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Abstract

The authors compared maximal tumor diameters between fresh lung tissue and axial and mul-

tiplanar reformatted chest computed-tomography (CT) images in lung adenocarcinoma and

investigated the factors affecting tumor-size discrepancies. This study included 135 surgically

resected lung adenocarcinomas. An experienced pulmonary pathologist aimed to cut the

largest tumor section and measured pathological tumor size (PTS) in fresh specimens. Radio-

logical maximal tumor sizes (RTS) were retrospectively measured on axial (RTSax) and multi-

planar reformatted (RTSre) chest CT images. Mean PTS, RTSax, and RTSre were 19.13 mm,

18.63 mm, and 20.80 mm, respectively. RTSre was significantly larger than PTS (mean differ-

ence, 1.68 mm; p<0.001). RTSax was also greater than PTS for 6−10-mm and 11−20-mm

tumors. PTS and RTS were strongly positively correlated (RTSax, r2 = 0.719, p<0.001; RTSre,

r2 = 0.833, p<0.001). The intraclass correlation coefficient was 0.915 between PTS and RTSax

and 0.954 between PTS and RTSre. Postoperative down-staging occurred in 11.0% and

27.4% of tumors on performing radiological staging using RTSax and RTSre, respectively.

Postoperative up-staging occurred in 12.3% and 1.4% of tumors on performing radiological

staging using RTSax and RTSre, respectively. Multiple linear regression revealed that pleural

dimpling (p = 0.024) was an independent factor affecting differences between PTS and RTSax.

Specimen type (p = 0.012) and tumor location (p = 0.020) were independent factors affecting

differences between PTS and RTSre. In conclusion, RTSre was significantly larger than PTS

and caused postoperative down-staging in 27.4% of the tumors. Reliability analysis revealed

that RTSre was more strongly correlated with PTS than RTSax. Specimen type and anatomical

tumor location influenced the measured size differences between PTS and RTSre.

Introduction

Tumor size is an important prognostic factor in cancers of solid organs. There are, however,

discrepancies in tumor size measured using pathological and radiological methods. In renal

tumors, computed tomography (CT) of radiological tumor size (RTS) generally overestimates
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pathological tumor size (PTS)[1, 2]. In non-small cell lung cancer (NSCLC), chest CT usually

overestimates PTS[3–5]; however, conflicting results have been reported[6]. Lung tumor size

discrepancies between radiological and pathological methods are affected by several factors.

First, the degree of lung aeration and expansion when measuring PTS and RTS is quite differ-

ent. In lung cancer, RTS is usually measured in the fully expanded condition when the patient

holds a deep breath. However, PTS is measured with the lung in the collapsed condition, when

it is compressed during one-lung ventilation for surgery, and the resected lung tissue becomes

more flat due to deflation and blood drainage after removal of surgical clip(s) or staples(s)[3,

5]. Second, the tumor planes in CT and specimens, where the maximal tumor size is measured,

are different[3]. For example, radiologists usually measure tumor size in the axial plane of

chest CT, unless the tumor extends vertically lengthwise. However, pathologists tend to cut the

largest tumor section perpendicular to the visceral pleura and resected surface to assess pleural

invasion and resection margin, and then measure tumor size. If the tumor shape is vertically

long, the axial plane of chest CT may underestimate tumor size compared with sagittal or coro-

nal planes of CT, or pathology specimen.

Further, PTS of the lung can change during routine pathology processes such as formalin fixa-

tion[7], tissue processing, and slide preparation[8]. Formalin fixation can shrink tumor size and

cause down-staging in 3%-10% of the specimens from patients with NSCLC[7, 9]. Hsu et al.
reported that fresh tumor size was more strongly related to patient prognosis than fixed tumor

size in stage I NSCLC[9]. To date, radiological and pathological correlations of lung tumor size

have been assessed using RTS entirely measured on axial CT images[5, 6, 8, 10–12], or PTS mea-

sured on fixed specimens[4, 6, 11] or on glass slides (i.e., microscopic measurement)[3]. There-

fore, we compared maximal tumor diameters between fresh pathology specimens and CT images

(axial and multiplanar reformatted images) in lung adenocarcinoma, and investigated the factors

that influence tumor size discrepancies between pathological and radiological methods.

Materials and methods

Case selection and measurement of PTS

The cases included in this study were adopted from a prospectively collected lung cancer data-

base for another prospective study[7]. The data-base included surgically resected non-small

cell lung cancer tissues (n = 200) that were sectioned and measured in the fresh state at the

Department of Pathology, Gangnam Severance Hospital (Seoul, South Korea) between 2013

and 2016. From the data-base, adenocarcinoma was selected for this study. The specimens

were not inflated with embedding medium or fixatives before gross cutting; PTS was measured

exclusively in the fresh state. An experienced pulmonary pathologist (H.S.P.) aimed to cut the

largest tumor section, usually in the center of the tumor mass, and measured the maximal

tumor diameter using a straight metal ruler (Fig 1A); PTS was measured including both solid

and subsolid portions of the tumor mass. Tumors larger than 5 cm, those with uncertain mar-

gins owing to underlying lung fibrosis or pneumonia, and those that exhibited larger cross-sec-

tional diameter after formalin fixation were excluded. The initial gross measurement was re-

evaluated at the time of microscopic evaluation of the tumor and none of the tumors required

significant revision of the grossly estimated tumor size. Histopathological features, including

specimen type containing tumor, tumor location (upper, middle, and lower lobe), ischemic

time, gross type (solid, subsolid, mucinous) in pathology specimens, pleural invasion, pleural

dimpling, tumor necrosis, adenocarcinoma classification according to the 2015 World Health

Organization classification[13], and major histological pattern (lepidic versus vs. non-lepidic)

were evaluated. Major histological pattern was defined as the most predominant histologic pat-

tern of the tumor mass. In this study, minimally invasive adenocarcinoma and
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adenocarcinoma in situ were considered to exhibit lepidic dominant pattern. The histopatho-

logical features were defined as previously described[7]. Slice thickness in CT was also evalu-

ated. Patient outcome was investigated until the date of death or last follow-up. The study

protocol was approved by the Institutional Review Board of Gangnam Severance Hospital

(protocol no: 3-2017-0319) and the requirement for informed consent was waived.

CT protocol and image analysis

All chest CT scans were performed using one of the following three scanners: Somatom Sensa-

tion 16, Somatom Sensation 64, or Somatom Definition AS+ (all from Siemens Medical Solu-

tions, Erlangen, Germany). Images were acquired from the lung apex to the adrenal glands,

during breath-holding at the end of inspiration with a helical technique. Chest CT parameters

included tube voltage, 120 kVp; tube current, 50–130 mA; and slice thickness, 1–3 mm. The

data were reconstructed at 1–3 mm intervals on the scanner workstation. All CT images were

uploaded to a commercially available reconstruction program (Aquarius iNtuition, version

4.4.12; TeraRecon, Foster City, CA, USA) for tumor size measurements.

A radiologist with>10 years’ experience in chest radiology measured RTS to one decimal

place (C.H.P.), and was blinded to the results of pathological size measurements. RTS was

measured including both solid and subsolid/ground glass opacity parts. For the RTS measure-

ment, a lung window setting was used (width, 1500 Hounsfield units [HU]; level, –500 HU).

First, the maximal diameter of the lesion in the axial plane (RTSax) was measured using an

electronic caliper (Fig 1B). All CT slices containing each tumor were reconstructed in coronal,

sagittal, and oblique planes by a radiologist (C.H.P.), and the maximal tumor diameter was

carefully measured in each plane. Subsequently, the largest tumor diameter among multiplanar

reformatted images (RTSre) was selected for analysis (Fig 1C).

Statistical analysis

The paired t-test was used to compare mean PTS, RTSax, and RTSre. Scatter plots were used

to determine relationships between PTS and RTS. Inter-observer reliability between PTS and

Fig 1. Measurement of pathological and radiological tumor sizes (RTS). (A) Pathological tumor size (PTS) was measured in fresh specimens after cross-sectioning.

(B) First, RTS was measured on the axial plane (RTSax). (C) Multiplanar reformatted images were then reconstructed to define the greatest diameter of the lesion in

three dimensions and the largest diameter of the lesion (RTSre) was measured.

https://doi.org/10.1371/journal.pone.0211141.g001
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RTS was analyzed by calculating the intra-class correlation coefficient (ICC) and performing

Bland-Altman analysis. Radiological and histopathological factors affecting differences

between PTS and RTS were assessed using the independent t-test, and stepwise multiple linear

regression. Cancer-specific and progression free survival was estimated using the Kaplan-

Meier method and compared using the log-rank test.

All statistical analyses were performed using SPSS version 17.0 (IBM Corporation, Armonk,

NY, USA) and MedCalc version 14.8.1. (MedCalc Software, Ostend, Belgium) for Windows

(Microsoft Corporation, Redmond, WA, USA). A p-value <0.05 was considered statistically

significant.

Results

A total of 135 tumors from 128 patients were included in the study. Mean time interval

between CT scan and surgery was 17 days (range, 0–91). Demographic data from the study

population are summarized in Table 1. Mean (± standard deviation) PTS, RTSax, and RTSre

were 19.13±9.41 mm, 18.63±8.60 mm, and 20.80±9.46 mm, respectively. Mean RTSre was sig-

nificantly larger than PTS (mean difference, 1.68±3.94 mm; p<0.001); however, there was no

significant difference between RTSax and PTS (mean difference, 0.49±5.31 mm; p = 0.285).

When tumors were divided into 10-mm intervals, the mean RTS (both RTSax and RTSre) was

significantly greater than the mean PTS for tumors in 6–10 mm and 11–20 mm categories,

and the mean difference was greater in RTSre than in RTSax (Table 2). For tumors in the 21–

30 mm category, RTSax was significantly larger than PTS. However, PTS was significantly

larger than RTSax for tumors in the 41–50 mm category. In the remaining categories, there

was no significant difference between PTS and RTS.

Scatter plots of PTS vs. RTSax and RTSre are shown in Fig 2; PTS was relatively strongly

correlated with RTSax (r2 = 0.719, p<0.001) and RTSre (R2 = 0.833, p<0.001). Further, RTSax

tended to overestimate PTS in small tumors, but underestimated PTS in larger tumors; RTSre

tended to consistently overestimate PTS.

The ICC between PTS and RTSax was 0.915 (95% confidence interval [CI], 0.881–0.940);

and that ICC between PTS and RTSre was 0.954 (95% CI, 0.936–0.968). Bland-Altman plots

are shown in Fig 3. The 95% limits of agreement were wider in RTSax (-9.5–10.2 mm) than in

RTSre (-9.4–6.0 mm).

Independent t-tests revealed that pleural invasion (p = 0.047) or dimpling (p = 0.024)

affected differences between PTS and RTSax (Table 3). The differences between PTS and

RTSre were influenced by specimen type (p = 0.026), tumor location (p = 0.046), gross type in

pathology specimens (p = 0.045), and pleural invasion (p = 0.047). Slice thickness in CT did

not influence size discrepancies between PTS and RTS in simple linear regression analysis.

Stepwise multiple linear regression (n = 135) was performed using radiological and histo-

pathological factors with p<0.1 after the independent t-test: the input variables for discrepan-

cies between PTS and RTSax were specimen type and pleural dimpling, and those for

discrepancies between RTS and RTSre were specimen type, location, gross type in pathology

specimens, and pleural invasion. Multiple linear regression analysis revealed that pleural dim-

pling (p = 0.024) was an independent factor affecting differences between PTS and RTSax

(Table 4). Specimen type (p = 0.012) and tumor location (p = 0.020) were independent factors

that resulted in differences in measurements between PTS and RTSre. After 90% random sam-

pling of the study cohort using the SPSS software, we repeated multiple regression analysis,

and found that beta and Pearson’s correlation coefficients were similar to those before random

sampling (S1 Table).
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Table 1. Baseline characteristics of lung adenocarcinoma (n = 135).

Parameter

Age (year)

Mean ± SD 62.5±10.7

Range 30–90

Sex

Male 64 (47.4%)

Female 71 (52.6%)

Pathological tumor size (mm)

Mean ± SD 19.1±9.4

Range 6–45

Radiological tumor size (mm) measured on the axial image

Mean ± SD 18.8±8.5

Range 5.9–47

Radiological tumor size (mm) measured on the multiplanar reconstructed image

Mean ± SD 20.8±9.5

Range 5.9–48.4

Specimen type containing tumor

Wedge resection 71 (52.6%)

Segmentectomy 10 (7.4%)

Lobectomy 53 (39.3%)

Pneumonectomy 1 (0.7%)

Ischemic time (h)

�24 119 (88.1%)

>24 16 (11.9%)

Histologic classification

Invasive adenocarcinoma 120 (88.9%)

Minimally invasive adenocarcinoma 12 (8.9%)

Adenocarcinoma in situ 3 (2.2%)

Tumor location

Upper lobe 80 (59.3%)

Middle lobe 7 (5.2%)

Lower lobe 48 (35.5%)

Gross type of tumor in pathology specimen

Solid 75 (55.6%)

Subsolid 55 (40.7%)

Mucinous 5 (3.7%)

Pleural invasion

Absent 111 (82.2%)

Present 24 (17.8%)

Pleural dimpling

Absent 81 (60%)

Present 54 (40%)

Tumor necrosis

Absent 133 (98.5%)

Present 2 (1.5%)

Pathological TNM stagea

0 3 (2.2%)

I 113 (83.7)

(Continued)
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Among the 73 invasive adenocarcinomas that did not exhibit pleural invasion, nodal meta-

stasis, and lepidic predominant pattern, there was a discrepancy between radiological and

pathological T staging in 17 (23.3%) and 21 (28.8%) tumors when radiological staging was per-

formed using RTSax and RTSre, respectively (Fig 4, Table 5). Of these, 8 (11.0%) tumors were

down-staged and 9 (12.3%) were up-staged postoperatively when radiological staging was per-

formed using RTSax. However, 20 (27.4%) tumors were down-staged postoperatively and 1

(1.4%) was up-staged when radiological staging was performed using RTSre. No cancer-related

death was observed in this subpopulation. Three cases of cancer recurrence were observed

during follow-up (median, 45 months; range, 0–63 months), but there was no statistically sig-

nificant difference in patient outcome among T stages performed using PTS, RTSax, and

RTSre.

Discussion

Tumor size became a very important prognostic descriptor for NSCLC in the American Joint

Committee on Cancer Staging Manual, 8th Edition[14]. For T staging purposes in lung cancer,

the manual defines RTS as the single largest tumor dimension measured on axial, coronal, or

sagittal CT sections at the lung window setting[14, 15]. Measurement of PTS is recommended

to be performed in fresh specimens after cross-sectioning[9, 16]. As the longest tumor axis

does not always align with axial, coronal, or sagittal planes, we also evaluated the RTS in

obliquely reconstructed CT images in this study. In addition, as measuring tumor size in a cut

section of fresh lung tissue is not a routine practice in pathology, we specifically designed the

study cohort to measure PTS in the fresh state using the same cutting methodology.

A previous study had compared the utility of multiplanar reformatted CT and pathology;

Pawaroo et al. showed that multiplanar CT measurement at lung window setting overestimates

PTS (it is not clear whether the specimen’s state was fresh or formalin fixed) with a mean dif-

ference of 7.8 mm in NSCLC[17], which is much larger than that observed in our study.

Table 1. (Continued)

II 8 (5.9%)

III 8 (5.9%)

Recurrent 3 (2.2%)

aStages adopted from the American Joint Committee on Cancer TNM staginig system, 8th edition

SD, standard deviation; TNM, tumor, node, metastasis

https://doi.org/10.1371/journal.pone.0211141.t001

Table 2. Mean pathological and radiological tumor sizes divided into 1-cm intervals by pathological tumor size.

PTS (mm) n Mean PTS±SD (mm) Mean RTSax±SD (mm) Mean RTSre±SD (mm) Mean difference p-value

PTS-RTSaxa±SD (mm) PTS-RTSreb±SD (mm) a b

�10 30 8.4±1.5 9.6±3.2 10.5±3.4 -1.20±2.8 -2.1±2.9 0.024 <0.001

>10 but�20 52 15.5±2.5 16.5±4.9 17.9±2.6 -1.1±3.6 -2.4±3.5 0.035 <0.001

>20 but�30 37 24.9±2.2 23.3±4.1 25.8±4.1 1.6±4.2 -0.9±4.0 0.023 0.174

>30 but�40 10 33.9±2.4 34.2±6.8 35.9±6.4 -0.3±6.2 -2.0±6.2 0.902 0.342

>40 but�50 6 44.0±1.3 31.0±8.2 41.7±5.0 13.0±8.0 2.3±5.6 0.028† 0.345‡

†,‡: p values were calculated using the Wilcoxon signed rank test.

PTS, pathological tumor size; RTSax, radiological tumor size measured on axial images; RTSre, radiological tumor size measured on multiplanar reformatted images;

SD, standard deviation

https://doi.org/10.1371/journal.pone.0211141.t002
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Recent studies have revealed discrepancies between preoperative RTS measured using axial

CT section and postoperative PTS in small lung adenocarcinoma. Lampen-Sachar et al.
reported that axial CT measurement was significantly larger than pathological measurement

in the fresh state, with a mean difference of 5.49 mm[5]. Conversely, Heidinger et al. demon-

strated that axial CT diameter was significantly smaller than pathological measurement in the

fixed state, with a mean difference of 0.8 mm in case of solid nodule[6]. In case of pure

Fig 2. Scatter plots of pathological tumor size (PTS) vs. radiologic tumor size (RTS). (A) The relationship between PTS and RTS measured on axial images (r2 =

0.719, p<0.001). (B) The relationship between PTS and RTS measured on reconstructed multiplanar images (r2 = 0.833, p<0.001).

https://doi.org/10.1371/journal.pone.0211141.g002

Fig 3. Bland-Altman plots reflecting the differences between pathological tumor size (PTS) and radiological tumor size (RTS), which was measured in the axial

image (A) and the multiplanar reformatted image (B). The solid horizontal line indicates the mean difference between PTS and RTS; the horizontal dashed lines

indicate the 95% limit of agreement.

https://doi.org/10.1371/journal.pone.0211141.g003
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ground-glass nodule, Heidinger et al. showed that axial CT diameter was larger than patholog-

ical measurement in the fixed state[11]. In contrast, Isaka et al. reported that RTS measured on

axial CT section was similar to PTS measured in inflated fresh tissue section after saline

immersion[8]. Bhure et al. also showed that RTS measured on axial CT image was similar to

PTS measured on axial histological section[10]. These conflicting findings may result from dif-

ferences in study populations (proportions of solid and subsolid masses), method of tumor

delineation in CT (semi-automated vs. manual), slice thickness in CT, and tissue preparation.

Specimen preparation, such as tissue section immersion and cutting methodology, may differ

according to institution and gross prosecutors, which can lead to discrepancies in PTS. Tissue

section immersion with saline has a slight expansion effect on lung tissue and subsolid masses,

and could result in increases in PTS. Unlike CT measurement, specimen cutting is a one-time

Table 3. Results of the independent t-test performed to investigate factors affecting differences between pathological and radiological tumor size.

Radiologic-pathological factors n Mean difference

PTS-RTSax (mm) PTS-RTSre (mm)

Mean±SD or r p Mean±SD or r p
Specimen type 0.081 0.026

†Partial resection 82 -0.3±4.3 -2.3±3.3

‡Total resection 53 1.3±5.9 -0.8±4.7

Location 0.362 0.046

Upper or middle lobe 87 -0.1±5.4 -2.2±4.1

Lower lobe 48 0.8±4.3 -0.8±3.4

Ischemic time (h) 0.300 0.225

�24 119 0.1±4.9 -1.8±4.0

>24 16 1.9±6.1 -0.6±3.6

Gross type in pathology specimens 0.624 0.045

Solid or mucinous 80 0.7±4.8 -1.1±4.1

Subsolid 55 -0.2±5.3 -2.5±3.6

Pleural invasion 0.047 0.047

Absent 111 -0.1±4.5 -2.0±3.5

Present 24 2.2±6.9 -0.2±5.4

Pleural dimpling 0.024 0.086

Absent 81 -0.5±3.2 -2.2±3.1

Present 54 1.5±6.7 -0.9±4.9

Tumor necrosis 0.423 0.768

Absent 133 0.4±5.0 -1.7±3.9

Present 2 -2.5±9.2 -2.5±9.2

Histologic classification 0.258 0.863

AIS, MIA 15 -1.1±3.7 -1.9±3.8

Invasive ADC 120 0.5±5.1 -1.7±4.0

Lepidic predominant pattern 0.409 0.438

Absent 106 0.5±4.9 -1.5±4.0

Present 29 -0.3±5.4 -2.2±3.9

Slice thickness in CT (mm) 0.046 0.645 0.039 0.654

†Partial resection includes wedge resection and segmentectomy.

‡Total resection includes lobectomy and pneumonectomy.

PTS, pathological tumor size; RTSax, radiological tumor size measured on axial images; RTSre, radiological tumor size measured on multiplanar reformatted images;

AIS, adenocarcinoma in situ; MIA, minimally invasive adenocarcinoma; ADC, adenocarcinoma; SD, standard deviation

https://doi.org/10.1371/journal.pone.0211141.t003
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procedure, and PTS cannot be measured repeatedly. In tertiary referral hospitals, gross cutting

is usually performed by different pathology residents, which may introduce bias in retrospec-

tive studies. To reduce interobserver variability when measuring PTS in this study, specimen

cutting and tumor size measurement was performed in the fresh state by one staff pathologist

specializing in pulmonary pathology.

Given that the lung is inflated during CT examinations and RTS is larger when the greatest

tumor diameter is measured on multiplanar reformatted CT images than on axial CT images

alone[18], it is reasonable to conclude that multiplanar reformatted CT measurement overesti-

mate pathological measurement. Herein, we demonstrated that RTSre was significantly larger

than PTS; RTSax was not statistically significantly different from PTS in this study, which is

consistent with the findings of a previous study by Isaka et al[8].

Both RTSax and RTSre were significantly larger than PTS in tumors�2 cm, and the mean

difference was greater in RTSre than in RTSax. In small adenocarcinoma, chest CT tended to over-

estimate PTS, regardless of the plane; however, multiplanar reformatted CT overestimated PTS

more than axial CT (mean difference, 2.3 mm vs. 1.1 mm). This result can be explained by the

increased partial volume effect for smaller nodules[19] and reformatted images[18]. Among the

tumors larger than 4cm in PTS (n = 6), 4 had vertically oriented tumor axis, and this may cause

greater underestimation of PTS by RTSax than by RTSre (mean difference, 13mm vs 2.3mm).

In this study, RTSre was found to be more strongly correlated with PTS than RTSax. Most

lung tumors have spiculated and geographical margins rather than a spherical shape, and the

long axis of the tumor does not always align with the transverse CT plane; consequently, recon-

structed CT planes are more relevant to the largest tumor section in specimens. In fact, it is

impossible to equate radiological tumor images with pathological tumor sections, especially in

wedge resection specimens, because the three-dimensional shape of the lung tissue changes even

after the removal of surgical staples. Tumor sections in pathology specimens occasionally cannot

reflect the actual largest tumor cross section because tumors cut perpendicular to the visceral

pleura to evaluate pleural invasion of tumor in case of tumors exhibiting pleural puckering.

Independent t-tests and simple linear regression analysis revealed that pleural invasion and

dimpling are factors that influence differences in RTSax and PTS. Factors, such as specimen

type, location, gross type in pathology specimens, and pleural invasion influence differences in

Table 4. Multiple linear regression analysis performed to investigate independent factors affecting differences

between pathological and radiological tumor size.

Parameters PTS-RTSax PTS-RTSre

B (SE) P B (SE) P
Pleural invasion:

Present vs. absent (reference)

Pleural dimpling:

Present vs. absent (reference)

1.98 (0.868) 0.024

Specimen type:

†Total resection vs. partial resection (reference)

1.731 (0.678) 0.012

Location:

Lower lobe vs. Upper or middle lobe (reference)

1.624 (0.692) 0.020

Gross type in pathology specimens:

Subsolid vs. solid or mucinous (reference)

†Total resection includes lobectomy and pneumonectomy; partial resection includes wedge resection and

segmentectomy.

PTS, pathological tumor size; RTSax, radiological tumor size measured on axial images; RTSre, radiological tumor

size measured on multiplanar reformatted images; SE, standard error

https://doi.org/10.1371/journal.pone.0211141.t004
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RTSre and PTS. The lepidic component of adenocarcinomas is believed to be responsible for

tumor contractibility during formalin fixation, slide preparation, and paraffin embedding.

However, it did not affect tumor contractibility between radiology results and fresh pathology

specimens in this study. Multiple linear regression analysis revealed that pleural dimpling was

an independent factor affecting differences in RTSax and PTS, while specimen type and loca-

tion were independent factors influencing differences in RTSre and PTS. Although pleural

dimpling was found to preserve tumor size during formalin fixation, it increased the size dif-

ference between axial CT measurements and PTS in this study. We were not able to discern

why partial resection, and upper or middle lobar location of the tumor, increased the size dis-

crepancy between PTS and RTSre.

Tumor stage changes between RTS and PTS were evaluated, and survival analysis were per-

formed only in invasive adenocarcinomas that did not exhibit pleural invasion, nodal

Fig 4. Changes in T stage after operation. T staging before operation was performed using radiological tumor size, which was measured on axial images and the

multiplanar reformatted CT images and then compared with pathological tumor size.

https://doi.org/10.1371/journal.pone.0211141.g004
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metastasis, and a lepidic predominant pattern. Since RTSre tends to overestimate PTS, and

RTSax is not statistically different from PTS, postoperative down-staging was more frequent

(27% vs. 10.8%) when radiological tumor staging was performed using multiplanar reformat-

ted images (i.e., RTSre) than axial images (i.e., RTSax). Tumor stage discrepancy between RTS

and PTS did not affect prognosis. In the future, it is necessary to study whether RTS or PTS are

more related to patient outcome in NSCLC with a large sample cohort.

This study has some limitations. Size comparisons between radiological and pathological

methods were performed for the entire tumor size, including the lepidic (noninvasive) compo-

nent. It is often difficult to discriminate invasive adenocarcinoma from the lepidic component on

gross examination. Papillary predominant invasive and acinar predominant invasive adenocarci-

noma with less fibrous stroma can present with a subsolid mass. There is a “gray zone” mass

between compacted solid and subsolid tissue on macroscopic examination. In addition, the sam-

ple size in this present study might have been insufficient for in-depth analysis, but we think this

study make significant contributions because the study cohort was obtained from prospectively

collected lung cancer data, unlike other retrospective studies[5, 6, 10–12, 17]. The statistical power

is inadequate for tumor size discrepancy between pathology and radiology in this study, which

paradoxically indicates that PTS and RTS might not be significantly different on average.

In conclusion, radiological tumor measurement performed using multiplanar reformatted

images overestimates fresh PTS in lung adenocarcinoma, with 27.4% of the tumors exhibiting

postoperative down-staging. In adenocarcinomas�20 mm, axial CT measurement also over-

estimates PTS. Multiplanar reformatted CT measurement correlate better with PTS than axial

CT measurement. Partial resection and upper or middle lobar location of the tumor, may

increase the size discrepancy between PTS and RTSre.
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Table 5. Discrepancy between radiological and pathological tumor stage in 73 invasive adenocarcinomas.

Pathological T stagea (n) Radiological T stagea Down staged after operation Upstaged after operation

RTSax (n) RTSre (n) RTSax (n) RTSre (n) RTSax (n) RTSre (n)

T1a 12 12 7 2 cT1b to pT1a 5 cT1b to pT1a

T1b 36 34 32 4 cT1c to pT1b 9 cT1c to pT1b 2 cT1a to pT1b

T1c 17 21 22 1 cT2a to pT1c 4 cT2a to pT1c 4 cT1b to pT1c

T2a 6 5 9 1 cT2b to T2a 2 cT2b to pT2a 1 cT1c to pT2a

T2b 2 1 3 2 cT1c to pT2b 1 cT2a to pT2b

Total 73 73 73 8 (11.0%) 20 (27.4%) 9 (12.3%) 1 (1.4%)

aStages adopted from the American Joint Committee on Cancer TNM staging system, 8th edition

RTSax, radiological tumor size measured on axial images; RTSre, radiological tumor size measured on multiplanar reformatted images
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