mechanisms.

Finally, we demonstrated that in cells treated with the combination of PS and pridopidine,

the increase in IKAP production was similar to cells treated with either drug alone. In contrast,

the combinations of PS or pridopidine with either kinetin or TSA did have additive effects on

the level of the IKAP protein. This was not unexpected given that both PS and pridopidine act

on the MAPK pathway. This led us to investigate more deeply the mechanisms of action of PS

and pridopidine. Treatment with PS was recently shown to lead to activation of the MAPK sig-

naling pathway. Downstream regulators of MAPK signaling CREB and ELK1 bind to the IKB-
KAP promoter to upregulate its transcription [33]. However, how PS ignites this cascade was

not known. Here we showed that pretreatment with NE-100 resulted in decreased IKAP levels

following PS treatment. This suggests that PS affects IKBKAP through the activation of sigma-

1 receptor. Sig-1R is highly expressed in cells of the central nervous system and is located in

the endoplasmic reticulum membrane [57,58].

Sigma receptors have emerged as targets for novel therapeutic applications in neurodegen-

erative diseases [59,60], since their activation is linked with neuroprotection [61]. Sigma-1

receptor activation results in expression of BDNF, which mediates phosphorylation of the

tyrosine kinase B (TrkB) [62], which initiates a signaling cascade that involving MEK and ERK

that causes activation of MAPK [63,64]. We demonstrated that PS treatment of cells activated

a BDNF-mediated activation of MAPK signaling pathway by examining the effect of PS treat-

ment on several genes known to be induced by BDNF. Moreover, the Sig-1R inhibitor NE-100

blocked upregulation of IKAP caused by PS treatment. The fact that pre-treated FD cells show

lower BDNF activity is consistent with the previous finding that TrkB and BDNF are crucial

during sympathetic nervous system development [65]. Although pridopidine activity was

shown to be mediated through Sig-1R [45,46], pretreatment with the Sig-1R inhibitor NE-100

did not alter the levels of IKAP in pridopidine-treated FD cells. Pretreatment with MAPK/

ERK inhibitor U0126 did reduce efficacy of pridopidine treatment. Thus, the influence of pri-

dopidine on IKAP production might involve other cellular receptors that activate the MAPK

Fig 5. Phosphatidylserine activates the BDNF-mediated signaling pathway. (A-H) FD cells were treated with 50 μg/ml PS or a

vehicle only control, and RNA was extracted 5 days after the treatment. qPCR was used to quantify (A) WT IKBKAP, (B) CDKN1A,

(C) HOMER1, (D) RASSF8, (E) EGR1, (F) SRXN1, (G) RGS17, and (H) BAIAP2 mRNA transcripts. All values were normalized to

LZIC, which did not change as a result of PS treatment. Asterisks denote statistically significant differences (�P� 0.05 and
��P� 0.01) relative to control (vehicle only); Student’s t-test.

https://doi.org/10.1371/journal.pone.0211602.g005
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pathway. That PS and pridopidine do not have additive effects on IKAP production in FD cells

likely results from their effects BDNF activity.

In conclusion, the notion that different neurodegenerative disorders have common mecha-

nisms suggested to us that a therapy that has proven effective in treatment of Huntington’s dis-

ease might have activity in FD. This proved to be the case for pridopidine, which increased

production of IKAP in FD cells. Moreover, drugs that act through different mechanism can be

combined to yield an additive effect; further testing is warranted to determine whether any of

the combinations tested here are synergistic. In addition understanding the regulation of IKB-
KAP is also important and can help identify new strategies for therapy. Therefore, the results

in this study have great value and not only for FD patients.

Materials and methods

Cell culture

Human FD fibroblast cells homozygous for the mutation of T to C at position 6 of the 5’ splice

site of intron 20 of IKBKAP were obtained from the appendices of FD patients and immortal-

ized using telomerase activation [30]. The human FD cell line was cultured in Dulbecco’s mod-

ified Eagle’s medium, supplemented with 4.5 g/ml glucose, 2 mM L-glutamine, 100 U/ml

penicillin, 0.1 mg/ml streptomycin, and 20% fetal calf serum. Cells were grown in a 10-cm cul-

ture dish, under standard conditions, at 37˚C with 5% CO2. All cell culture materials were pur-

chased from Biological Industries. The cells were seeded and on the next day drug or drug

combinations were added. Every two days the medium was replaced and fresh treatments

were added. The cells were split as needed during the treatment period to allow proper growth.

PS treatment

InCog, a lipid composition containing PS-omega 3, DHA enriched, referred to here as PS, was

dissolved in organic solvent medium chain triglycerides (MCT). Both PS and MCT were

obtained from Enzymotec. In all treatments PS was used at 50 μg/ml and was compared to its

solvent as a control.

Pridopidine treatment

Pridopidine was obtained by Teva Pharmaceutical Industries Ltd. Followed by a calibration, in

all treatments Pridopidine was used at 500 nM and was compared to its solvent as a control.

Pridopidine was dissolved in doubly-distilled water (DDW).

Kinetin treatment

Kinetin was kindly provided by David Brenner and was dissolved in DMSO, and then diluted

in fresh medium (0.1% DMSO). Followed by a calibration, in all treatments kinetin was used

at 10 nM and was compared to its solvent only as control.

TSA treatment

TSA was purchased from Sigma and dissolved in DMSO according to manufacturer’s instruc-

tions, and then diluted in DDW (0.1% DMSO). TSA was used at 100 ng/ml and compared to

its solvent only as a control.
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Inhibitor treatments

U0126 was purchased from Calbiochem and dissolved in DMSO according to the manufac-

turer’s instructions. NE-100 was kindly provided by Teva and was dissolved in DDW. U0126

and NE-100 were used at 2 μM. For all experiments in which these inhibitors were used, the

inhibitor was added 1 hour prior to addition of the other drug.

Protein purification and western blot

Total proteins were extracted from the cells using a hypotonic lysis buffer (50 mM Tris-HCl,

pH 7.5, 1% NP40, 150 mM NaCl, 0.1% SDS, 0.5% deoxycholic acid, 1 mM EDTA) containing

protease inhibitor and phosphatase inhibitor cocktails I and II (Sigma). After 20-min centrifu-

gation at 14,000 g at 4˚C, the supernatant was collected and protein concentrations were mea-

sured using BioRad Protein Assay (BioRad). Secreted proteins were collected after a 72-h

incubation by Amicon Ultra-15 Centrifugal Filter Units (Merck) according to manufacturer’s

protocol. Proteins were separated by 10% or 12% SDS-PAGE and then electroblotted onto a

Protran nitrocellulose transfer membrane (Schleicher & Schuell). Immunoblots were incu-

bated with primary and secondary antibodies, and signal was enhanced using chemilumines-

cence (SuperSignal West Pico chemiluminescent substrate; Thermo Scientific). The signal was

detected by exposure to X-ray film or using the Fusion FX7 image acquisition system (Vilber

Lourmat). Data were quantified using ImageJ [66], or using the FusionCapt software. Reported

are data from at least three separate experiments.

Antibodies

Primary antibodies used for immunoblotting were as follows: anti-IKAP (Anaspec, cat#

54494), anti-acetylated α-tubulin (Sigma, cat# t7451), anti-BDNF (Alomone Labs, cat#

ANT010), and anti-Hsc70 (Santa Cruz Biotechnology, cat# sc-7298). Secondary antibodies

were donkey anti-rabbit IgG HRP (Abcam, cat# ab97064), or donkey anti-mouse IgG HRP

(Abcam, cat# ab98799), as appropriate.

RNA purification and quantitative RT–PCR

RNA was extracted from FD cells using TRI reagent (Sigma) and reverse transcribed using the

SuperScript III First Strand kit (Invitrogen) with an oligo(dT) reverse primer. A qPCR analysis

of mRNA expression from FD cells samples were conducted using KAPA SYBR Fast qPCR

master mix (Kapa Biosystems) in a StepOne plus thermocycler PCR machine (Applied Biosys-

tems) according to the manufacturer’s instructions. LZIC was used as endogenous control.

The primer sequences are listed in S1 Table.

Supporting information

S1 Fig. Pridopidine elevates both WT and Mutant IKBKAP isoforms in FD cells. FD cells

were treated with 0, 10, 100, 500, 1000 and 10,000 nM of Pridopidine, 5 days later RNA was

extracted. (A) Relative IKBKAP expression level of the WT and Mutant isoforms, analyzed by

qRT-PCR. (B) Ratio of WT and Mutant IKBKAP isoforms relative expression, analyzed by

qRT-PCR. Asterisks denote statistically significant differences (�P� 0.05, and ���P� 0.005)

relative to control (vehicle only); Student’s t-test.

(TIF)

S2 Fig. Pridopidine affects IKBKAP in FD cell line by activating BDNF-mediated signaling

pathway. FD cells were treated with 0, 10, 100, 500, 1000 and 10,000 nM of Pridopidine. RNA
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was extracted 5 days after treatment and qPCR was used to quantify (A) CDKN1A, (B)

HOMER1, (C) RASSF8, (D) EGR1, (E) SRXN1, (F) RGS17, and (G) BAIAP2 mRNA tran-

scripts. All values were normalized to LZIC. Asterisks denote statistically significant differences

(�P� 0.05, ��P� 0.01, and ���P� 0.005) relative to control; Student’s t-test.

(TIF)

S1 Table. List of primers.
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