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Abstract

Background

There is significant heterogeneity in the clinical expression of structural brain abnormalities,

including Alzheimer’s disease biomarkers. Some individuals preserve their memory despite

the presence of risk factors or pathological brain changes, indicating resilience. We aimed

to test whether resilient individuals could be distinguished from those who develop cognitive

impairment, using sociodemographic variables and neuroimaging.

Methods

We included 550 older adults participating in the Whitehall II study with longitudinal data,

cognitive test results, and multi-modal MRI. Hippocampal atrophy was defined as Scheltens

Scores >0. Resilient individuals (n = 184) were defined by high cognitive performance

despite hippocampal atrophy (HA). Non-resilient participants (n = 133) were defined by low

cognitive performance (�1.5 standard deviations (S.D.) below the group mean) in the pres-

ence of HA. Dynamic and static exposures were evaluated for their ability to predict later

resilience status using multivariable logistic regression. In a brain-wide analysis we tested

for group differences in the integrity of white matter (structural connectivity) and resting-

state networks (functional connectivity).

Findings

Younger age (OR: 0.87, 95% CI: 0.83 to 0.92, p<0.001), higher premorbid FSIQ (OR: 1.06,

95% CI: 1.03 to 1.10, p<0.0001) and social class (OR 1 vs. 3: 4.99, 95% CI: 1.30 to 19.16, p

= 0.02, OR 2 vs. 3: 8.43, 95% CI: 1.80 to 39.45, p = 0.007) were independently associated

with resilience. Resilient individuals could be differentiated from non-resilient participants by

higher fractional anisotropy (FA), and less association between anterior and posterior
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resting state networks. Higher FA had a significantly more positive effect on cognitive perfor-

mance in participants with HA, compared to those without.

Conclusions

Resilient individuals could be distinguished from those who developed impairments on the

basis of sociodemographic characteristics, brain structural and functional connectivity, but

not midlife lifestyles. There was a synergistic deleterious effect of hippocampal atrophy and

poor white matter integrity on cognitive performance. Exploiting and supporting neural corre-

lates of resilience could offer a fresh approach to postpone or avoid the appearance of clini-

cal symptoms.

Introduction

The term resilience is frequently used in a psychological context, referring to the ability to cope

in the face of stressful life events. There is recent evidence that the concept of resilience is also

meaningful and relevant for cognitive outcomes [1, 2]. Some individuals appear to maintain high

memory function despite the presence of risk factors for impairment [3] or pathological brain

changes, indicating resilience. For example, approximately one fifth of individuals positive for

Alzheimer biomarkers have normal cognitive function, regardless of whether these are neuro-

pathological findings on autopsy [4], amyloid on positron emission tomography (PET) imaging

[5] or abnormal levels of cerebrospinal fluid (CSF) tau and amyloid [2, 6]. Similarly, the extent of

functional deficits following stroke and traumatic brain injury can differ markedly [7, 8].

Two related concepts, brain reserve and cognitive reserve, have been cited as mechanisms

to explain resilience, although the terms are often used interchangeably in the literature [9].

Reserve is proposed to moderate between brain measures and cognition. Brain reserve refers

to differences in the anatomical properties of the brain, such as its size, which confer a passive

buffer against the effects of damage [10, 11]. Cognitive reserve theory was initially borne out of

epidemiological studies not examining the brain. Lower dementia risk was reported in those

with certain socio-demographic characteristics, such as high education or intelligence, now

often used as proxies for reserve [12, 13]. Cognitive reserve is proposed to reflect an active abil-

ity to optimize performance through the differential recruitment of brain networks, altered

brain metabolism [14, 15], or alternative cognitive strategies. Functional brain imaging has

revealed posterior-to-anterior or bilateral shifts in activation, and network de-differentiation

in older adults, who successfully maintain their cognitive function [16, 17]. Impaired connec-

tivity may predict cognitive impairment in Alzheimer’s disease [18]. Whether such strategies

can compensate for structural brain adversity has not been investigated. Mounting evidence

suggests that plasticity is possible even in the adult brain [19], making the distinction between

passive brain reserve and active cognitive reserve models somewhat blurred and artificial [20].

Here we use the term resilience, which describes the observed phenomenon without mecha-

nistic connotation.

Despite the vital implications for clinical care and research agenda, predictors and mecha-

nisms underlying resilience have not been established [21]. Insights into cognitive resilience

are likely to inform the interpretation and clinical significance of neuroimaging findings.

Additionally, enhancing and supporting potential neural correlates of resilience may offer a

fresh therapeutic approach, for example in Alzheimer’s disease, where current research is

focusing with limited success on drugs to reduce the primary pathology [21–23]. There have
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been recent attempts to identify socio-demographic features of individuals resilient to high

genetic Alzheimer’s disease risk [3, 24], beta amyloid and tau [25], and grey matter reductions

[26, 27]. However, the importance of midlife lifestyle and clinical factors, and structural and

functional brain connectivity has not yet been explored.

In our study, we defined and characterized resilience on the basis of cognitive performance

in the presence of an established biomarker for Alzheimer’s disease (hippocampal atrophy,

HA). Amongst those with hippocampal atrophy, we sought to identify socio-demographic,

clinical and brain corollaries of good (“resilient”) versus poor (“non-resilient”) outcomes. Our

first hypothesis, was that high social class and high full-scale IQ (FSIQ), often cited as markers

of cognitive reserve [10], would be associated with higher resilience [12, 28]. Alternative cogni-

tive strategies or differential network recruitment may facilitate maintained cognition. Hence

our second hypothesis was that resilient individuals would have superior structural brain con-

nectivity and distinct patterns of functional connectivity.

Materials and methods

Subjects and socio-demographic and lifestyle data

Five hundred and fifty participants were randomly selected from the Whitehall II cohort for

the imaging sub-study (2012–2016) [29]. Comparison to the larger sample is made in S1 Table.

Apart from self-exclusion due to inability to attend the examination in Oxford and take part in

an MRI study, post-hoc exclusions were due to incomplete or poor-quality images, gross struc-

tural abnormality, or missing cognitive or confounder data (Fig 1, S2 Table). Socio-demo-

graphic, health and lifestyle variables were measured prior to MRI over a follow-up period of

approximately thirty years, in 1985–8 (Phase 1), 1991–3 (Phase 3), 1997–9 (Phase 5), 2003–4

(Phase 7), 2007–9 (Phase 9), and 2011 (Phase 11) (see S2 Table). Age, sex, active bilingualism,

smoking, alcohol consumption, physical activity, depressive symptoms (General Health Ques-

tionnaire) and the Framingham Stroke Risk Score (FRS), were assessed by self-report ques-

tionnaire or clinical examination. Social class was determined according to occupation in

1991–3. Social networks were measured using questions derived by Berkman and Syme [30]

and summarized on a scale. Current cognitive function and subjective memory complaints

were assessed prior to the MRI scan with Montreal Cognitive Assessment (MoCA), Trail Mak-

ing Test (TMT A and B), Rey-Osterrieth Complex Figure (RCF) copying, RCF immediate and

delayed recall, Hopkins Verbal Learning Test (HVLT-R) total immediate (HVLT TR) and

delayed (HVLT DR) recall, Digit Span (DSF/DSB/DSS) and Digit Coding (all from the Wechs-

ler Adult Intelligent Scale-IV), lexical and semantic fluency, Boston Naming Test (BNT) and

Test of Premorbid Function (TOPF). Short-term memory (recall of a 20-word list) was tested

in: 1985–8, 1991–3, 1997–9, 2003–4, 2007–9, 2011 and 2015–6. FSIQ was estimated using the

TOPF with sex and education adjustment [31]. History of Major Depressive Disorder was

assessed prior to the MRI scan using the Structured Clinical Interview for DSM-IV.

Participants gave written informed consent to be approached for the study and gave sepa-

rate written informed consent for every procedure included in the study, following a protocol

and consent form approved by the respective Ethics of Research Committees. Capacity for

consent was assessed by research workers trained in this procedure (EZ, AM). No formal psy-

chological tests or assessments were used to determine whether participants were able to pro-

vide written informed consent. The ethics committee approved this procedure.

Defining resilient and non-resilient participants

The resilient group of participants was defined by preserved cognitive function in the presence

of HA (<1.5 S.D. below mean on all cognitive tests). HA was selected on the basis of its known
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Fig 1. Selection of sample and definition of resilient and non-resilient groups. Hippocampal atrophy was defined using the Scheltens’ scale (>0) [32]. High

cognitive performance was defined as<1.5 S.D below the mean on any cognitive test [33]. Low cognitive performance was defined as�1.5 S.D. below the

mean on at least one cognitive test. Abbreviations–N–number, MRI–magnetic resonance imaging, DTI–diffusion tensor imaging.

https://doi.org/10.1371/journal.pone.0211273.g001
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association with cognitive impairment in the literature. It has been identified as one of the five

most robust biomarkers for Alzheimer’s disease and is a supportive sign in the revised

NINCDS-ADRDA diagnostic criteria [5, 34]. We also empirically tested its relation to cross-

sectional and longitudinal cognition in our sample (see S3 & S4 Tables, S1 Fig). HA was identi-

fied using the well-validated and widely used semi-quantitative Scheltens visual rating scale as

any atrophy score>0 [32, 35, 36] (S2 Fig). Although we have hippocampal volume measures,

we elected to use a visual rating scale to identify hippocampal atrophy for a number of reasons:

Visual ratings are highly sensitive and specific [32], in some cases more sensitive than volume-

try [37]. They are clinically widely applicable, unlike volumetry, which necessitates specialist

software and operator correction of segmentation. While volumetry assesses absolute, or at

best relative volume (in relation to intracranial or grey matter volume), visual rating scales

indicate anatomical abnormalities, such as visible and enlarged choroid fissures, enlarged lat-

eral ventricles and hippocampal thickness. In other words, visual ratings account for grey mat-

ter, and inverse proportional changes in cerebrospinal fluid. Therefore, high scores may better

reflect a pathological change, rather than smaller premorbid size. In contrast, volumetry (usu-

ally done after automatic segmentation of grey matter) only accounts for grey matter making

such a distinction impossible. Inter- and intra-rater reliability is high (ICC = 0.8–0.9 and 0.7–

0.9 respectively from our data) [28]. Reproducibility between quantitative approaches is not

straightforward. Differences in operator judgement, scanner sequence, magnet strength and

automated software can significantly impact results.

The (non-resilient) group of participants was defined by impaired cognitive performance

in the presence of HA (defined as�1.5 S.D. below mean [33] in the absence of validated nor-

mative data for all tests in this age group) on at least one test. Whilst links between hippocam-

pal volume and verbal memory are well described [38, 39], as also demonstrated in the

predictive power of hippocampal atrophy for the trajectory of verbal memory in the Whitehall

II study (see S4 Table and S1 Fig) we chose additionally to verbal memory to consider other

cognitive domains following empirical analyses demonstrating relationships between hippo-

campal volume and performance on multiple tests (see S3 and S5 Tables, S1 Text). In the

absence of collateral and concurrent medical information about health and functional ability,

we were unable to make a diagnosis of Mild Cognitive Impairment or dementia. However, the

absence of a reported clinical diagnosis, ranges of impairment, participants’ ability to give

informed consent and to make their way to Oxford from across the country independently,

suggest that there was nobody with a probable diagnosis of dementia.

MRI analysis

All MRI scans were acquired between 2012 and 2015 at the University of Oxford Wellcome

Centre for Integrative Neuroimaging (WIN), using a 3 Tesla Siemens Verio scanner.

T1-weighted MPRAGE, fluid-attenuated inversion recovery (FLAIR), 60-direction diffusion

tensor (DTI) and multi-band EPI 3T MRI sequences were used. T1-weighted images were pro-

cessed using FSL tools (www.fmrib.ox.ac.uk/fsl) [40] and ‘fsl_anat (Beta version)’ (http://fsl.

fmrib.ox.ac.uk/fsl/fslwiki/fsl_anat).

Hippocampal metrics. Two hippocampal metrics were examined. First, the presence of

hippocampal atrophy, used to identify resilient and non-resilient subjects, was assessed using

the Scheltens visual rating scale. Scores >0 were used as an indication of atrophy [41]. Three

clinicians, blind to measured volumes and participant characteristics independently rated each

subject. Discrepancies were resolved following a consensus meeting. Second, hippocampal vol-

umes were automatically extracted using FIRST [42], corrected for intracranial volume (ICV,

by dividing by total intracranial volume�100, as is standard in the literature) and averaged
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across sides. Volume measures were only used for comparison (see S4 Fig), and when explor-

ing accessory hypotheses of associations between cognitive performance measures and hippo-

campal volume.

Voxel-based morphometry analysis. To discount the possibility that the non-resilient

subjects had a more advanced disease process (indicated by grey matter differences) than the

resilient subjects, group differences in brain-wide grey matter density were examined. Voxel-

based morphometry (VBM) is an objective method to compare grey matter density between

groups in each voxel (smallest distinguishable image volume) of the structural image.

To avoid overfitting, confounders were included in each model if they were: 1) an estab-

lished risk factor for the outcome measure, 2) not thought to lie on the causal chain between

exposure and outcome. Premorbid FSIQ and social class were included to isolate brain differ-

ences independent of cognitive reserve. Adjustment was made in the VBM analysis for: age,

sex, FRS, alcohol consumption, social class and FSIQ.

Diffusion tensor imaging analysis. Diffusion tensor images indicate the directional pref-

erence of water diffusion in neural tissue and allow inferences about the structural integrity of

white matter tracts. Images were corrected for head movement and eddy currents and brain

masks generated using BET. Fractional anisotropy (FA), mean (MD), axial (AD) and radial

diffusivity (RD) maps were generated using DTIFit (http://fsl.fmrib.ox.ac.uk/fsl/fdt). Tract-

Based Spatial Statistics (TBSS) were used [43] to perform voxelwise statistical analysis. Pre-

processing prepared images for registration to standard space. Mean and skeletonized FA,

MD, RD and AD images were created and thresholded. Lastly each FA, MD, RD and AD

image was projected onto the relevant skeleton. To detect group differences between resilient

and non-resilient subjects, a generalised linear model (GLM) was applied using permutation-

based non-parametric testing (randomise) [44], correcting for multiple comparisons across

space (threshold-free cluster enhancement, TFCE). Additionally for subsequent analysis,

masks of the corpus callosum body were created using the ICBM-DTI-81 white-matter labels

atlas [45] and used to extract mean FA indices. Adjustment for confounding included: age,

sex, FRS, FSIQ, social class, alcohol consumption and depressive symptoms.

Resting state functional connectivity analysis. We used a hypothesis-free method to

identify group differences in the synchronicity of responses across the brain between function-

ally distinct resting state network nodes [46]. Participants were scanned on a 3T Siemens Mag-

netom Verio (Erlangen, Germany) scanner with a 32-channel head coil, at the FMRIB Center,

Oxford. T1-weighted structural MRI (multi-echo MPRAGE sequence with motion correction)

and multiband echo-planar imaging rs-fMRI scans (voxel ¼ 2 mm isotropic, TR ¼ 1.3 s, acqui-

sition time ¼ 10 min 10 s, multi-slice acceleration factor ¼ 6, number of volumes ¼ 460) were

acquired. Rs-fMRI data were pre-processed (motion correction, brain extraction, high-pass

temporal filtering at 100s, field-map correction) using FSL tools. MELODIC pre-processing

includes motion correction, brain extraction, high-pass temporal filtering (cut-off 150 sec-

onds) and field map correction [40]. To reduce noisy components, a data-cleaning approach

was used. Following single-subject independent components analysis (ICA), FMRIB’s ICA-

based X-noisefier (FIX) was used to automatically classify and regress out artefactual compo-

nents [47]. FIX was “trained” on hand-classified ICA components on a matched training set

(Whitehall II MB6). Data were registered affine to structural images using FLIRT [48]. FNIRT

was used to register images into standard (MNI) space [49]. High dimensionality (dimen-

sions = 100) ICA was performed on the pre-processed images to produce a study-specific tem-

plate of spatial maps [50]. This template was used to extract time series using the dual

regression approach [51]. Time courses were fed into FSLNets (v0.6) to perform network

modeling [46]. Nodes were classified as ‘good’ (n = 58) or ‘bad’ (n = 42) (white matter, physio-

logical noise, MRI or movement artifacts) [52]. The netmat was created and partial
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correlations were calculated [46]. Matlab was used to reorder the nodes after a hierarchical

clustering of the group-average correlation netmat (S3 Fig). A nodes x edges matrix was cre-

ated. Group differences were examined with randomise, controlling for multiple comparisons

(family-wise error), age, sex, FSIQ and social class.

Other statistical analyses

All analyses outlined below were done with R version 3.4.0 [53]. Descriptive data were summa-

rized for all subjects, and separately by group, according to variable type and distribution

(Table 1).

Logistic regression was used to identify significant predictors of resilience status (binary

outcome: ‘resilient’ versus ‘non-resilient’, see above). Social class and FSIQ were added to the

model as predictors. Education was not included due to concerns about multicollinearity with

the concomitant inclusion of premorbid FSIQ (which was more closely associated with resil-

ience (see Table 1), was education adjusted and suffered fewer ceiling effects). Longitudinal

Table 1. Sample characteristics.

Mean (S.D.)1, median (IQR)2 or N (%)3 Comparison of resilient and non-resilient groups

Whole sample (N = 511) Resilient

(N = 184)

Non-resilient

(N = 133)

Age at scan, years 69.5 (5.3)1 69.1 (4.9)1 72.7 (5.5)1 3.7 (2.5 to 4.9), p<0.00014

Female, N (%) 101 (19.8)3 30 (16.3)3 21 (15.8)3 0.015, -0.09 to 0.1, p = 0.96

Education, years 14 (5)2 16 (6)2 13 (6)2 9931.5, p = 0.0045

FSIQ8 118.0 (10.3)1 122.3 (7.9)1 116.2 (10.7)1 -5.7 (-7.9 to -3.6), p<0.00014

Social class, N (%)9

4 4 (0.8) 0 (0) 0 (0) 14.8, p = 0.017

3 35 (6.8) 4 (2.2) 15 (11.3)

2 392 (76.7) 140 (76.1) 102 (76.6)

1 80 (15.7)3 40 (21.7)3 16 (12.0)3

Systolic blood pressure, mmHg 120.6 (13.6)1 120.6 (13.9)1 121.8 (12.2)1 1.4 (-1.8 to 4.5), p = 0.44

Diastolic blood pressure, mmHg 75.6 (9.6)1 75.5 (9.8) 1 76.7 (8.9) 1 0.8 (-1.3 to 3.0), p = 0.44

History of Major Depressive disorder, N (%)10 90 (19.6)3 54 (29.3)3 30 (22.6)3 3.8, (0.002 to 0.2), p = 0.056

General Health Questionnaire, anxiety score 3.9 (2.6) 1 3.6 (2.3) 1 3.7 (2.9) 1 0.1 (-0.5 to 0.7), p = 0.74

Alcohol, weekly units 8 (12)2 10 (13)2 8 (13)2 11489, p = 0.45

Moderate exercise, weekly N 2.3 (0.9) 1 2.1 (0.8) 1 2.2 (0.9) 1 0.01 (-0.2 to 0.2), p = 0.94

Club attendance, weekly N11 2.9 (1.2) 1 2.8 (1.2) 1 2.9 (1.2) 1 0.06 (-0.2 to 0.4), p = 0.74

1 Mean (standard deviation).
2 Median (interquartile range).
3 Number (percentage).
4 Mean difference (95% confidence interval), p value.
5W statistic, p value.
6 Odds ratio (95% confidence intervals), p value.
7 Pearson statistic, p value.
8Estimated from Test of Premorbid Function with education and sex adjustment.
9Social class based on occupation, Phase 3: 4 = skilled manual, 3 = skilled non-manual, 2 = managerial, 1 = professional.
10Structured Clinical Interview for DSM IV (SCID) at time of MRI scan.
11At time of MRI scan.

Baseline (unless otherwise stated) characteristics of whole sample with DTI and adequate confounder information, and resilient and non-resilient subgroups.

Abbreviations: N–number, S.D.–standard deviation, IQR–interquartile range, FSIQ–full-scale intelligence quotient, DTI–diffusion tensor imaging.

https://doi.org/10.1371/journal.pone.0211273.t001
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data on putative confounding factors were initially included in the model based on knowledge

of the literature: age, sex, exercise (mean weekly hours of moderate activity over phases), Fra-

mingham Risk Score (mean 10 year stroke risk (%) over phases), alcohol (mean units per week

over phases), smoker (proportion of phases), depressive symptoms (mean GHQ score over

phases), and social networks (mean score over phases). Non-significant predictors (p>0.05)

were excluded from the final model presented.

In order to test whether MRI-based predictors of resilience identified from preceding analy-

ses were associated specifically with resilience rather than just better verbal memory, we used

multiple linear regression on the whole sample with DTI (with and without HA) (n = 511). To

reduce multiple testing, we used HVLT DR as measure for verbal memory. This was on the

basis of a strong established association with the hippocampus in the literature [54] and in our

empirical analysis (S3 Table). We hypothesized that a true MRI predictor of resilience would

in the presence of hippocampal atrophy differ in its ability to predict memory function (depen-

dent variable) from its predictive power in participants without hippocampal atrophy. We

tested this adding the interaction term: predictor�hippocampal volume to the independent

variables. In the interests of a parsimonious analysis, we chose a single MRI measure to reflect

‘white matter integrity’, i.e. FA of the body of the corpus callosum. First, significant group dif-

ferences existed in this region as shown by the TBSS analysis (Fig 2), and second, as the corpus

callosum is a large tract separate from grey matter, it increases confidence that the FA mea-

surement reflects only white matter. Models were adjusted for age, sex, Framingham Risk

Score, alcohol consumption, depressive symptoms, premorbid FSIQ and social class. All

hypothesis tests were two-sided and statistical significance was deemed as p<0.05.

Results

Identification of resilient subjects

The MRI Substudy sample was comparable to the whole Whitehall II Phase 11 cohort from

which it had been selected randomly (S1 Table). A relative excess of women took part in the

imaging study. Overall mean years of education and depressive symptoms were higher, BP

measures lower in the subsample. Availability of lifetime risk data across previous phases of

the sub-sample was satisfactory (S2 Table). A summary of participant characteristics is given

in Table 1. The distribution of Scheltens hippocampal atrophy scores is illustrated in S2 Fig. Of

527 participants in the MRI Study, 317 showed Scheltens scores> 0 suggesting a degree of hip-

pocampal atrophy. Of these, we identified 184 individuals with the resilience phenotype and

133 who were non-resilient participants. Mean intracranial volume-adjusted volumes were

associated with atrophy scores, but this association was by no means perfect (S4 Fig). Seventy-

two of those we defined as non-resilient reported subjective complaint about their cognition at

the time of scanning, as opposed to twenty-eight in the resilient group. Empirical justification

for our resilience definition is included in S1 Text: There was no significant group difference

in hippocampal volume (as expected based on the selection methods), nor large disparities in

grey matter density (S5 Fig). Therefore, it is unlikely that our resilience phenotype was an arte-

fact of a less advanced disease process with less wide-spread volumetric changes. A small

group (n = 42) of subjects had impairment on cognitive testing in the absence of small hippo-

campi, implying extra-hippocampal changes, thus not fitting our definitions of resilient or

non-resilient participants, and therefore outside of our formulated research question.

Sociodemographic correlates of resilience

Higher premorbid FSIQ (OR per 1-point increase: 1.06, 95% CI: 1.03 to 1.10, p<0.0001) and

social class (OR for 1 vs. 3: 4.99, 95% CI: 1.30 to 19.16, p = 0.02, OR for 2 vs. 3: 8.43, 95% CI:
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1.80 to 39.45, p = 0.007) independently predicted resilience (after controlling for age and sex;

Table 2). These odds were not confounded by exercise habits, social networks, vascular risk

(Framingham Risk Score), depressive symptoms, bilingualism, alcohol consumption or smok-

ing, measured repeatedly over the 30 years, which also did not independently predict

resilience.

Structural connectivity in resilient and non-resilient participants

In the brain-wide TBSS analyses, resilient individuals showed increased fractional anisotropy

(FA), and reduced mean diffusivity (MD) and radial diffusivity (RD) in multiple tracts com-

pared with non-resilient individuals, but no differences in axial diffusivity (AD; Fig 2). Fur-

thermore, in the separate regression analyses of the entire MRI sample irrespective of

Fig 2. Significant group differences in white matter integrity. Voxels where there were significant differences in white matter integrity between resilient

(N = 184) and non-resilient (N = 133) groups are shown in colour. Three indices of white matter integrity are shown: fractional anisotropy differences are

shown in pink, mean diffusivity differences in blue, and radial diffusivity differences in red. Images were generated from the Tract-Based Spatial Statistics

analyses and thresholded at p<0.05. The mean FA skeleton is shown in green. There were no significant differences in axial diffusivity differences (not shown).

Analyses were adjusted for: age, sex, premorbid FSIQ, social class, Framingham Risk Score, alcohol consumption, depressive symptoms (TFCE).

Abbreviations: Z–spatial axis, FA–fractional anisotropy, MD–mean diffusivity, RD–radial diffusivity, FSIQ–full-scale intelligence quotient, TFCE–threshold-

free cluster enhancement.

https://doi.org/10.1371/journal.pone.0211273.g002
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hippocampal atrophy (n = 511), there was a significant interaction (β -14.9.08, 95% CI: -23.21

to -6.64, P = 0.0004) between corpus callosum FA and hippocampal volume in predicting ver-

bal memory (Fig 3). Strikingly, in subjects with large hippocampi (i.e. >2.25% ICV), corpus

callosum FA did not predict cognitive performance. Amongst those with smaller hippocampi,

FA became increasingly important (S1 Fig). In contrast, interaction terms for hippocampal

volume and social class or FSIQ were not significant.

Functional connectivity in resilient and non-resilient participants

The functional connectivity between nodes #52 and #35 was weaker in the resilient group

compared to the non-resilient group (Fig 4). One node (#52) of the pair was in frontal pole of

the central executive network (CEN), and the other (#35) in the inferior parietal lobe (IPL) of

the default mode network [55]. The population average connectivity matrix (S3 Fig) indicates

that for the entire sample, the functional association between nodes #52 and #35 was weakly

negative. However, there is not necessarily a relationship between the strength (or even sign)

of the population average connection between two nodes and the extent to which inter-subject

variability in the connection strength correlates with a given behavioural measure [46].

Discussion

We combined multimodal neuroimaging and functional cognitive data to define a phenotype

of resilience. Sociodemographic factors, but not lifestyle, were associated with resilience. Resil-

ient subjects’ brains were characterized by higher structural integrity of white matter tracts

and weaker inter-network functional connections.

Comparison with other studies

As predicted, high premorbid FSIQ and social class (in addition to age) were independently

associated with resilience, in the presence of HA [28]. However, it appears these effects can be

explained by shared variance with cognitive test performance (general intelligence or ‘G’

Table 2. Sociodemographic correlates of resilience.

N Unadjusted odds ratio (95% CI) Adjusted3 odds ratio (95% CI)

Age, years 0.88 (0.84 to 0.92), p<0.001 0.87 (0.83 to 0.92), p<0.001

Male Sex 266

Female Sex 51 1.04 (0.57 to 1.91), p = 0.90 2.22 (0.98 to 5.01), p = 0.06

FSIQ1 1.07 (1.04 to 1.10), p<0.001 1.06 (1.03 to 1.10), p<0.001

Social class2

3 19

2 242 9.38 (2.70 to 32.59), p<0.001 8.43 (1.80 to 39.45), p = 0.007

1 56 5.15 (1.66 to 16.00), p = 0.005 4.99 (1.30 to 19.16), p = 0.02

1 Premorbid FSIQ (education and sex adjusted) according to Test of Premorbid Function performed at the time of

scan.
2 Social class based on occupation at Phase 3: 1 = professional, 2 = managerial, 3 = skilled non-manual. No subjects

included in this subset analysis were in social class 4 (manual).
3 For all other predictors in model lists in column one.

Results from logistic regression analyses, predicting odds of resilience (visually rated hippocampal atrophy and
absent cognitive impairment, n = 184)) vs. non-resilient participants (visually rated hippocampal atrophy and
cognitive impairment on�1 test, n = 133).

Abbreviations: CI–confidence interval, p–p value, FSIQ–full-scale intelligence quotient.

https://doi.org/10.1371/journal.pone.0211273.t002
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factor), rather than a synergistic compensatory effect. In the Whitehall II sample at least, such

factors, often referred to as indices of cognitive reserve, reflect higher baseline memory perfor-

mance rather than greater compensatory capacity [10]. Our finding is in agreement with previ-

ous Whitehall II findings in dementia [56]. It also raises concerns that links between cognitive

Fig 3. White matter integrity becomes an increasingly more important correlate of verbal memory, as hippocampal volume gets smaller. Dependence

of estimated conditional regression coefficients for corpus callosum fractional anisotropy (independent variable) in predicting HVLT DR (dependent

variable) on hippocampal volume (% intracranial volume). Grey shading represents 95% confidence intervals. Values are on the basis of a regression model

including all subjects (N = 511) which included the following confounders: age, sex, Framingham Risk Score, depressive symptoms, alcohol consumption,

social class and premorbid FSIQ. Abbreviations: HVLT DR–Hopkins Verbal Learning Test Delayed Recall, ICV–intracranial volume, FSIQ–full-scale

intelligence quotient.

https://doi.org/10.1371/journal.pone.0211273.g003

Predicting cognitive resilience from lifestyle and MRI

PLOS ONE | https://doi.org/10.1371/journal.pone.0211273 February 19, 2019 11 / 19

https://doi.org/10.1371/journal.pone.0211273.g003
https://doi.org/10.1371/journal.pone.0211273


Predicting cognitive resilience from lifestyle and MRI

PLOS ONE | https://doi.org/10.1371/journal.pone.0211273 February 19, 2019 12 / 19

https://doi.org/10.1371/journal.pone.0211273


reserve indices and cognitive impairment could result from detection bias, if only cross-sec-

tional cognitive performance is examined

White matter microstructure appears to partially mitigate the effect of HA on verbal mem-

ory in our sample, suggesting a potential ‘synergistic’ deleterious effect of hippocampal and

white matter damage on cognitive performance. It is not clear whether resilient participants in

our study have avoided age-related decline in white matter (reduced “brain battering”) and

have greater capacity to tolerate damage (brain reserve), or whether differences are due to plas-

ticity. Compensatory changes, including increased number of axons or increased myelination

are possible, as have been reported in response to brain lesions [57].

Our functional connectivity results appear to challenge the general notion that “stronger is
better”. Most resting-state fMRI studies to date have only described intra-network connec-

tions, often studying large brain networks as a whole. Our approach allowed us to examine

both intra- and inter-network connectivity, which has been of greater interest in recent stud-

ies. While we observed no group differences in intra-network connections, participants in the

resilient group appeared to have weaker functional association (in the form of an inverse par-

tial correlation) between the CEN and DMN compared with non-resilient subjects. Functional

brain networks in the elderly typically become less distinct due to an increase in inter-network

strength of connections along with a relative decrease in intra-network connections in older

compared to younger adults [58]. Here, a relatively weaker inter-network connection between

the CEN and default mode nodes was associated with the resilience phenotype, suggesting that

this group may maintain more distinct network structure in older age.

The CEN has been linked to demanding externally orientated tasks [59] and the DMN,

mediates internally directed self-referential processes [60]. There are several reports that anti-

correlation between the CEN and default mode networks is important for brain function [61,

62] and correlates with higher cognitive performance [63]. However, others have described a

u-shaped relationship with aging, with compensatory increases in segregation of networks

linked to reductions in structural integrity [64]. Our results appear to be more consistent with

the latter, however without longitudinal imaging, it is impossible to determine whether the

functional differences observed here are a compensation for pathological changes within the

brain (HA) or represent lifelong differences between resilient and non-resilient groups. We

therefore interpret the functional connectivity results with caution.

Strengths and limitations

We consider three advances of our work over existing studies. First, the depth and duration of

the phenotyping allowed a thorough long-term examination of lifestyle contributions to resil-

ience, largely ignored by previous cross-sectional studies [25, 27]. Second, the breadth of the

cognitive tests and measurement of longitudinal decline have not been considered in pub-

lished work [25]. Third, use of multi-modal MRI and voxel-based brain analyses allowed us to

examine the relationship between resilience, specifically defined, and structural and functional

brain connectivity.

In spite of these strengths, some limitations need to be highlighted. The brain correlates of

resilience we identified were in the context of analyses examining potential moderators of the

Fig 4. Functional connectivity differences between resilient and non-resilient participants. A) Resting state

(negative) functional connectivity between network nodes #52 (central executive network, left image) and #35 (default

mode network, right image). The p-value indicates significance of group difference in connectivity between these

nodes. B) Boxplot showing partial correlation (edge strength) between nodes 35 and 52 in resilient (R) and non-

resilient (NR) groups.

https://doi.org/10.1371/journal.pone.0211273.g004

Predicting cognitive resilience from lifestyle and MRI

PLOS ONE | https://doi.org/10.1371/journal.pone.0211273 February 19, 2019 13 / 19

https://doi.org/10.1371/journal.pone.0211273.g004
https://doi.org/10.1371/journal.pone.0211273


effect of hippocampal atrophy on cognition. Other brain/cognition relationships may have

entirely different moderating variables.

We used cross-sectional hippocampal atrophy ratings, so cannot exclude the possibility, of

unlikely face validity, that these reflect lifelong differences rather than age-related or even path-

ological change. Whilst longitudinal imaging could be helpful, scan intervals of more than a

couple of years add further confounders, because of developments in the physical scanner and

imaging sequences. Links between hippocampal volume and current and future cognition are

well established [38], and replicated in our sample. Whilst HA is a diagnostic marker for Alz-

heimer’s disease [34], we do not wish to claim subjects in our sample had specific markers of

Alzheimer’s pathology in the absence of knowledge of tau or amyloid status. HA has also been

reported in depression, neurotoxic injuries, other causes of dementia, and in moderate drink-

ers [41]. On the other hand, hippocampal sparing has been described in atypical Alzheimer’s

disease [65] so we may have systematically excluded some participants with early Alzheimer’s

pathology but large hippocampi. However, as our primary interest was in exploring tolerance

to hippocampal atrophy, irrespective of its etiology, we do not think this detracts from the

findings. We used a clinical visual rating scale to group subjects on the basis of HA, as there

are no established ‘normal’ vs. ‘abnormal’ cut offs for volumetric data. The Scheltens scale has

been widely used and is well validated, is applicable to clinical settings, and aligns to some

extent with volumetric measures in our sample [32, 35, 36].

Standard deviation cut-offs rather than normative values were used to categorize subjects

on cross-sectional cognitive performance. Our cut-offs do not necessarily generalize to other

samples or indicate pathological deficits. Many of the tests we used do not have robust norma-

tive data. Even for the better investigated MoCA, there is no fine-grained breakdown for effects

of age or education, and little data on older subjects relevant to our sample. There is continu-

ing debate about what constitutes the ‘best’ normative comparison group for neurocognitive

tests, and studies vary on the stringency with which they exclude cognitively impaired subjects.

As with any observational study, we cannot deny the possibility that some individuals we

defined as ‘resilient’, will develop cognitive impairment after our study period (right

censoring).

We are uncertain about the generalizability of our findings, as the Whitehall II cohort is not

representative of the wider population. By example, it has a low proportion of women, reflec-

tive of the 1980s UK civil service. Lastly, we cannot exclude a selection bias. Those most cogni-

tively impaired are not unlikely to have been included in the study, which required travel to

Oxford and a neuropsychological assessment. Although this may have attenuated some of the

associations, it is an unlikely source of major bias.

Implications of findings

This study provides one avenue of investigation into how brain findings may translate into

future clinical symptoms. We envisage several potential clinical and research implications of

our study. First, clinical interpretation of neuroimaging findings must take account of sociode-

mographic factors. Second, future research in cognitive impairment and dementia should not

ignore multiple synergistic pathological contributions. Finally, a fresh approach to delaying

symptoms in those with pathological changes may be exploiting and supporting neural corre-

lates of resilience, such as white matter microstructure. To date, therapeutic research has been

focusing on agents to reduce a single primary pathology, with limited success [22]. Exercise

[66], vascular risk [67] and brain stimulation with electrical or magnetic currents have been

associated with white matter integrity [68], and even neuroplasticity. Fruitful leads may there-

fore include tight control of cardiovascular risk factors with antihypertensives and lipid-
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lowering drugs, physical training programs or even brain stimulation. The approach may be

particularly suitable in individuals whose scans have revealed early indicators of structural

damage but exhibit minimum functional deterioration. Even small increases in resilience may

postpone or avoid onset of symptoms in a clinically significant fashion.
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