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Abstract

Breast milk is considered the gold standard nutritional resource for very low birth weight

(VLBW) infants in terms of nutrients and protective factors. If mother’s milk is not available,

the second choice is donated and fortified human milk (HM) from the Human Milk Bank

(HMB). This study hypothesized that HM could be lyophilized and used as an additive to

increase the levels of macronutrients and micronutrients available to VLBW infants. This

study aimed to constitute a lyophilized HM concentrate and determine the osmolality and

the concentration of macronutrients and micronutrients in HM samples at “baseline” and in

“HM concentrates”, analyzed immediately (HMCI), and after 3 (HMC3m) and 6 (HMC6m)

months of freezing. Osmolality was verified using the freezing point osmometric method.

Macronutrient quantification was performed using the MIRIS Human Milk Analyzer. Micro-

nutrients were determined by Flame Atomic Absorption Spectrophotometry and by the auto-

mated colorimetric method. Bayesian linear mixed effect models were adjusted using

OpenBUGS to estimate mean differences and 95% credibility intervals (CrI) of osmolality

and of macro- and micronutrients between the types of HM samples. A comparison of dos-

age values showed a significant increase between HM baseline and HMCI, HMC3m, and

HMC6m. Comparing HM baseline and HMCI highlighted the increase in energy content and

the concentration of carbohydrates and total lipids. The Ca and P contents increased and

the levels of energy, total lipids, and Cu were reduced in HMC3m compared to HMCI. Ca,

Mg, K, Zn, and P increased and the levels of energy, total lipids, and Cu were reduced in

HMC6m, compared to HMCI. The present study confirms the possibility of formulation and

utilization of the immediate concentrate. Partial stability of HM concentrates generated from

freeze-drying of donated milk do not recommend storage.
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1. Introduction

Despite considerable advances, the optimal nutritional support for very low birth weight

infants (<1500 g) has not yet been found. The current aims of neonatal care include promot-

ing survival as well as mimicking fetal growth and proper neurodevelopment of these

extremely immature infants. Providing for the nutritional needs of very low birth weight

(VLBW) infants is a challenge since the preterm stage has a higher demand for energy, protein,

and other nutrients than other development stages, as infants have low stores of key nutrients

such as iron, zinc, and calcium. An adequate supply of energy and protein during the first

week of life is associated with improved growth and development up to the post-conceptional

age of 2 years. In addition, the physiological immaturity, diseases, and general stress of prema-

turity means that these infants require even more optimal nutritional support [1–6].

Breast milk is considered the gold standard nutritional resource due to the provision of

nutrients and protective factors. Some advantages conferred to VLBW infants improved long-

term outcomes of neurodevelopment, immune defenses, development of the microbiota and

the gastrointestinal system, and reduced incidence of necrotizing enterocolitis (NEC) and sep-

sis [7–10]. In addition, early enteral nutrition with an exclusively human milk (HM) diet has

proven to be an effective nutritional support strategy for VLBW infants because of its associa-

tion with lower incidence of NEC, prevention of neonatal infant mortality, and reduction of

time and cost of hospital admission with each preterm infant [11–13].

Current guidelines suggest that all preterm infants should receive HM and that the first

choice should be the mother’s own milk. Nonetheless, HM should be fortified to ensure opti-

mal nutrient intake. If the own mother’s milk is not available, the second choice is donated

and fortified HM from the Human Milk Bank (HMB). The nutritional content of donated HM

by itself may not satisfy the special nutritional needs of VLBW infants, especially for proteins,

micronutrients, and energy, thereby jeopardizing the growth and development of these pre-

term infants [14–17]. A recent study reported that the adequacy of the quantity and quality of

protein intake by VLBW infants influences the rate and relative quality of weight gain [18].

Moreover, an inadequate supply of the micronutrients calcium, phosphorus, and zinc can also

culminate in deficient growth and development since these nutrients are responsible for matu-

ration and for the functionality of several enzymatic systems [19–20]. Faced with the impossi-

bility of increasing the volume of HM and thus the absorption of nutrients [21], the strategy to

adapt this milk to the nutritional needs of VLBW infants is through the fortification of HM

with commercial additives to be added to the mother’s own milk (raw or pasteurized) or

donated HM. However, widely used bovine milk protein-based products, despite providing

growth and weight gain to preterm infants, partially alter the immunological quality of HM,

increase osmolarity and risk of sensitization by heterologous protein, as well as the occurrence

of NEC [22–25]. More recently, human milk-based additives have been formulated and studies

show the advantages of their use, such as improved morbidity and mortality rates, less inci-

dence of NEC, decreased hospital stays, and improvement of infant growth and weight gain.

Nevertheless, the cost of the product and the ethical questions related to its commercialization

make it difficult to use it in neonatal intensive care units (ICUs) [26–29]. Thus, considering

the recent scientific breakthroughs, the hypothesis of this study is that HM voluntarily donated

to the HMB may be lyophilized, in a simple and effortless way, and used as an additive of HM

to increase the levels of nutrients. The aims of this study were to constitute a concentrate with

freeze-dried HM and determine the osmolality and the concentration of macronutrients and

micronutrients in HM samples immediately and after 3 and 6 months in storage to evaluate

the increase in concentration of nutrients followed by nutritional stability of the product. This

study reports an innovative and simplified proposal of nutritional support for VLBW infants
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with an exclusive HM diet to be implemented in the routine of the Human Milk Bank Network

of Brazil (HMB Network Brazil) to ensure the nutrition of preterm infants and as an alterna-

tive to use of the artificial additives currently being used.

2. Materials and methods

This research project was carried out through a partnership with the HMB and the Laboratory

of Metals and Rare Diseases–Pediatrics, at the Clinics Hospital of Ribeirão Preto, Ribeirão

Preto Medical School, University of São Paulo (USP). The milk used in this study came from

donations of surplus production of HM, that is, without compromising the child’s own feed-

ing. Since this study was carried out with human biological material, it was submitted to and

approved by the Human Research Ethics Committee of the Clinics Hospital, Ribeirão Preto

Medical School—USP (HREC Report No. 738.080). The donors were informed about the

nature of the study and those who were willing to participate in the project signed a free and

informed consent form; donors also underwent clinical and serological screening.

Material collection, processing, and quality control

The donors with a lactation period greater than 15 days were given instructions about massag-

ing and milking their breasts, and about how to withdraw the milk into a sterile, inert glass

bottle provided by the HMB. All the samples passed through the selection and classification

processes recommended by the HMB Network Brazil (available at: http://www.redeblh.

fiocruz.br). The selection process included packaging conditions, presence of dirt, color, off-

flavor parameters, and Dornic acidity. The classification process included the verification of

the lactation period, Dornic acidity, and energetic content—the crematocrit [30–33]. Consid-

ering a value of 0.36 for the standard deviation with respect to the expected average of protein

concentration (2.20 g/dL) and an absolute error value of 0.1, with a confidence level of 95%, 50

samples were obtained. Additional data were collected to characterize the donors: age, weight,

height, Body Mass Index (BMI), and gestational age. Inclusion criteria were surplus mature

HM with a Dornic acidity value of up to 8˚D.

Obtaining the HM concentrate

For lyophilization, 50 mL of donated HM was transferred to an inert, sterile glass container

and frozen (-20˚C for 24 hours). After this period, the frozen sample was placed in the vacuum

chamber of a bench lyophilizer (Lyophilizer L108, LioTop, São Carlos—SP—Brazil). After 72

hours, the lyophilized sample was transferred from the lyophilizer to a cold chain, to be recon-

stituted with HM for use. The concentrate with the HM lyophilizate in the immediate period

(HMCI) was composed from samples that were withdrawn from the lyophilizer and reconsti-

tuted with 75 mL of the donor’s own HM baseline. These concentrates together with the HM

baseline were passed through the processes of pasteurization and microbiological quality con-

trol. HM baseline and HMCI were pasteurized at 62.5˚C for 30 minutes after a preheating

period [34]. After 30 minutes of thermal treatment that is lethal to pathogenic bacteria, the

vials were withdrawn from the bath and cooled until the HM reached a temperature� 5˚C.

For the microbiological quality control check, the pasteurized HM baseline and HMCI sam-

ples were screened for total coliforms using bright green bile broth (50g/L; 5% w/v) contained

within Durham tubes. The concentrate with the HM lyophilizate in the immediate period was

subdivided in collection tubes and stored (-20˚C) for 3 (HMC3m) and 6 (HMC6) months, to

evaluate nutritional stability. Two hundred types of HM samples (50 of each type: HM base-

line, HMCI, HMC3m, and HMC6m) were analyzed for osmolality, macronutrients, and
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micronutrients. Osmolality verification was performed using the freezing point osmometric

method in the PZL-1000 Microprocessed Osmometer (PZL).

Macronutrients

In the HMB, the 200 types of HM samples were homogenized using a Sonicator MIRIS (Miris,

Uppsala, Sweden), and the macronutrient content (protein, carbohydrate, total lipids, total sol-

ids and true protein) was quantified in 2 mL aliquots of each sample type by using the MIRIS

Human Milk Analyzer (Miris, Uppsala, Sweden). The MIRIS Human Milk Analyzer performs

precise and accurate analyses based on infrared transmission spectroscopy. Sample types

HMC3m and HMC6m were previously defrosted in a water bath at 37˚C.

Micronutrients

After the pasteurization process, aliquots of each type of HM sample were immediately sepa-

rated in collection tubes, frozen (-20˚C for 24 hours), and sent to the Laboratory of Metals and

Rare Diseases for immediate analysis of micronutrients and also 3 and 6 months post-freezing.

The micronutrients Calcium (Ca), Magnesium (Mg), Sodium (Na), Potassium (K), Copper

(Cu), Zinc (Zn) and Phosphorus (P) were determined “in natura”, after defrosting samples in

a water bath at 37˚C followed by homogenization of the material by ultrasound using Sonica-

tor MIRIS. Proper dilutions were made within the concentration ranges of the calibration

curves for readings in the Flame Atomic Absorption Spectrophotometry (EAA 55B VARIAN),

in which each element uses a hollow-cathode lamp and specific wavelength, acetylene gas and

compressed air. Phosphorus was dosed in the Metrolab equipment with a kit from Wiener

Lab., Ref 1382321 by the automated colorimetric method.

Statistical analysis

The exploratory analysis of osmolality dosages and content of macronutrients and micronutri-

ents was carried out through the mean values (standard deviation) and boxplots (S1 Fig).

Bayesian linear mixed effects models were adjusted using OpenBUGS to estimate the mean

difference and 95% credibility intervals when comparing the dosages of osmolality and of the

macronutrients and micronutrients between the types of HM sample: HM baseline, HMCI,

HMC3m, and HMC6m.

3. Results

Fifty HM donors participated in the study. After the selection and classification of the samples

according to the inclusion criteria, the mean values (standard deviation) of the Dornic acid

values were 4.34˚D (1.59). The characteristics of the HM donors are summarized in Table 1, in

which the mean (standard deviation) age, weight, height, BMI, and gestational age was, respec-

tively, 30.45 (6.05) years, 67.52 (11.92) kg, 1.63 (0.59) m, 25.2 (4.39) kg/m2, and 38.43 (2.27)

weeks.

The descriptive dosage results of the mean (standard deviation) of osmolality and content

of macronutrients and micronutrients in types of samples HM baseline, HMCI, HMC3m, and

HMC6m presented in Table 2. An increase in the levels of the evaluated nutrients was

observed in the concentrates of HMCI, HMC3m, and HMC6m, compared to the HM

baseline.

The comparative values of dosages of osmolality and of macronutrients and micronutrients

in the samples of the types (Table 3) show that there was a significant increase in all the param-

eters in HMCI, HMC3m, and HMC6m, compared to HM baseline. This highlights the
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increase in energy content (-23.680; 95% CrI [-25.910; -21.450]) and the concentration of car-

bohydrates (-2.095; 95% CrI [-2.286; -1.912]) and total lipids (-1.437; 95% CrI [-1.678;

-1.193]). In HMC3m samples, a significant increase was observed in the levels of element Ca

(-2.139; 95% CrI [-3.356; -0.971]) and P (-1.882; 95% CrI [-3.618; -0.209]), but a slight reduc-

tion in the levels of energy (2.988; 95% CrI [0.689; 5.193]) and total lipids (0.342; 95% CrI

[0.099; 0.591]), while the osmolality and other nutrients remained stable, except for Cu (7.154;

95% CrI [3.840; 10.330]), compared to HMCI samples. In HMC6m samples, a significant

increase was observed in the levels of Ca (-4.103; 95% CrI [-5.325; -2.904]), Mg (-0.357; 95%

CrI [-0.515; -0.201]), K (-131.400; 95% CrI [-193.400; -70.690]), Zn (-47.290; 95% CrI [-72.040;

-23.100]), and P (-2.022; 95% CrI [-3.738; -0.355]), but a slight reduction in the levels of energy

(2.672; 95% CrI [0.417; 4.878]) and total lipids (0.335; 95% CrI [0.095; 0.579]), while the osmo-

lality and other nutrients remained stable, except for Cu (9.040; 95% CrI [5.782; 12.203]), com-

pared to HMCI samples. Finally, in HMC6m samples, stored for 6 months, a significant

increase in the levels of Ca (-1.965; 95% CrI [-3.203; -0.770]), Mg (-0.216; 95% CrI [-0.377;

-0.061]), K (-130.400; 95% CrI [-193.400; -69.810]), and Zn (-26.980; 95% CrI [-51.910;

-2.026]) was observed, compared to HMC3m samples. The mean Cu levels presented a differ-

ent pattern in relation to the rest. A significant decrease in Cu content in the comparison

between HMCI and HMC3m and HMCI and HMC6m shows that the storage period reduced

the content of this micronutrient.

Table 1. Characteristics of the HM donors.

Mothers (n = 50) Mean Standard Deviation Minimum Maximum

Age (years) 30.45 6.05 17 44

Weight (kg) 67.52 11.92 47 95

Height (m) 1.63 0.59 1.52 1.77

BMI (kg/m2) 25.2 4.39 18.1 38.1

Gestational age (weeks) 38.43 2.27 27 42

https://doi.org/10.1371/journal.pone.0210999.t001

Table 2. Descriptive statistics of dosage of osmolality and content of macronutrients and micronutrients in HM baseline and the concentrates HMCI, HMC3m,

and HMC6m.

Dosages (units) HM baseline HMCI HMC3m HMC6m

Energy (Kcal/100 mL) 56.30 (10.51) 79.96 (13.75) 76.98 (13.91) 77.30 (13.78)

Protein (g/100 mL) 0.90 (0.49) 1.48 (0.58) 1.39 (0.61) 1.47 (0.54)

Carbohydrate (g/100 mL) 7.08 (0.67) 9.18 (0.68) 9.21 (0.63) 9.18 (0.64)

Total lipids (g/100 mL) 2.59 (1.08) 4.03 (1.44) 3.68 (1.34) 3.69 (1.35)

Total solids (g/100 mL) 10.76 (1.31) 14.77 (1.72) 14.48 (1.78) 14.53 (1.71)

True protein (g/100 mL) 0.75 (0.40) 1.20 (0.48) 1.13 (0.49) 1.19 (0.43)

Osmolality (mOsm/Kg H20) 289.48 (43.64) 452.12 (59.79) 456.16 (56.58) 458.14 (55.67)

Calcium (mg/100 mL) 23.24 (4.70) 36.52 (7.18) 38.67 (6.25) 40.63 (6.02)

Magnesium (mEq/L) 2.14 (0.46) 3.38 (0.65) 3.52 (0.83) 3.73 (0.90)

Sodium (mg/L) 135.04 (98.03) 222.52 (169.03) 244.87 (162.80) 233.19 (141.53)

Potassium (mg/L) 601.38 (147.98) 1013.85 (269.45) 1015.04 (222.82) 1152.31 (234.18)

Copper (μg/100 mL) 33.68 (14.60) 48.30 (19.99) 41.16 (15.12) 39.28 (13.71)

Zinc (μg/100 mL) 149.10 (128.15) 203.89 (126.20) 224.46 (152.50) 251.70 (158.76)

Phosphorus (mg/100 mL) 14.63 (6.09) 18.47 (5.97) 20.36 (7.52) 20.50 (7.35)

HM baseline: Human milk baseline; HMCI: HM concentrated for immediate analysis; HMC3m: HM concentrate for analysis after 3 months of storage; HMC6m: HM

concentrate for analysis after 6 months of storage; Mean (standard deviation).

https://doi.org/10.1371/journal.pone.0210999.t002
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Table 3. Mean difference of dosages of osmolality and content of macronutrients and micronutrients analyzed between HM baseline and concentrates HMCI,

HMC3m, and HMC6m.

Variable Comparisons Mean

difference

95% CrI

lower limit

95% CrI

upper limit

Energy

(kcal/100 mL)

HM baseline—HMCI -23.680 -25.910 -21.450

HM baseline—HMC3m -20.690 -22.930 -18.410

HM baseline—HMC6m -21.000 -23.240 -18.750

HMCI—HMC3m 2.988 0.689 5.193

HMCI—HMC6m 2.672 0.417 4.878

HMC3m - HMC6m -0.316 -2.598 1.951

Proteins

(g/100 mL)

HM baseline—HMCI -0.576 -0.668 -0.482

HM baseline—HMC3m -0.490 -0.584 -0.394

HM baseline—HMC6m -0.566 -0.660 -0.472

HMCI—HMC3m 0.086 -0.010 0.179

HMCI—HMC6m 0.010 -0.086 0.105

HMC3m - HMC6m -0.076 -0.174 0.018

Carbohydrates

(g/100 mL)

HM baseline—HMCI -2.095 -2.286 -1.912

HM baseline—HMC3m -2.126 -2.307 -1.934

HM baseline—HMC6m -2.099 -2.286 -1.912

HMCI—HMC3m -0.030 -0.220 0.151

HMCI—HMC6m -0.004 -0.189 0.176

HMC3m - HMC6m 0.026 -0.161 0.209

Total lipids

(g/100 mL)

HM baseline—HMCI -1.437 -1.678 -1.193

HM baseline—HMC3m -1.095 -1.340 -0.845

HM baseline—HMC6m -1.102 -1.342 -0.863

HMCI—HMC3m 0.342 0.099 0.591

HMCI—HMC6m 0.335 0.095 0.579

HMC3m - HMC6m -0.006 -0.248 0.233

Total solids

(g/100 mL)

HM baseline—HMCI -4.004 -4.307 -3.703

HM baseline—HMC3m -3.715 -4.020 -3.406

HM baseline—HMC6m -3.769 -4.072 -3.463

HMCI—HMC3m 0.289 -0.023 0.588

HMCI—HMC6m 0.236 -0.070 0.535

HMC3m - HMC6m -0.053 -0.363 0.254

True protein

(g/100 mL)

HM baseline—HMCI -0.453 -0.531 -0.375

HM baseline—HMC3m -0.380 -0.458 -0.301

HM baseline—HMC6m -0.444 -0.522 -0.366

HMCI—HMC3m 0.072 -0.008 0.149

HMCI—HMC6m 0.008 -0.070 0.085

HMC3m - HMC6m -0.064 -0.143 0.015

Osmolality

(mOsm/Kg H20)

HM baseline—HMCI -162.200 -177.900 -146.600

HM baseline—HMC3m -166.200 -182.000 -150.300

HM baseline—HMC6m -168.100 -183.700 -152.300

HMCI—HMC3m -3.975 -20.040 11.420

HMCI—HMC6m -5.920 -21.630 9.556

HMC3m - HMC6m -1.945 -17.880 13.980

(Continued)
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Table 3. (Continued)

Variable Comparisons Mean

difference

95% CrI

lower limit

95% CrI

upper limit

Calcium

(mg/100 mL)

HM baseline—HMCI -13.290 -14.460 -12.100

HM baseline—HMC3m -15.420 -16.620 -14.210

HM baseline—HMC6m -17.390 -18.580 -16.200

HMCI—HMC3m -2.139 -3.356 -0.971

HMCI—HMC6m -4.103 -5.325 -2.904

HMC3m - HMC6m -1.965 -3.203 -0.770

Magnesium

(mEq/L)

HM baseline—HMCI -1.234 -1.386 -1.080

HM baseline—HMC3m -1.376 -1.532 -1.219

HM baseline—HMC6m -1.591 -1.747 -1.437

HMCI—HMC3m -0.141 -0.298 0.010

HMCI—HMC6m -0.357 -0.515 -0.201

HMC3m - HMC6m -0.216 -0.377 -0.061

Sodium

(mg/L)

HM baseline—HMCI -86.600 -113.500 -58.860

HM baseline—HMC3m -108.600 -136.600 -80.480

HM baseline—HMC6m -97.060 -124.900 -69.270

HMCI—HMC3m -22.020 -50.450 5.252

HMCI—HMC6m -10.460 -38.880 17.470

HMC3m - HMC6m 11.570 -17.490 39.240

Potassium

(mg/L)

HM baseline—HMCI -392.100 -451.100 -331.600

HM baseline—HMC3m -393.000 -453.600 -330.500

HM baseline—HMC6m -523.400 -584.100 -462.800

HMCI—HMC3m -0.929 -62.620 58.190

HMCI—HMC6m -131.400 -193.500 -70.690

HMC3m - HMC6m -130.400 -193.400 -69.810

Copper

(μg/100 mL)

HM baseline—HMCI -14.950 -18.200 -11.740

HM baseline—HMC3m -7.799 -11.040 -4.511

HM baseline—HMC6m -5.914 -9.141 -2.656

HMCI—HMC3m 7.154 3.840 10.330

HMCI—HMC6m 9.040 5.782 12.230

HMC3m - HMC6m 1.885 -1.388 5.166

Zinc

(μg/100 mL)

HM baseline—HMCI -54.530 -79.040 -30.160

HM baseline—HMC3m -74.840 -99.420 -49.910

HM baseline—HMC6m -101.800 -126.400 -77.040

HMCI—HMC3m -20.320 -45.420 3.872

HMCI—HMC6m -47.290 -72.040 -23.100

HMC3m - HMC6m -26.980 -51.910 -2.026

Phosphorus

(mg/100 mL)

HM baseline—HMCI -3.859 -5.557 -2.176

HM baseline—HMC3m -5.741 -7.437 -4.020

HM baseline—HMC6m -5.881 -7.575 -4.175

HMCI—HMC3m -1.882 -3.618 -0.209

HMCI—HMC6m -2.022 -3.738 -0.355

HMC3m - HMC6m -0.140 -1.865 1.570

HM baseline: Human milk baseline; HMCI: HM concentrated for immediate analysis; HMC3m: HM concentrate for analysis after 3 months of storage; HMC6m: HM

concentrate for analysis after 6 months of storage. 95% CrI: Credibility interval 95%.

https://doi.org/10.1371/journal.pone.0210999.t003
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4. Discussion

Considering the current need for the fortification of HM used in the nutritional support of

VLBW infants, this study presents an innovative possibility of formulating a concentrated HM

through a simplified method of direct lyophilization of milk donated to HMB. Thus, the merit

of this study was to demonstrate the possibility of formulating a product with high nutritional

quality components with low cost of production and without ethical bias.

Several authors emphasize the necessary addition of fortifiers to banked human milk in

order to increase the nutrient content and thus to be able to meet the special nutritional needs

of VLBW infants [2–4]. In the neonatal clinical practice of most public hospitals in Brazil,

bovine milk protein-based products such as FM-85 (Nestlé) and Enfamil HMF (Mead John-

son) are used as fortifiers. However, studies report that such products delay gastric emptying

and expose preterm infants to the risk of sensitization by heterologous protein and the occur-

rence of NEC [35–38].

The present study introduces an innovative proposal for the formulation of a human milk-

base additive through a simplified direct freeze-drying method followed by a single pasteuriza-

tion process, which minimizes the risk of contamination and nutrient loss. A similar study car-

ried out in Brazil reports on the development of two human milk-based additives (liquid and

powdered) from fat extraction, evaporation, lactose reduction, and lyophilization methods

[37]. That same research group has recently improved the formulation method of the powder

additive by minimizing the risks of the elaboration and handling processes of HM by simplify-

ing the method to lactose reduction and lyophilization alone. The partial removal of lactose is

justified by the control of osmolality of HM strengthened with the powdered additive, which

increases tolerance by preterm infants, minimizing the risk of NEC [39–40]. In the present

study, the proposed simplified method consists of lyophilization without lactose reduction,

and it is important to highlight that the concentrated HM after the addition of the lyophilizate

maintained an acceptable osmolality according to the values tolerated by VLBW infants.

The control of osmolality and the physical-chemical and microbiological qualities of HM is

essential for its safe provision to VLBW infants. Recent studies show that the procedures car-

ried out in this study, which were established as a protocol by the HMB Network in Brazil, do

not change the osmolality or the levels of macronutrients and micronutrients in the milk

[31,34,41]. In terms of the lyophilization process, studies report that lyophilizing HM before

the freezing process allows for a better preservation of the nutritional properties of milk [42–

43]. In this study, the presented values of osmolality and the levels of macronutrients and

micronutrients refer to the moment post-lyophilization and pasteurization; therefore, they

reflect the final composition of concentrated HM.

The concentrated milk produced in this study is a safe and viable nutritional support alter-

native since it presents acceptable osmolality and meets the nutritional needs of VLBW infants

related to the recommended enteral intake of macronutrients and micronutrients, with few

exceptions, and may allow for a reduction in the use of bovine milk protein-based additives.

Consensus-based evidence regarding the optimization of nutritional support of VLBW infant

reports that the first choice of enteral feeding is own mother’s milk fortified with balanced

osmolality to ensure safe supply of additional nutrients [4,15]. Studies show that osmolality of

a preterm mother’s milk is similar to our HM baseline, mature milk donated by "term" moth-

ers in the later stage of lactation, and this allows our lyophilizate to be used as an additive to

the milk of the VLBW infant’s own mother, thus generating a concentrate with acceptable

osmolality [22,40].

Regarding the recommendations of macronutrients and micronutrients expressed per 100

kcal of HMCI presented in S1 Table, the mean and confidence interval (CI) of protein (1.85g;
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90% CI [1.68–2.02]), Ca (45.70mg; 90% CI [43.56–47.81]), Mg (5.13mg; 90% CI [4.89–5.36]),

Na (27.84mg; 90% CI [22.84–32.83)], Cu (60.42μg; 90% CI [54.51–66.33]), Zn (0.25mg; 90%

CI [0.22–0.29)], and P (23.10mg; 90% CI [21.34–24.87]) content partially meet the recommen-

dations of enteral intakes established by the Life Sciences Research Office (LRSO 2002) and the

European Society of Pediatric Gastroenterology, Hepatology, and Nutrition (ESPGHAN 2010)

for preterm infants. It is important to emphasize that the content of carbohydrate (11.48g; 90%

CI [11.28–11.68]), total lipids (5.04g; 90% CI [4.61–5.46]), and K (126.83mg; 90% CI [118.87–

134.79]), expressed per 100 kcal of HMCI (S1 Table) fully meet the established recommenda-

tions cited above [44–45].

The evolution of neonatal nutritional protocols over the years shows an improvement in

the intake of energy and macronutrients through HM and, consequently, better neonatal

growth and neurodevelopment [46–47]. Thus, given the updated literature cited and the ade-

quacy of our concentrate on the recommendations of enteral intakes of LRSO 2002 and ESP-

GHAN 2010, the protein content of our concentrate could raise concerns. However, studies

suggest that the quality of human milk protein and the adequate balance of energy and protein

intake are associated advantages in rate and quality of growth as well as better clinical out-

comes for VLBW infants [18,48–51]. Thus, we believe that our HM concentrate allows an opti-

mization of the nutritional support of premature babies, as it guarantees the supply of high

quality bioactive proteins and adequate content of carbohydrates, lipids and K.

The contents of Ca, Mg, Na, Cu, Zn, and P in the concentrated HM sample types also

deserve special attention. According to the recommendations of LRSO 2002 and ESPGHAN

2010, these elements may merit isolated supplementation [44–45]. In addition, adequate early

intake of protein and energy in the first week of life of VLBW infants improves the homeosta-

sis of the electrolytes in question [52]. Preterm infants require high amounts of Ca and P ele-

ments and, due to low skeletal storages, are at increased risk of nutritional disorders such as

growth and developmental deficits, hypophosphatemia, osteopenia in prematurity, and meta-

bolic bone disease [53–54].

The essential micronutrients Mg, Zn and Cu are also related to child growth and develop-

ment as well as immune function [55–57]. A retrospective study confirmed the association

between serum levels of Cu and Zn, gestational age and anthropometric parameters of body

weight, and body length and head circumference at birth in preterm infants [57]. Watson et al.

warned that the most common cause of Zn deficiency is dietary because of the low micronutri-

ent supply that can be generated by the intake of inadequate milk volumes and non-fortified

HM [58]. In addition, Cu deficiency is also recurrent in VLBW infants and can cause anemia,

neutropenia, failure to thrive, psychomotor retardation, and bone abnormalities [59]. In addi-

tion, it is important to note that chronic depletion of Na also negatively affects weight gain and

the growth of preterm infants, especially VLBW infants, since they present higher losses of Na

and thus require supplementation [60–61]. Therefore, considering the decision to use the HM

concentrate produced in this study as a nutritional support strategy for VLBW infants, it will

be necessary to monitor and eventually supplement as needed the serum levels of Ca, Mg, Na,

Cu, Zn, and P.

The content of macronutrients and micronutrients as well as the osmolality of our concen-

trated HM has similarities to some currently marketed breast milk fortifiers. The human milk-

based additive Prolact +4 H2MF (Prolacta Bioscience) when added to 80 mL of preterm

mother’s milk reaches an energy content of 82 kcal per 100 mL, according to the information

provided by the manufacturer, which is similar to our HMCI as shown in Table 2. However,

while our product is able to provide higher amounts of carbohydrates and total lipids per 100

mL (Table 2), Prolacta +4 H2MF provides greater amounts of protein (2.3 g), Na (57 mg), Ca

(123 mg), Zn (0.97 mg), and P (64 mg). Despite this, a recent study warned that HM fortified
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with human milk-based additive does not meet the nutritional recommendations for VLBW

infants established by the American Academy of Pediatrics Committee of Nutrition because

the supply of protein and vitamins is insufficient when it reaches the recommended caloric

intake of 130 kcal/kg [62].

In Brazilian public hospitals, one of the most used HM fortifiers is FM-85 (Nestlé). Accord-

ing to the manufacturer’s information, such a bovine milk protein-based additives when

added to the HM (100 mL) of the premature mother provides: 85 kcal, 2.5 g of protein, 10.3 g

of carbohydrates, 4.02 g of total lipids, 100 mg of Ca, and 59 mg of P. Comparing this nutri-

tional information with the composition of our HMCI (Table 2), we observed similar levels of

energy content, protein, and carbohydrates. However, the content of Ca and P present in 100

mL of HMCI is lower than that offered by HM fortified with FM-85 (Nestlé) [22].

Some authors suggest that the use of the FM-85 additive (Nestlé) improves the bone miner-

alization of VLBW infants, although others report the negative effects of its use [35,36,63]. Sul-

livan et al. found that the nutritional support of VLBW infants using human milk-based

fortifier was associated with lower occurrence of NEC or death when compared to the use of

bovine milk protein-based additives [35]. This fact is justified by LH allowing the maternal

transfer of adaptive immune defenses, especially secretory IgA, which presents in higher con-

centration in the maternal milk of mothers of preterm infants [64].

The preservation of nutritional and immunological components as well as the safety of HM

processed in HMB is a concern addressed in current literature reviews, as studies and propos-

als to improve milk manipulation protocols are constantly being generated [32,65]. A study

conducted by Ahrabi et al. showed that the process of refrigeration at +4˚C for 72 hours fol-

lowed by frozen storage at -20˚C for up to 9 months applied to freshly expressed HM was asso-

ciated with decreased pH and bacterial counts without affecting the content of total protein,

fat, lactoferrin, secretory IgA, and osmolarity in the samples [66]. However, Sousa et al. proved

that pasteurization of HM colostrum caused a reduction of 20, 51, and 23% in IgA, IgM, and

IgG concentrations, respectively [67]. A literature review concluded a similar reduction of

IgA, IgM, and IgG concentrations in HM after holder pasteurization; however, the authors

warn that clinical practice demonstrates that many beneficial properties remain after pasteuri-

zation, which strongly justifies the use of HM processed in HMB for feeding preterm infants

[34]. Therefore, our proposal for the nutritional support of VLBW infants with concentrated

HM is also strengthened.

The present study generated a new hypothesis which will be elucidated in future studies:

the possibility of adding lyophilized HM directly into the mother’s own raw milk to produce

an improved concentrated milk. A systematic review presents the differences between nutrient

contents according to gestational stage (preterm versus term) and lactation time, emphasizing

that the colostrum of mothers of preterm infants presented a higher protein mean when com-

pared with mature HM [68]. Thus, it is likely that our lyophilized milk (50 mL matured

donated milk) when added to a VLBW infant’s mother’s own raw milk will produce a concen-

trated HM with a higher protein content and adequate osmolality that can meet the nutritional

needs of preterm infants [37,44,68]. Other authors reinforce the initiative to use the mother’s

own raw milk during the hospitalization period of preterm infants. Dritsakou et al. suggested

that feeding VLBW infants predominantly with the mother’s own raw milk results in better

neonatal outcomes such as higher body length and head circumference at discharge [69]. In

addition, a prospective cohort study conducted with VLBW infants fed exclusively with HM

demonstrated an association between the early use of the mother’s own raw milk and contin-

ued breastfeeding at discharge (OR 2.92; 95% CI [1.94–4.40]), and after 6 months (OR 2.70;

95% CI [1.21–6.03]) [70].
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In view of all the arguments presented, the concentrated HM produced in this study is an

innovative, viable, and less onerous proposal after initial investment, which can provide many

benefits to VLBW infants as well as national and international health systems. Finally, the last

aim of this study was to evaluate the stability of the concentrated HM samples stored for 3 and

6 months. After 3 months of storage, comparing samples of HMCI and HM3m, the Ca and P

contents increased and the levels of energy, total lipids, and Cu were reduced. However, com-

paring samples of HMCI and HM6m, a significant increase in the levels of Ca, Mg, K, Zn, and

P was observed, despite a slight reduction in levels of energy and total lipids, while the osmolal-

ity and other nutrients remained stable, except for Cu. The Cu content presented a different

pattern in relation to the rest, since it was the only one that suffered a high reduction after the

storage period. Despite significant changes in the nutritional content of concentrated HM

stored for 3 and 6 months, we considered clinically relevant only the increase of K and the

reduction of Cu in the samples. In view of these results, it is possible to preserve the concen-

trated HM for 6 months; however, it is necessary to consider the changes in the nutritional

content of this product, mainly in the K and Cu elements, which suggest the non-storage of

this concentrated product. Currently, target fortification has been tested as a method for

adjusting macronutrient and micronutrient content in fortified HM with marketed products

that even after fortification may not fully meet the nutritional needs of VLBW infants, unlike

the concentrated HM produced in this study [71–72]. Several authors suggest that target forti-

fication is safe and capable of individually optimizing the intake of macronutrients (protein,

carbohydrate, and fat) by VLBW infants according to the ESPGHAN 2010 guidelines [73–74].

One limitation of this study was the lack of evaluation of diet composition of the donors dur-

ing the pre-gestational, gestational, and post -gestational periods.

5. Conclusions

The present study confirms the possibility of formulating concentrated HM, generated from

the freeze-drying of the milk donated from the HMB, with osmolality and levels of certain

macronutrients and micronutrients compatible with the nutritional needs of VLBW infants. It

should be noted that the simplified direct lyophilization method for the formulation of our

concentrated HM minimizes the risk of contamination due to minimum product handling as

well as present low cost after an initial investment and does not characterize ethical bias since

the milk was donated. In addition, the HM samples stored for 3 and 6 months were evaluated

and their osmolality stability and nutrient content stability were verified, with both increases

and reductions of certain nutrients, such as K and Cu. Another issue to be considered is the

promising possibility of HM conservation through the freeze-drying process of donated milk.

The present authors are committed to future research looking forward to a randomized con-

trolled double blind clinical trial, phase 1 and 2, whose financial support was recently approved

by the Brazilian CNPq (National Council for Scientific and Technological Development), in

order to evaluate the safety and tolerability, as well as the initial performance of our HM con-

centrate to be used as a resource for the nutritional support of VLBW infants.
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