
RESEARCH ARTICLE

Dynamical analogues of rank distributions

Carlos Velarde1☯, Alberto RobledoID
2☯*
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Abstract

We present an equivalence between stochastic and deterministic variable approaches to

represent ranked data and find the expressions obtained to be suggestive of statistical-

mechanical meanings. We first reproduce size-rank distributions N(k) from real data sets by

straightforward considerations based on the assumed knowledge of the background proba-

bility distribution P(N) that generates samples of random variable values similar to real data.

The choice of different functional expressions for P(N): power law, exponential, Gaussian,

etc., leads to different classes of distributions N(k) for which we find examples in nature.

Then we show that all of these types of functions can be alternatively obtained from deter-

ministic dynamical systems. These correspond to one-dimensional nonlinear iterated maps

near a tangent bifurcation whose trajectories are proved to be precise analogues of the N

(k). We provide explicit expressions for the maps and their trajectories and find they operate

under conditions of vanishing or small Lyapunov exponent, therefore at or near a transition

to or out of chaos. We give explicit examples ranging from exponential to logarithmic behav-

ior, including Zipf’s law. Adoption of the nonlinear map as the formalism central character is

a useful viewpoint, as variation of its few parameters, that modify its tangency property,

translate into the different classes for N(k).

Introduction

There exist countless sets of data detailing magnitudes or sizes of a vast variety of measurable

properties from many different fields: astrophysical, geophysical, ecological, biological, techno-

logical, financial, urban, social, etc. The magnitude data sets can be ranked and after examina-

tion the resultant distributions can be classified into different families or groups according to

the functional expression that fits them best, power law, exponential, logarithmic, inverse

error function, etc. Fig 1 exemplifies four such types of distributions. Over the years, [1–7]

interest has been mostly placed on ranked data that exhibits power-law behavior even if this is

not observed over the entire collection of records since this suggests a possible relationship

with the famous empirical Zipf’s law [8, 9]. Less attention has been placed to the comprehen-

sive study of a wider range of types of rank distributions with the purpose of uncovering the
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broad-spectrum physics, if there is one, behind rank distributions. Here we consider this

enterprise.

We start by recalling [3] a simple stochastic approach to reproduce size-rank data from an

assumed parent distribution that governs the values of random variables that form finite sam-

ples. For every assumed form of the parent distribution one obtains a size-rank distribution.

And this leads, when matched successfully with real data, to different possible families or uni-

versality classes. As an illustration we show (see Fig 1) four examples of data fitted by power

law, exponential, logarithmic, and inverse error function expressions. The examples in Fig 1,

Fig 1. Ranked size data. Data N(k) plotted in scales such that they appear fitted by decreasing straight lines. (a) USA city populations [10],

ordinates in lnα(N(k)/Nmax) scale. (b) Infant mortality per country [11], ordinates in logarithmic scale. (c) Firearms owned per 100 capita and

per country [12], ordinates in −exp(−N(k)/N0) scale (N0 = 11.77). (d) Los Angeles household sizes [13], ordinates in erfððNðkÞ � mÞ=ð
ffiffiffi
2
p

sÞÞ

scale (μ = 2.97, σ = 0.644). The insets show the same data in logarithmic scales. See text for explanations, definitions and notation.

https://doi.org/10.1371/journal.pone.0211226.g001
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and also further down in the text in Fig 2, correspond, respectively, to data on USA city popu-

lations [10], infant mortality [11], gun ownerships [12], and Los Angeles occupants of house-

holds [13]. The ordinates in Fig 1 and the ordinates in the insets in Fig 2 use scales such that

the data approximate straight decreasing lines.

After this, we translate the stochastic approach into a deterministic one by deriving nonlin-

ear one-dimensional iterated maps such that their trajectories match exactly the aforemen-

tioned classes of size-rank distributions. In Fig 3 we plot the maps that correspond to the same

four examples in Figs 1 and 2 and where the insets show the trajectories plotted with the same

Fig 2. Data fitting. Another look at the fitting of data in Fig 1. (a) USA city populations, ordinates in ordinary logarithmic scale. (b) Infant

mortality per country in ordinary linear scales. (c) Fireams owned per 100 capita and per country, in ordinary logarithmic scales, (d) Los

Angeles household sizes, ordinates in ordinary logarithmic scale. The straight lines in the insets are obtained by using the same scales as those in

Fig 1 or in the insets of Fig 3. See text for explanations, definitions and notation.

https://doi.org/10.1371/journal.pone.0211226.g002
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scales as before such that they become straight decreasing lines. We find that these maps have

as a common feature being close to or at tangency with the identity line and therefore their tra-

jectories have zero or small Lyapunov exponent as in the transition in or out of chaos via the

tangent bifurcation [14].

Consideration of the nonlinear map as the central object in the formalism offers a unifying

viewpoint. As we shall see, variation of its nonlinearity takes the map from intersection (with

the identity line) to tangency, then to a shift of the tangency position to infinity, or to a shape

Fig 3. Nonlinear iterated maps and trajectories. Maps and trajectories that fit the data shown in Fig 1. The insets show the trajectories as

(iterated) time series. (a) x0 = x expz(uxz−1), inset ordinates in� lnz |xt/x0| scale. (b) x0 = (1 − a)x, inset ordinates in logarithmic scale. (c) x0 = x +

u exp(− x/N0)N0, inset ordinates in −exp(− x/N0) scale. (d) x0 ¼ xþ u
ffiffiffiffiffiffi
2p
p

s expððx � mÞ=ð
ffiffiffi
2
p

sÞÞ
2
, inset ordinates in erfðð� xt � mÞ=ð

ffiffiffi
2
p

sÞÞ

scale. See text for explanations, definitions and notation.

https://doi.org/10.1371/journal.pone.0211226.g003
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with a central sector parallel and close to tangency. These circumstances translate, respectively,

into different expressions for the rank distribution, first the mentioned exponential, then

power law, next logarithmic, or inverse error function forms. We also present a novel use of

the perturbed Renormalization Group (RG) fixed-point map of Hu and Rudnick [15] for the

description of finite-size samples.

Finally, we indicate that the reciprocal of each value of the size-rank distribution (ranked

magnitudes) can be used to define uniformly-distributed probabilities, one for each fixed value

of the rank. And these in turn can be used to determine entropies. We discuss the occurrence

of generalized entropy or information measure expressions in the limit when the Lyapunov

exponent vanishes [16, 17]. These measures possess the extensivity property, where system

(trajectory or sample) size is quantified by either final iteration time or maximum rank.

Originally [9], Zipf law referred to the number of occurrences of words in texts and since

then it has been assigned also to the number of occurrences of other items and more freely to

magnitudes or sizes of other entities. A large number of studies on the subject have been devel-

oped since and general considerations made, a taster is given in Refs [1–7]. Here we refer only

to ranked magnitude or size data. For clarity of presentation a discussion on the distinction

between the two kinds of rank distributions, frequency and magnitude, is not included here

but can be found in [18].

A stochastic approach to size-rank distributions

The starting quantity in our formalism is the probability distribution P(N) of the data N under

consideration. This could have any form, we start by making use of the power law form [3, 18–

20],

PðNÞ � N � a; 1 � a <1: ð1Þ

A set of data, or an ensemble of them, can be extracted from Eq (1) to be compared with

real data sets. We shall be interested in size-rank distributions so that the values of N represent

the magnitude or size of the items in the data set, and therefore N takes positive values within

the interval Nmin� N� Nmax, with possibly Nmin = 0 and/or Nmax!1. We use N for the

total number of data obtained from P(N).

The N items in the data set can be ordered or sorted out starting with the largest, Nmax, and

proceeding with decreasing sizes down to Nmin. We label them with a new variable k, the rank,

with k = 0 for Nmax and k = kmax for Nmin. We call the function N(k) the size-rank distribution.

The rank k can be an integer k = 0, 1, 2, 3, . . ., kmax (frequently the 1st value is k = 1) but it can

be extended to be a real number. The main task is to determine N(k) from P(N).

Following [3] a well-known procedure to sort out random variable data [21], the next step

is to introduce the (complementary) cumulative distribution of P(N) as

PðN;NmaxÞ ¼

ZNmax

N

PðNÞdN; ð2Þ

so that normalization of P(N) means P(Nmin, Nmax) = 1. It is through the distribution P(N,

Nmax) that the set of data generated by P(N) is ordered by size to deliver N(k). As N is varied

from Nmax all the way down to Nmin the distribution P(N, Nmax) increases monotonically

taking values from P(Nmax, Nmax) = 0 toP(Nmin, Nmax) = 1, and this distribution can be
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identified with k if properly scaled, that is

k � NPðNðkÞ;NmaxÞ: ð3Þ

The dependence of N on k can be obtained by solving

k
N
¼

ZNmax

NðkÞ

PðNÞdN; ð4Þ

for N(k). We call N(k) the size-rank distribution even though it is not a probability distribution

[18], as P(N) and P(N, Nmax) are. If P(N) requires normalization, it must be divided by the

constant

C ¼

ZNmax

Nmin

PðNÞdN; ð5Þ

and Eq (4) generalises to

k
N
¼

1

C

ZNmax

NðkÞ

PðNÞdN:

Defining N 0
� N =C we have

k
N 0 ¼

ZNmax

NðkÞ

PðNÞdN: ð6Þ

Different classes of size-rank distributions

We look now at the specific expressions that come out of Eq (4) when P(N) is given by Eq (1).

We have

PðNðkÞ;NmaxÞ ¼
1

Ca

ZNmax

NðkÞ

N � adN

¼
1

Cað1 � aÞ
N1� a

max � NðkÞ1� a
� �

¼
1

Ca

½ ln a Nmax � ln a NðkÞ�;

ð7Þ

where lnq(x)� (1 − q)−1[x1−q − 1] with q a positive real number is the q-deformed logarithmic

function, and Cα = lnα Nmax − lnα Nmin. From Eqs (6) and (7) it follows

ln a NðkÞ ¼ ln a Nmax � N 0� 1k: ð8Þ

The normalization constant Cα = is finite if Nmin > 0 and Nmax <1. When α> 1 Cα is

finite when Nmax!1 but Nmin > 0.

Dynamical analogues of rank distributions
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The size-rank distribution N(k) is explicitly obtained from the above with use of the inverse

of lnq(x), the q-deformed exponential function expq(x)� [1 + (1 − q)x]1/(1 − q), this is

NðkÞ ¼ Nmax exp a½� Na� 1
maxN

0� 1k�; ð9Þ

so that when α = 1 we have the ordinary exponential form

NðkÞ ¼ Nmax exp ð� N 0� 1kÞ: ð10Þ

We can take the limit α!1 to signify, for instance, that

PðNÞ ¼ N � 1
0

exp ð� N=N0Þ; ð11Þ

and we choose N0 = 1 to find

NðkÞ ¼ � ln ½ exp ð� NmaxÞ þN 0� 1k�: ð12Þ

In the limit Nmax!1 Eq (9) becomes the power law N(k)* k1/(1−α) that when α = 2 gives

the simple hyperbolic form N(k)* k−1, the classical Zipf law for ranked size data. In contrast,

when α!1, in the limit Nmax!1 the rank distribution becomes NðkÞ ¼ � ln ðk=N 0
Þ, N(k)

decays very fast as k increases since the argument in the logarithmic function lies in the interval

0 � k=N 0
� 1. This can be compared with the case α = 1, but Nmax finite, when N(k) decays

exponentially as k increases.

Another, important, option for P(N) for the limit when α!1 is the Gaussian distribution

PðNÞ ¼
1
ffiffiffiffiffiffi
2p
p

s
exp �

ðN � mÞ2

2s2

� �

; ð13Þ

for which we find

NðkÞ ¼ mþ
ffiffiffi
2
p

s erfc� 1 erfc
Nmax � mffiffiffi

2
p

s

� �

þ 2kN 0� 1

� �

: ð14Þ

The data in the panels of Fig 1 are plotted using scales such that N(k) given by Eqs (9), (10),

(12) and (14) appear as decreasing straight lines.

Nonlinear dynamical analogues of size-rank distributions

The stochastic procedure described above to obtain size-rank functions can be transformed

into a deterministic one where trajectories xt, t = 0, 1, . . . of a one-dimensional nonlinear iter-

ated map x0 = f(x), reproduce the functions N(k), k = 0, 1, . . .. The general expression for this

map is

f ðxÞ ¼ xþ u=Pð� xÞ; u > 0; ð15Þ

where P(− x)� 0 is, as above, the parent distribution and u ¼ N 0� 1
. To obtain Eq (15) we dif-

ferentiate Eq (6) to give

�
1

N 0

dkðNÞ
dN

¼ PðNÞ; ð16Þ

Dynamical analogues of rank distributions
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or, in terms of dynamical variables,

u
dt
dxt
¼ Pð� xtÞ: ð17Þ

Use of dxt/dt’ xt+1 − xt recovers Eq (15).

The size-rank distributions N(k) obtained from the trajectories xt of any map f(x) in our

procedure are monotonically decreasing functions of its rank k. This is so if all trajectories xt
generated by f(x) are monotonically increasing functions of the iterated time t, as N = −x and

k = t. This is so because the condition f(x)� x is always satisfied by Eq (15). Notice that f(x) (or

P(N)) may not be monotonic functions themselves.

This exact analogy between the expressions for the rank distributions and those for the

dynamics in a one-dimensional map was recognized before for the special case of the power

law parent distribution in Eq (1) [18–20], where the map is at a tangent bifurcation [14]. In

this case f(x) is written locally as

x0 ¼ f ðxÞ ¼ xþ ujxjz þ � � � ; x � 0; z > 1; ð18Þ

and trajectories initiated at x0 ≲ 0 are obtained from

xtþ1 ¼ xt þ ujxtj
z
; t ¼ 0; 1; . . . ð19Þ

These trajectories move monotonically towards the point of tangency at x = 0. If we make

the replacement, valid for large time τ, of the difference xτ+1 − xτ by dxτ/dτ in Eq (19) (written

as u|xτ|z = xτ+1 − xτ) we obtain the differential form udτ = |xτ|−z dxτ, and integration of both

sides of it yields

ut ¼
Z xt

x0

dxt
jxtj

z ¼

Z � x0

� xt

dxt
jxtj

z

¼
1

1 � z
jx0j

1� z
� jxtj

1� z� �
;

ð20Þ

or

ln zjxtj ¼ ln zjx0j � ut: ð21Þ

The iteration number or time t dependence of all trajectories is obtained by solving the

above for xt, i.e.

xt ¼ x0 exp z½xz� 1
0

ut�; ð22Þ

where xz−1� sign(x) |x|z−1. The equivalence of the trajectory positions xt with the size-rank

distribution N(k) is made clear by comparison of Eqs (21) and (22) with Eqs (8) and (9),

respectively, together with the identifications t = k, u ¼ N 0� 1
, xt = −N(k), x0 = −Nmax and

z = α. When z = 1 Eq (22) becomes an ordinary exponential,

xt ¼ x0 exp ð� atÞ; ð23Þ

that matches, with use of the previous identifications, Eq (10). As we see below, a linear map

that intersects the identity line,

x0 ¼ f ðxÞ ¼ ð1 � aÞx; ð24Þ

reproduces the trajectories in Eq (23).

Dynamical analogues of rank distributions
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In establishing the equivalence between trajectories xt and rank functions N(k) when 1<

α = z<1 we used starting positions at the left of the point of tangency x0 < 0, but we could

have obtained the same monotonically decreasing N(k) from starting positions at the right of

the tangency point x0 > 0 with the use of the identifications k = T − t, xT = Nmax, xt = N(k),

where T is the last iteration time.

We call attention to the fact [22] that the map trajectories given by Eq (22) are precisely

those that are generated by the renormalization group (RG) fixed-point map [14, 15]

x0 ¼ f ðxÞ ¼ x exp zðuxz� 1Þ; ð25Þ

where this map was obtained [14, 15] as the solution of the functional composition RG fixed

point equation

f ðf ðxÞÞ ¼ g� 1f ðgxÞ; ð26Þ

with γ = 2z−1 and where the expansion of f(x) starts as the required local form for tangency

f(x) = x + u|x|z + � � �, x� 0, z> 1.

In the limit z!1 the counterpart of Eq (22) is

xt ¼ ln ½ exp ðx0Þ þ ut�; ð27Þ

as this expression transforms into Eq (12) for N(k) under the same equivalences t = k,

u ¼ N 0� 1
, xt = −N(k), x0 = −Nmax. Differentiation of Eq (27) gives

dxt
dt
¼ u exp ð� xtÞ; ð28Þ

so that use of xt+1 − xt’ dxt/dt, t� 1, yields the map

x0 ¼ xþ u exp ð� xÞ: ð29Þ

We note that the tangency of this map with the identity line is located at x!1 and not at

x = 0 as it is the case of the map in Eq (25), the effect of taking z = α!1 has shifted the tan-

gency position. To obtain the trajectories xt in Eq (27) from the map in Eq (29) it is necessary

to perform a coordinate transformation to bring the point of tangency back to x = 0.

We can follow the same procedure for the above cases to determine the map that corre-

sponds to the Gaussian distribution choice for P(N) and, consequently, the inverse comple-

mentary error function for N(k). This is

x0 ¼ xþ u
ffiffiffiffiffiffi
2p
p

s exp
ðx � mÞ2

2s2

� �

: ð30Þ

This map never touches the identity line but it comes increasingly closer and parallel to this

line as u! 0. The trajectories generated by the map in Eq (30) are given by

xt ¼ � m �
ffiffiffi
2
p

s erfc� 1 erfc
� x0 � mffiffiffi

2
p

s

� �

þ 2ut
� �

: ð31Þ

In Fig 3 we show the maps and their trajectories that correspond to the four cases described

here, those in Eqs (25), (24), (29) and (30). The insets in the panels of Fig 3 are plotted using

scales such that the trajectories xt given by Eqs (22), (23), (27) and (31) appear as decreasing

straight lines. An exception is the bottom inset of panel (a) that corresponds to an initial posi-

tion placed at the right of the point of tangency. In Fig 2 we reproduce the data in the panels of

Dynamical analogues of rank distributions
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Fig 1 using the same scales as before so that the straight lines correspond to the maps trajectory

positions −xt = N(k), t = k.

A closer look at rank distributions for finite-size samples

As mentioned, for finite data sets the distribution P(N) cannot be a pure power law as in

Eq (1). We use the analogy with the map at tangency to deal with this circumstance without

the need to find the explicit form for P(N). When the tangent RG fixed-point map in Eq (25) is

perturbed by a small amount ε one obtains [15]

f ðx; εÞ ¼ x exp z½uxz� 1�

þ
ε

z � 1
x� ðz� 1Þ 1 � ðz � 1Þuxz� 1 � exp z½ux

z� 1�
z

ð Þ þ Oðε2Þ:
ð32Þ

According to the sign of ε the map in Eq (25) is shifted off tangency letting trajectories

progress across a narrow channel (see Fig 4(a)), or producing a bisection of the map with the

identity line (see Fig 4(b)). The effect on the rank distribution N(k) can be observed by use of

the identifications given above between nonlinear map and rank distribution variables to find

the appropriate results for N <1. In doing this the dependence of xt on the shift parameter ε
is translated into N(k), and one immediate way of assessing its relevance to the description of

finite N <1 samples is through direct comparison.

When ε> 0 the map intersects the identity line x0 = x twice, say at xl< 0 and xr> 0.

The map in the neighborhood of xl has the form f(x) = x − ax + � � �, where the variable x
has been redefined by a shift such that x = 0 is the old xl, and trajectories close to xl evolve as

xt+1 = xt − axt + � � �. The differential version of the latter is adt ¼ � x� 1
t dxt, so that, integration

of both sides of it yields −ln(xt/x0) = at, or

xt ¼ x0 exp ð� atÞ; x0 < 0: ð33Þ

Fig 4. Perturbed RG fixed-point maps. (a) � < 0. A chaotic trajectory is shown performing passages through the map narrow

channel close to the identity line mediated by reinjections that make use of the bottom branch of the map that occurs after the map

singularity at 0. (b) � > 0. The intersections of the map with the identity line, attractor and repellor positions, generate trajectories

that are guided towards the attractor and/or driven away from the repellor.

https://doi.org/10.1371/journal.pone.0211226.g004
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This is the map equivalent to the size-rank distribution N(k) given in Eq (10) for the case

when α = 1 (where again t = k, a ¼ N 0� 1
, xt = −N(k) and x0 = −Nmax). Therefore the effect of a

positive shift ε> 0 is to transform the power law P(N) * N−α, α> 1, by the hyperbolic form

P(N)* N−1 as N increases. When ε> 0 is very small the map is very close to tangency, the

intersection xl* 0, and a crossover should be observed in N(k) from power law k−α to expo-

nential decay.

In establishing the equivalence between the trajectory xt and the rank function N(k) we

used starting positions at the left of the intersection xl< 0, but we could have obtained the

same monotonically decreasing N(k) from starting positions at the right of the intersection

xr> 0, after a shift such that x = 0 is the old xr and with the use of the identifications k = T − t,
xT = Nmax, xt = N(k), where T is the last iteration time.

When ε< 0 the map does not intersect the identity line x0 = x but there is a narrow channel

through which trajectories started at x0 < 0 slip into positions xt> 0. Once a trajectory tra-

verses the channel it increases its value xt rapidly, and this behavior is reflected in N(k) as a

sharp bend towards N = 0 reaching this value at a finite rank, kmax <1. In this way the out-

come of a negative shift ε< 0 is a finite size effect. The transformation of xt into N(k) follows

the earlier identifications t = k, u ¼ N 0� 1
, and z = α, but now x0 − x� = −Nmax and xt − x� =

−N(k), where the translation x� ensures that all N(k)� 0. In particular, for a map with parame-

ters (z, u) and given value of ε, a trajectory started at x0 and recorded until a certain maximum

value xT at time T before escaping from the narrow channel we have x� = xT and T = kmax. We

show in Fig 5 (see inset) that this indeed is observed in real data. We used data in this particu-

lar case of numbers of tallest buildings [23].

Notice that for the map at tangency, ε = 0, any trajectory with x0 < 0 evolves towards

x = 0 asymptotically as a power law t1/(1−z), z> 1, reaching x = 0 at t!1. This implies

kmax ¼ N !1, and signifies infinite size or a ‘thermodynamic limit’ as suggested in the fol-

lowing Section. The shift off tangency ε< 0 translates into kmax ¼ N <1 for the rank

distribution.

Chaotic dynamics arises via the intermittency property of trajectories when � = 0 turns

�≲ 0 (inset of Fig 4a). The passages through the narrow channel are the so-called laminar epi-

sodes (monotonic curves) separated by re-injections (that break monotonicity). One such lam-

inar episode was used to fit the data in Fig 5. The duration D of the laminar episodes depends

on the value of � (D diverges as � vanishes as a known power law [14]). In the analogy D equals

the maximum value of the rank kmax, the size of the data sample. This connection provides a

means to treat finite size without the need to determine the appropriate parent distribution

P(N) that is required to replace the pure power law (strictly compatible only with infinite size)

P(N) in Eq (1). A sequence of laminar episodes (as shown in the inset of Fig 4a) provides an

ensemble of finite-size data samples.

A statistical-mechanical structure for size-rank distributions

As pointed out before [18–20] the size-rank expressions such as those in Eqs (8) and (9) are

reminiscent of those in a statistical-mechanical and thermodynamic structure. First consider

that for a fixed value of k the probability for each unit of N that makes up N(k) to occur is

pðkÞi ; i ¼ 1; . . . ;NðkÞ. If this probability is uniform as in a microcanonical ensemble, we have

pðkÞi ¼ pðkÞ � 1=NðkÞ for all i = 1, . . ., N(k), and this for each k = 0, 1, . . ., kmax. Then, if we con-

sider the case α = 1 and define S(k)� ln N(k) and Smax� ln Nmax, Eq (8) reads

SðkÞ ¼ Smax � N 0� 1k; ð34Þ

Dynamical analogues of rank distributions
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where if SmaxðN
0� 1
Þ is thought of as an entropy for the system with fixed N 0

then S(k) would be

a Massieu potential [24] after the variable N 0� 1
has been replaced by the (conjugate) variable k

as in a Legendre transformation. Eq (10),

NðkÞ ¼ Nmax exp ð� N 0� 1kÞ; ð35Þ

can be taken to be the outcome of the steepest-descent property arising for large N 0
on

NðkÞ ¼
Z

NmaxðN
0
Þ exp ð� N 0� 1kÞdN 0� 1

: ð36Þ

That is, we consider that there are fluctuations in the data sample size N 0
, and consequently

also in the degeneration NmaxðN
0
Þ, but these become increasingly irrelevant for large N 0

as the

limit kmax ¼ N !1, and Nmin! 0, and a dominant configuration is established in analogy

with the thermodynamic limit.

The case α> 1, where now S(k)� lnα N(k) and Smax� lnαNmax, together with the use of

expα instead of the ordinary exp in Eqs (35) and (36) demands careful analysis of the limit

kmax ¼ N !1. It has been argued recently [16, 17] that this type of generalized expression

for the entropy appears in situations where a drastic reduction of accessibility to configuration

space is forced upon a system, such that the final set of reachable configurations has a

vanishing measure with respect to the initial set. Attractors in dissipative nonlinear systems

provide a mechanism for such severe reduction of accessible states, and the case of the tangent

Fig 5. Rank-order statistics for cities with largest numbers of tallest buildings. Data (empty circles) from Reference

[23]. Fitting obtained from a trajectory (smooth curve) of the map in Eq (32) with the identifications provided in the

text.

https://doi.org/10.1371/journal.pone.0211226.g005
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bifurcation, as other transitions to chaos in low-dimensional iterated maps, have proved to be

suitable model systems to analyze this circumstance [16, 17]. Interestingly, the RG fixed-point

map Eq (25) provides a simple analytical expression that illustrates both this phase space (or

position interval) contraction (from a set of real numbers to only a finite set) and a connection

with the size-rank distribution N(k) in Eq (9).

The above entropy expressions form part of a set of extensive entropy (or information)

measures that comprise the four types of distributions N(k) we have described (Eqs (9), (10),

(12) and (14) and shown in Fig 2). These measures are given by their corresponding unnorma-

lized cumulative distributions NPðNðkÞ;NmaxÞ:

NPðNðkÞ;NmaxÞ ¼ kmax½ lnNmax � lnNðkÞ�; a ¼ 1; ð37Þ

NPðNðkÞ;NmaxÞ ¼ kmax½ ln aNmax � ln aNðkÞ�; 1 < a <1; ð38Þ

NPðNðkÞ;NmaxÞ ¼ kmax½ exp ðNðkÞÞ � exp ðNmaxÞ�; a!1; ð39Þ

and

2NPðNðkÞ;NmaxÞ ¼ kmax erfc
NðkÞ � m

ffiffiffi
2
p

s

� �

� erfc
Nmax � mffiffiffi

2
p

s

� �� �

; a!1: ð40Þ

Since the size of the system is given by the rank k, 0< k< kmax that generates the data set

N(k), k = 0, 1, . . ., then by virtue of Eq (3) the above measures are extensive. In the nonlinear

map language the measures are areas under the maps f(x) that grow linearly with iteration

time (c.f. Eq (20)).

Summary and discussion

We described different classes of size-rank distributions N(k) that originate each from a differ-

ent parent distribution P(N) for data samples of the size random variable N. We considered

power law, exponential, and Gaussian parent distributions to obtain analytic expressions for

N(k). Then we derived for each of these cases expressions of one-dimensional nonlinear iter-

ated maps such that their trajectories xt are exact functional analogues of the size-rank distri-

butions N(k), via t = k, xt = −N(k), etc. Significantly, all the equivalent maps appear at or close

to tangency with the identity line, as can be clearly seen in Fig 3, so that the Lyapunov expo-

nent vanishes or is close to zero, and dynamical evolution takes place at or is close to a transi-

tion in or out of chaos via the tangent bifurcation. The Lyapunov exponent λ vanishes for the

map in Eq (25) and is proportional to �’ 0 for the perturbed map in Eq (32) [14, 22]. Straight-

forward calculations show that λ vanishes for the maps in Eq (29) (for all u) and Eq (30) (for

u’ 0). Seen via the dynamical analogues there is a unifying thread that links these classes of

rank functions: When the nonlinearity is z = 1 the map intersects the identity line and we have

an exponentially-decaying N(k), Eq (10). When 1< z<1 the map is tangent to the line and

N(k) decays as a power law, Eq (9). When z!1 we observed that the point of tangency shifts

to infinity and N(k) acquires a logarithmic form, Eq (12). Also, for the same z!1 the map

can show a shape with a central sector parallel and close to tangency in which case N(k) exhib-

its an inverse error function form, Eq (14). The latter class represents the common situation in

which the size variable N is controlled by the Central Limit Theorem. The description of rank

functions in the alternative language of nonlinear dynamics opens the possibility of gains with

the use of a different narrative. All one-dimensional nonlinear maps are dissipative so that

they possess attractors and repellors and their known dynamical properties [14], some of

Dynamical analogues of rank distributions
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which we have used here, may find further application. For all classes of size-rank distributions

described we made comparison with real data and found agreement.

When the parent distribution is a power law, P(N)*N−α, α> 1, the resulting map is that

which corresponds to the fixed point of the RG approach where the basic transformation is

functional composition, i.e. a deformed exponential map, c.f. Eq (25), which describes scaling

at the tangent bifurcation. There, when the largest data Nmax!1, N(k) becomes a power law

N(k)*k1/(1−α), the classical Zipf law for α = 2. This is the most common case since then the

local map at tangency is an analytic function with nonzero curvature. We have also argued

about the statistical-mechanical meaning of the expressions we use to reproduce ranked data.

Significantly, the RG fixed-point map also appears as a central element in the description of

critical fluctuations [25, 26] and helps determine their temporary, intermittent, nature. Also,

the divergence of the critical correlation length implies the vanishing of the Lyapunov expo-

nent at the tangent bifurcation [25, 26].
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