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Abstract

The expanded polytetrafluoroethylene (ePTFE) heart valve can serve as a viable option

for prosthetic aortic valve. In this study, an ePTFE bi-leaflet valve design for aortic valve

replacement (AVR) is presented, and the performance of the proposed valve was assessed

numerically and experimentally. The valve was designed using CAE software. The dynamic

behavior of the newly designed bi-leaflet valve under time-varying physiological pressure

loading was first investigated by using commercial finite element code. Then, in-vitro tests

were performed to validate the simulation and to assess the hemodynamic performance of

the proposed design. A tri-leaflet ePTFE valve was tested in-vitro under the same conditions

as a reference. The maximum leaflet coaptation area of the bi-leaflet valve during diastole

was 216.3 mm2. When fully closed, no leakage gap was observed and the free edges of the

molded valve formed S-shaped lines. The maximum Von Mises stress during a full cardiac

cycle was 4.20 MPa. The dynamic performance of the bi-leaflet valve was validated by the

in-vitro test under physiological aortic pressure pulse. The effective orifice area (EOA),

mean pressure gradient, regurgitant volume, leakage volume and energy loss of the pro-

posed valve were 3.14 cm2, 8.74 mmHg, 5.93 ml/beat, 1.55 ml/beat and 98.99 mJ, respec-

tively. This study reports a novel bi-leaflet valve design for AVR. The performance of the

proposed valve was numerically and experimentally assessed. Compared with the refer-

ence valve, the proposed design exhibited better structural and hemodynamic perfor-

mances, which improved valve competency. Moreover, the performance of the bi-leaflet

design is comparable to commercialized valves available on the market. The results of the

present study provide a viable option for the future clinical applications.
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Introduction

Congenital birth defects such as aortic incompetence may lead to aortic failure. Nowadays,

there have been a number of publications indicated the growing enthusiasm in the aortic valve

repair techniques in children [1, 2]. Because of the encouraging mid- and long-term results in

treating aortic stenosis or aortic regurgitation, percutaneous or surgical aortic valve repair is

generally recommended as the primary management strategy in pediatric patients with aortic

valve diseases [1, 3, 4]. Despite the fact that aortic valve repair has developed rapidly in pediat-

ric patients, aortic valve replacement (AVR) may still be required in some cases, such as signif-

icant valve destruction and those after repair failure [4].

The search for an ideal aortic valve substitute has been ongoing for more than fifty years

[5], and multiple mature surgical options for AVR are available for patients, including Ross

procedure (pulmonary autograft), aortic homograft, mechanical prosthesis, and bio-prosthetic

valves. However, the selection of a proper prosthesis for the pediatric patient can be challeng-

ing and controversial [1, 6], and each choice has its advantages and limitations.

The Ross procedure is a widely accepted surgical option for treating aortic valve failure [7–

11]. In the Ross procedure, the aortic valve of the patient is removed, and the pulmonary valve

(autograft) of the patient is transplanted to the aortic site. As the valve substitute is alive after

implantation, it can grow with the patient. Additionally, long-term anticoagulation is not

required after this procedure. However, the Ross procedure is limited by the complex surgical

techniques and extensive time required, and furthermore, it is not suitable for certain patients

(patients with a diseased pulmonary valve, large discrepancies between pulmonary and aortic

valve sizes or a connective tissue disorder).

The aortic homograft (allograft) comes from the human donor and is thought to be a suit-

able substitute for patients who are too small for mechanical or bio-prosthetic valves [12]. In

addition, the aortic homograft offers several advantages, including good hemodynamics, low

thrombogenicity, and no anticoagulation after implantation. Nevertheless, the adoption of

aortic homograft is constrained by its suboptimal durability and limited availability [13].

Bioprosthetic valves, otherwise known as tissue valves, can be derived from various sources,

including porcine (pig), bovine (cow) and homografts or allografts. The main advantage of

such valves is that patients do not require life-long anticoagulation. However, the use of bio-

prosthetic valves in patients has significant disadvantages. Tissue valves are less durable than

their mechanical counterparts. The lifespan of such valves is between 8 to 20 years, after which

replacement is required.

Despite the above-mentioned advantages and limitations of the available valve substitutes,

the small conduit size of pediatric patients may bring along additional challenges on the valve

design [14].

The good clinical outcomes of using expanded polytetrafluoroethylene (ePTFE) bi-leaflet

valve substitutes for pulmonary valve replacement (PVR) in right ventricular outflow tract

reconstruction (RVOT) for pediatric patients, however, provided a useful reference to over-

come the challenges on the aortic site.

The ePTFE valved conduit for PVR has shown particular promise as the preeminent valve

in pediatric patients. For the pediatric patients with small pulmonary artery size, ePTFE has

been reportedly used for PVR not only with tricuspid configuration but also with monocuspid

and bi-leaflet configurations [15]. Despite the native pulmonary valve also composed with

three leaflets, positive results of the using of bi-leaflet prostheses in PVR has been widely

reported [15–24]. Miyazaki et al. reported excellent outcomes of the ePTFE valves (monocus-

pid, bi-leaflet and tri-leaflet) for right ventricular outflow tract reconstruction (RVOT) in a

multicenter study in Japan [24], of which the mean follow-up was 3.6 years (1.1 months to 10
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years) and the free of reoperation rate at 10 years was above 92%. In another clinical trial,

Miyazaki et al. implanted ePTFE valves (monocuspid, bi-leaflet and tri-leaflet) for RVOT

in 157 patients (aged 16 days to 45.4 years, median 2 years) [14], and no mortality, morbidity

or reoperation were reported during the follow-up period (5.6 to 63.7 months, mean 20.8

months). Moreover, the good biocompatibility of ePTFE artificial heart valves has been veri-

fied by several clinical studies [14, 25, 26]. In recent literature, the ePTFE membrane was also

selected as the material for aortic valve extension [27].

However, the performances of the bi-leaflet ePTFE valve prostheses in the aortic site are yet

to be studied. In this study, numerical simulation and in-vitro experiments were conducted to

investigate the dynamic and hemodynamic performances of a novel designed bi-leaflet ePTFE

valve prostheses under aortic loading. A fully sutured tri-leaflet valve [28, 29] was tested under

the same conditions as a reference.

Materials and methods

Valve design

The native aortic valve has a complex geometry and structure, and thus, it is difficult to

completely mimic the native valve in a prosthetic heart valve(PHV) design. Important design

parameters for PHVs include effective orifice area (EOA), jet velocity, pressure gradient, regur-

gitation and thrombogenic potential, leaflet coaptation height and geometries of the leaflets

[30].

At the beginning of this study, the range of several parameters, including the diameter (25

mm) and valve height (25-30 mm), were pre-defined by the surgeon in the team. Besides the

quantitative parameters, an S-shaped free edge at the closed configuration that implies a sur-

plus coaptation was expected [29]. The extra coaptation would play an important role to main-

tain the functionality of the valve when the aorta become bigger due to growth. In addition,

the following design principles were obeyed in the design strategy [31]:

• Easy and steady valve preparation;

• Consistent preparation procedure;

• Minimum trans-valvular pressure drop;

• Minimum regurgitation;

• Easy to implant;

• Available in a wide range of sizes;

To achieve the goal of the design, the leaflet’s commissure edge was incorporated with the

aortic root. The length of the leaflet’s free edge was carefully selected, which is important to

guarantee the full coaptation and to prevent unwanted leaflet twisting. The initial position of

the leaflets was set to a fully open configuration.

A series of different leaflet designs based on the parameters and principles mentioned

above were created in CAE software (Solidworks, Dassault Systems S.A., Paris, France). The

leaflet designs were then converted to fully nonlinear finite element code ABAQUS (ABAQUS,

Inc., Pawtucket, RI) to verify their function. The criterion of a successful design include: 1)the

valve could properly open and close under static pressure loading applied on the leaflet surface;

2) An S-shape free edge can be observed in after the valve closed. Based on the above-listed

parameters and requirements, the parametric design method was utilized in this study. Totally

5 models were generated by the engineer in our team. The one presented in Fig 1 is the only

design that fully meets the above-mention requirements.
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FEM simulation

The dynamic behaviors of the molded bi-leaflet valve, including dynamic deformation, leaflet

coaptation area, and stress distribution were investigated dynamically by using ABAQUS/

Explicit modulus.

The ePTFE membranes were assumed to be isotropic and homogenous. An elastic modulus

of 34 MPa and a density of 1100 kg/m3 were assigned to the ePTFE leaflet. The aortic root was

modeled as a flexible hollow cylinder. The elastic modulus and density of the aortic root were

set to 2 MPa and 2000 kg/m3, respectively [29]. Poisson’s ratio was set to 0.45 for all materials

to account for the incompressible behavior of the membrane and tissues. The valve and aortic

root were meshed using 4-node, doubly curved quadrilateral shell elements with reduced inte-

gration. A uniform thickness of 0.1 mm was assigned to the valve, while the thickness of the

aortic root was defined to 0.4 mm.

The model was assumed to be stress-free in the fully open configuration. The radial

displacement of the aortic root ends was constrained. Commissures of the leaflets were con-

nected to the aortic root by using the tie boundary condition to simulate suturing in clinical

Fig 1. The geometry of the bi-leaflet valve.

https://doi.org/10.1371/journal.pone.0210780.g001
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applications. Contacts between the leaflets, and between the leaflets and conduit were consid-

ered. Fig 2 shows the FEM model.

To obtain a converged solution, an aorto-ventricular pressure gradient at diastolic (71.6

mmHg) were gradually applied to the valve leaflets in 0.1s. At the end of this step, the leaflets

were at a closed, diastolic, stressed configuration. Then time-varying and spatially uniform

physiological aorto-ventricular pressure gradient loadings over a full cardiac cycle of 0.83 s

were applied on the valve leaflets (Fig 3). In the contact model, the friction coefficient of 0.5

was set.

In-vitro experiment

To assess the hemodynamic performance of the proposed design and to validate the FEM sim-

ulation, in-vitro experiments were carried out. According to FDA regulations, a full range of

pre-clinical in-vitro test composed of 12 parts, which include bio-compatibility of the material,

durability testing, hemodynamic performance, structural performance and fatigue assess-

ments, etc. [32], is required. However, as the current study represents only the initial stage of

valve design, only hemodynamic performance and dynamic performance were investigated in

the in-vitro experiment.

Preparation of physical models. As described in the introduction, the preparation of the

valve leaflet should be easy, steady and consistent. Thus, a set of resin molds was fabricated by

using 3D printing technology (Fig 4(a)). The molds shared the same geometry of the model

used in the FEM simulation. ePTFE membrane (Gore-Tex, Preclude Pericardial Membrane,

W.L. Gore & Assoc., Flagstaff, AZ, USA) of 0.1 mm thickness were selected as the leaflet mate-

rial. The valve leaflets were prepared by placing the ePTFE membrane in the mold and cutting

Fig 2. FEM model of bi-leaflet valves.

https://doi.org/10.1371/journal.pone.0210780.g002
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along the edge. The aortic root was constructed by using a silicon polymer (VTV, MCP-HEK

Tooling GmbH, Kaarst, Germany). The commissures of the leaflets were sutured to the aortic

root with one running 4-0 polypropylene suture following the suture mark in the conduit (Fig

4(b)). As a reference, a fully sutured tri-leaflet valve that composed of ePTFE was also created

and tested under the same in-vitro conditions in the experiment section (Fig 4(c)). The diame-

ters of both valves at the base and at the commissures are 25 mm, and the overall leaflet heights

of the bi-leaflet valve and tri-leaflet valve are 25 mm and 21.6 mm, respectively.

Experimental set-up and flow conditions. The Vivitro pulse duplicator (Vivitro Systems

Inc., Victoria, BC, Canada) (Fig 5(a)) was used to generate physiological pressure and flow in

the left ventricle and aorta. Two Millar MIKRO-TIP Pressure transducers (SPC 330A, Millar

Instruments, Inc., Houston, TX, USA) were placed in the left ventricle and ascending aorta 10

mm above the commissural level to monitor the trans-valvular pressure gradient. The dynamic

behaviors of the valve leaflet were captured by using a high-speed camera (FASTCAM-PCI R2

Fig 3. Time-varying pressure loading applied in the FEM simulation over a full cardiac cycle.

https://doi.org/10.1371/journal.pone.0210780.g003

Fig 4. The (a) resin mold, (b) bi-leaflet valve and (c) reference tri-leaflet valve.

https://doi.org/10.1371/journal.pone.0210780.g004
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model 500, Photron USA, Inc., San Diego, CA, USA). The frame rate was set to 250 fps. The

flow through the aortic site was measured by an electromagnetic blood flow meter (501D, Caro-

lina Medical Electronics, East Bend, NC, USA). The experimental setup is illustrated in Fig 5(b).

The ventricular and aortic pressures were measured at the exit of the left ventricle and the

exit of the aorta model. The pressures were controlled by adjusting the resistor and piston

movement magnitude. The systolic and diastolic pressures in the aorta are 120 mmHg and 80

mmHg, respectively.

Flow profiles were measured by the flow probe placed at the exit of the left ventricle and

were used to calculate the flow speed, cardiac output and regurgitation. All tests were con-

ducted at a stroke volume of 75 ml (5.4 L/min) and a heart rate of 72 beats/min.

Working fluid. An aqueous solution of glycerol (42% by weight) was used as the working

fluid to mimic blood. The dynamic viscosity and density of the working fluid were 3.52 mPa�s

and 1038 kg/m3, respectively.

Data acquisition. TTL signals generated by the amplifier of a Vivitro system were used as

trigger signals. The flow meter, pressure transducer and high-speed camera were synced by the

trigger signal. Before data collection, the system was allowed to run until all readings were sta-

ble to avoid measurement errors.

Results

FEM simulation

Dynamic behaviors. The dynamic behaviors of the leaflets were analyzed in the FEM sim-

ulation. During a full cardiac cycle, the closing phase of the bi-leaflet valve is 0.055 s, and the

fully closed state is maintained for 0.41 s. The leaflets require 0.04 s to reach the fully opened

position, and the fully open state lasts 0.325 s. Fig 6 shows the dynamic displacement of the

leaflets in a full cardiac cycle.

Coaptation parameters. The contact pressure normal to the leaflet was used to indicate

the state of contact. A negative contact pressure indicated that the leaflet was in contact with

the conduit, and a positive contact pressure implied that the leaflets were in contact with each

other. Fig 7 shows the distribution of the contact pressure on the leaflets in the fully closed

position. It is clear that the entire free edges of the leaflets are in the contact state at this posi-

tion, and no leakage area was found.

Fig 5. Experimental setup.

https://doi.org/10.1371/journal.pone.0210780.g005
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Fig 6. Selected frames of the dynamics deformation during a full cardiac cycle for the proposed leaflet design.

https://doi.org/10.1371/journal.pone.0210780.g006

Fig 7. Contact pressure (a) between leaflets and (b) between leaflets and conduit.

https://doi.org/10.1371/journal.pone.0210780.g007

Numerical and in vitro experimental assessment of a novel designed ePTFE bi-leaflet valve for AVR

PLOS ONE | https://doi.org/10.1371/journal.pone.0210780 January 30, 2019 8 / 27

https://doi.org/10.1371/journal.pone.0210780.g006
https://doi.org/10.1371/journal.pone.0210780.g007
https://doi.org/10.1371/journal.pone.0210780


The coaptation area of a single leaflet over a cardiac cycle is plotted in Fig 8. The maximum

coaptation area of the proposed design is 216.3 mm2.

The maximum coaptation height of the proposed valve leaflet is 13.37 mm (Fig 9).

Leaflet stress distribution. Fig 10(a) and 10(b) showed the distributions of compressive

stress and Von Mises stress for the proposed bi-leaflet design at the fully closed position

during the maximum stress magnitudes observed. The greatest compressive stress occurs

at the bending site of the leaflets, which is 1.90 MPa. High Von Mises stress exists along the

commissures, and the maximum Von Mises stress of 4.29 MPa appears at the corner of the

commissures.

In-vitro performances

The in-vitro performance of the proposed bi-leaflet valve and reference tri-leaflet valve were

assessed under the same experimental conditions. Fig 11 shows the left ventricular pressures,

aortic pressures and trans-valvular pressures of the two valves.

Dynamic behaviors. To analyze the structural dynamics, key frames from the film

recorded by the high-speed camera were extracted (Fig 12).

The starting point of the recording was defined as t = 0. The opening of the leaflets begins

at t = 0.024 s for both valves tested. The opening stage, fully opened stage, and closing stage of

the bi-leaflet valve and the reference valve are 0.056±0.00 s and 0.1±0.00 s, 0.152±0.00 s and

0.12±0.00 s, 0.132±0.00 s and 0.136±0.00 s, respectively. The leaflets of the proposed bi-leaflet

and the reference valve closed fully at 0.364 s and 0.38 s, respectively (Table 1).

Hemodynamic performance. The mean trans-valvular pressure of the proposed bi-leaflet

valve during the systolic phase is 8.74 mmHg, which is approximately 7.6% lower than that of

the reference valve. The trans-valvular pressure and the aortic flow of the valves are shown in

Fig 13.

The regurgitant volume (VR) and leakage volume (VL) were 5.93 ml and 1.55 ml per cycle

for the proposed bi-leaflet valve and 7.09 ml and 2.81 ml for the reference valve, respectively.

Fig 8. Coaptation area of a single leaflet over the cardiac cycle.

https://doi.org/10.1371/journal.pone.0210780.g008
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Thus, the regurgitant fraction (RF) can be calculated by using Eq (1):

RF ¼
VR þ VL

VF
� 100%; ð1Þ

where VR is the regurgitant volume, VL is the leakage volume and VF is the forward volume.

The equation from ISO: 5840:2005 [33] was applied to evaluate the maximum EOA Eq (2):

EOA ¼
QRMS

51:6
ffiffiffiffiffiffiffiffiffiffiffi
DP=r

p ; ð2Þ

where EOA is the effective orifice area of the valve (cm2), ΔP is the mean systolic trans-valvular

pressure gradient (TPG) in mmHg, ρ is the working fluid density (g/cm3), and QRMS is the

Fig 9. Coaptation height of the bi-leaflet valve model.

https://doi.org/10.1371/journal.pone.0210780.g009
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root mean square volumetric flow rate (ml/s) (Eq (3)).

QRMS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR t2
t1
QðtÞ2dt
t2 � t1

s

; ð3Þ

Performance index (PI), which represent the normalized resistance of the valve [34], was

evaluated by using Eq (4):

PI ¼
EOA
Asew

; ð4Þ

Derived from the Bernoulli equation, the energy loss of the left ventricle that is associated

with the valve prosthesis was calculated by integrating the aorto-ventricular pressure times the

flow rate with respect to time [31, 32, 35] (Eq (5)):

EL ¼ 0:1333

Z t1

t0

DpðtÞQðtÞdt; ð5Þ

where EL is the energy loss (mJ), t0 to t1 is the range of a cardiac cycle, Δp is the aorto-ventricular

Fig 10. Distributions of (a) compressive stress and (b) Von Mises stress on leaflets.

https://doi.org/10.1371/journal.pone.0210780.g010

Fig 11. Time-varying pressure loadings of (a) bi-leaflet valve and (b) reference tri-leaflet valve measured during the in-vitro experiment.

https://doi.org/10.1371/journal.pone.0210780.g011
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pressure difference (mmHg) and Q(t) (ml/s) is the volume flow. The calculated parameters are

listed in Table 2.

Discussion

The goal of the current study was to develop a reliable bi-leaflet valve for patients who need

AVR. A novel design of the bi-leaflet valve was proposed in the current study. The dynamic

Fig 12. Dynamic deformation of the proposed bi-leaflet valve (top) and reference valve (bottom).

https://doi.org/10.1371/journal.pone.0210780.g012

Table 1. Comparison of structural dynamic behaviors between bi-leaflet and tri-leaflet valve. (Mean ± SD).

Proposed bi-leaflet valve Reference tri-leaflet valve P

Opening (s) 0.056 ± 0.00 0.10 ± 0.00 <0.001

FullyOpened (s) 0.15 ± 0.00 0.12 ± 0.00 <0.001

Closing (s) 0.13 ± 0.00 0.14 ± 0.00 <0.01

https://doi.org/10.1371/journal.pone.0210780.t001

Fig 13. Trans-valvular prssures and aortic flow rates of the (a) bi-leaflet valve and (b) reference tri-leaflet valve over one cardiac cycle.

https://doi.org/10.1371/journal.pone.0210780.g013
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and hemodynamic performances of the newly designed valve were assessed in FEM simula-

tions and in-vitro experiments. The results were compared with the reference valve that was

tested under the same conditions.

Verification of the bi-leaflet valve design

Before further discussion, it is necessary to verify that the performance of the current design

complies with the technical standard. As the well-accepted industry standard, ISO 5480:2055

provides a full set of criteria for evaluating a valve design [33]. The criteria that related to the

current study are listed in Table 3.

The EOA and RF values of the valves tested in this study all satisfy the criteria of the stan-

dard, which provided the basis for further discussion.

Validation of the FEM simulation

The dynamic behavior of the leaflets is a key characteristic for assessing the performance of an

aortic valve design [29]. Thus, the dynamic behavior of the valve was selected as the validation

criterion. Dynamic deformation of the FEM model and the in-vitro model was compared in

this section. Fig 14 shows a morphological comparison between the two models.

Fig 15 shows the dynamic processes of the models. After fully closing, S-shaped free edges

were observed in the FEM model and the in-vitro model.

Table 4 lists the specific times required for different phases of the FEM and in-vitro models.

During the in-vitro experiment and the FEM simulation, the same boundary conditions

were used to ensure a proper comparison. The morphological characters and the dynamic

behaviors of the in-vitro and FEM models matched well. Thus, the proposed FEM simulation

has been validated to some extent.

Coaptation and stress

The coaptation height, coaptation area and stress distribution obtained from the FEM simula-

tion were compared with the corresponding parameters reported by our group in the FEM

investigation of a fully sutured tri-leaflet valve [28, 29]. Table 5 lists these data.

Table 2. In-vitro results of the hemodynamics parameters. (Mean ± SD).

Proposed bi-leaflet valve Reference tri-leaflet valve P

VR (ml/beat) 5.93 ± 0.20 7.09 ± 0.15 <0.001

VL (ml/beat) 1.55 ± 0.04 2.81 ± 0.03 <0.001

RF (%) 10.26 ± 0.00 14.37 ± 0.00 <0.001

TPG (mmHg) 8.74 ± 0.07 9.89 ± 0.07 <0.001

EL (mJ) 98.99 ± 7.94 129.03 ± 6.34 <0.001

EOA (cm2) 3.14 ± 0.02 2.86 ± 0.01 <0.001

PI 0.64 ± 0.00 0.58 ± 0.00 <0.001

https://doi.org/10.1371/journal.pone.0210780.t002

Table 3. Minimum performance requirements for aortic valve prostheses.

Valve size (TAD, mm) 19 21 23 25 27 29 31

EOA (cm2) � 0.7 � 0.85 � 1.00 � 1.20 � 1.40 � 1.60 � 1.80

RF (%) � 10 � 10 � 10 � 15 � 15 � 20 � 20

https://doi.org/10.1371/journal.pone.0210780.t003
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As a critical parameter for assessing the competence of the valve, the maximum coaptation

height of the bi-leaflet valve is nearly three times greater than that of the tri-leaflet valve, which

suggests the former may be more competent. However, the Ac of the bi-leaflet model is 27.81%

smaller than that of the tri-leaflet model, which could be due to the different contact patterns

of the designs. In the bi-leaflet design, most of the leaflet is in contact with another leaflet, and

the remaining part of the leaflet is in contact with the conduit. In the tri-leaflet valve, the entire

Fig 14. Morphological comparison of the FEM model and the in-vitro model in fully opened and fully closed

positions.

https://doi.org/10.1371/journal.pone.0210780.g014

Fig 15. Dynamic process of the FEM and in-vitro model.

https://doi.org/10.1371/journal.pone.0210780.g015

Table 4. Time required for different phases of the FEM and in-vitro models.

Phases Cost of time / s Proportion of a cardiac cycle / % Difference / %

in-vitro model FEM model in-vitro model FEM model

Opening 0.056 ± 0.00 0.050 6.747 6.024 12

Fully open 0.152 ± 0.00 0.160 18.313 19.277 -5

Closing 0.132 ± 0.00 0.155 15.904 18.675 -14

https://doi.org/10.1371/journal.pone.0210780.t004
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leaflet is in contact with two other leaflets, thus increasing the contact area. The impact of the

reduced Ac is discussed further in a later section.

Mechanical stress has long been related to calcification and structural failure of aortic valve

prostheses [36, 37]. Thubrikar et al. reported in an in vivo study [37] that, high compressive

stress is closely correlated with the calcification of aortic valve prostheses leaflets. In addition

to the compressive stress, the tensile stress and shear stress that act on leaflets may lead to the

failure of the valve structure [36]. The multiple stress components can be represented by the

Von Mises stress. Our current results show that the highest compressive stress occurs at the

site of the leaflet that is most bent. The same pattern was also observed in the FEM model of

the tri-leaflet valve. However, the maximum compressive stress of the bi-leaflet valve is 10.8%

smaller than that of the tri-leaflet valve. The highest Von Mises stress value in the bi-leaflet

valve is slightly higher (by 7.1%) than that in the tri-leaflet valve. The maximum Von Mises

stress occurs at the commissures ends in both valves.

As mentioned in the validation section, S-shaped free edges were observed when the bi-leaf-

let valve was fully closed. This observation ensured good coaptation of the leaflets and pro-

vided more safety for the closure [29].

Dynamics and hemodynamic performance

As the FEM simulation only considered structural behaviors, evaluation of the dynamics and

hemodynamic performance of the bi-leaflet design was performed by comparing the in-vitro
results. The bi-leaflet valve and reference tri-leaflet valve were compared.

The results show that while both valves are capable of normal function, the dynamic perfor-

mance of the proposed bi-leaflet valve is superior to that of the reference tri-leaflet valve. The

bi-leaflet design required for less time than the tri-leaflet valve in the opening and closing

phase. The opening of the bi-leaflet valve is 44% faster than the reference valve. During the

close phase, the time cost of the bi-leaflet design is 2.9% less than the reference valve. This

observation suggested that the leaflet mobility of the proposed bi-leaflet design is better than

the reference valve. The fully opened state of the proposed valve lasts 26.7% longer than that of

the reference valve, corresponding to 0.152 s and 0.12 s, respectively.

In addition, the novel designed bi-leaflet valve also exhibited favorable hemodynamic per-

formance in all aspects studied compared with the reference valve. The trans-valvular pressure

measurements indicated that the pressure drop of the bi-leaflet valve is 11.63% lower than that

of the reference tri-leaflet valve, which in turn implies a lower flow impedance. The RF, regur-

gitant volume and leakage volume of the bi-leaflet valve are 4.11%, 16.36% and 44.84% lower

than those of the reference valve, respectively. Based on the directly measured parameters, the

calculated EOA and energy loss of the bi-leaflet valve are 9.7% larger and 23.28% smaller than

those of the reference tri-leaflet valve, respectively. The larger EOA of the proposed valve

design lowers the risk of post-operative trans-valvular pressure, thus reducing the resistance to

Table 5. Coaptation and stress parameters.

Current bi-leaflet valve Fully sutured tri-leaflet valve Difference / %

Hc (mm) 13.37 4.50 197.11

Ac (%) 37.32 51.70 -27.81

Max Von Mises stress (MPa) 4.20 3.92 7.14

Max compressive stress (MPa) 1.90 2.13 -10.79

Hc, max coaptation height; Ac, percentage of the maximum coaptation area to leaflet surface area;

https://doi.org/10.1371/journal.pone.0210780.t005
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forward flow and energy loss. In addition to the results of the structural dynamic investigation,

the simpler geometrically structure of the bi-leaflet valve guarantees faster coaptation, thus

leads to a smaller regurgitant volume than the reference valve.

To further validate the function of the design proposed, a more extensive comparison of the

hemodynamic performance was performed between the bi-leaflet valve proposed in the cur-

rent study and aortic valve prostheses reported in the literature (Table 6).

Two critical parameters, EOA and mean pressure gradient, were selected from the table

and compared visually in Figs 16 and 17. All selected valves are sized 25 mm on the label.

As illustrated in Fig 16, the EOA of the proposed bi-leaflet valve is ranked 2nd among all 13

types of valves compared. The differences in the mean pressure gradients among different

valve types are not obvious, and the proposed bi-leaflet valve exhibited comparable hemody-

namic performance to currently available valve designs.

In addition to EOA and mean pressure gradient, the regurgitant and leakage volumes of the

proposed valve were reasonable compared with available data (Fig 18).

Impact of the bi-leaflet design on coronary flow

Coronary arteries that connect to the left and right sinuses of aortic root are responsible for

supplying blood to the heart. Unlike its tri-leaflet counterparts, the impact of the unique struc-

tural characteristics of the proposed bi-leaflet prosthetic aortic valve on the coronary flow is

still unclear due to the very limited data.

To clarify the impact of the proposed bi-leaflet valve on the coronary flow, CFD simulations

were conducted to investigate the coronary perfusion at t = 0.4 s of Fig 13, of which is the

beginning of the diastolic of the left ventricle, and the maximum coronary flow can be

expected around this point under physiological conditions.

In the simulations, the coronary arteries were added to the conduits of the bi-leaflet model

and the tri-leaflet model, respectively (Fig 19).

The deformed bi-leaflet valve and tri-leaflet valve at t = 0.4 s were extracted from the FEM

simulation results and incorporated into the their own conduits, respectively (Fig 20).

The in-vitro measured flow rate (-6.2 ml/s) was assigned to the distal ends aorta as inlet

boundary conditions. Lump parameter resistance Rc1 and R2 were assigned to the end of left

and right coronary arteries, respectively (Fig 21). The Rc1 is 34625 dyne�s/cm5 and the Rc2 is

40338 dyne�s/cm5. Due to the current CFD simulations were performed under steady-state

conditions, the authors did not consider the distal vascular compliance in the lumped parame-

ter models.

In the CFD simulation, rigid wall assumption was assumed. The fluid was model as a New-

tonian fluid with a dynamic viscosity of 3.5 mPa�s and a density of 1040 kg/m3.

The flow rates at the ends of coronary arteries were monitored on both models and listed in

(Table 7).

Based on the CFD simulation, the differences in coronary flow between the bi-leaflet model

and tri-leaflet model are small than 2%. The bi-leaflet valve shows no noticeable impact on the

coronary flow compared with its tri-leaflet counterpart.

Impact of the bi-leaflet design on the flow in aorta

The flow in ascending aorta is highly affected by the aortic valve. Abnormal flow characteris-

tics, such as eccentric jet and stress distribution, play important roles in the development of

ascending aorta dilation [58–60].

Despite the proposed bi-leaflet valve prosthesis is well-designed for AVR that open and

close in a symmetrical manner, particle image velocimetry (PIV) measurements were
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Table 6. Comparison of hemodynamic performance between proposed bi-leaflet valve and reported aortic valve prosthesis.

Valve Type CO HR Size TPG EOA VL VL RF EL PI

Polymeric bi-leaflet 5.4 72 25 8.74 ± 0.07 3.14 ± 0.02 5.93 ± 0.20 1.55 ± 0.04 10.26 ± 0.00 98.99 ± 7.94 0.64 ± 0.00

Polymeric tri-leaflet [31] 5 - 22 3.2 3.34 1.2 6.5 - - -

Polymeric tri-leaflet [32] 5.6 - 21 20.91 1.47 - - 2.43 - -

Tissue tri-leaflet [32] 5.6 - 21 16.57 1.95 - - 7.08 - -

St. Jude [38] - - 25 1.67±0.09 - - - - -

St. Jude [39] 5.4 - 25 11 3.23 9.7 - - - -

Bjork-Shiley Monostrut [39] 5.4 - 25 12 2.37 7.3 - - - -

Carpentier-Edwards [39] 5.4 - 25 - 1.52 1.2 - - - -

Bjork-Shiley [40] - - 25 4.9±3.9 3.51±1.66 - - - - 0.72±0.34

Carpentier-Edwards [40] - - 25 9.6±7.1 2.53±1.39 - - - - 0.52±0.28

Hancock [40] - - 25 7.9±4.1 2.23±0.74 - - - - 0.46±0.15

Medtronic Hall [38] - - 25 1.82±0.14 - - - - -

Hancock [38] - - 25 1.22±0.21 - - - - -

Medtronic Open Pivot [38] - - 25 11.1±0.8 2.1±0.1 - - - - -

Mosaic bioprosthesis [41] - - 25 12.2±5.8 2.39±0.76 - - - - -

Perimount bioprosthesis [41] - - 25 13.7±4.4 2.07±0.35 - - - - -

Freestyle stentless bioprosthesis [41] - - 25 5.1±3.3 2.0±0.5 - - - - -

Perimount Magna pericardial xenograft [42] - - 25 7.8±1.8 2.35±0.30 - - - - -

Medtronic Mosaic bioprosthesis [42] - - 25 11.8±3.3 1.75±0.53 - - - - -

Perimount Magna pericardial xenograft [43] - - 25 8.4±2.6 2.33±0.18 - - - - -

Perimount Standard pericardial xenograf [43] - - 25 10.7±6.6 1.89±0.59 - - - - -

St. Jude Medical Regent [44] - - 25 5.8±3.4 2.5±0.9 - - - - -

Trifecta aortic bioprosthesis [45] - - 25 11±5 - - - - -

Trifecta aortic bioprosthesis [46] - - 25 4.8 2.1 - - - - -

St. Jude Toronto porcine [46] - - 25 - 1.9 - - - - -

Hyaluronan-Polyethylene flexible valve [47] 5 - 25 2.34±0.5 4.6±0.4 - - - -

TTK Chitra tilting disc vale [48] - - 25 7.9±4.5 1.38±0.16 - - - - -

Terifecta aortic bioprosthesis [49] - - 25 6.9±2.3 2.3±0.4 - - - - -

JenaValve [50] - - 25 10.3±4.8 - - - - -

Tri-leaflet pericardium [51] - - 26 9.4±3.2 2.3±0.6 - - - - -

Trifecta aortic bioprosthesis [52] - - 25 7.8±3.3 - - - - - -

Trifecta aortic bioprosthesis [53] - - 25 7.6 2.27 - - - - -

Medtronic Hall tilting disk [54] 5 - 25 - 3.07 4.7 4.3 10.83 - -

St. Jude bi-leaflet [54] 5 - 25 - 3.23 5.5 5.2 12.68 - -

Bjork-Shiley Monostrut [54] 5 - 25 - 2.62 5 4.2 9.8 - -

Edwards pericardial [55] - - 25 14.0±2.6 1.8±0.2 - - - - -

Medtronic Mosaic [55] - - 25 15.9±2.9 1.8±0.2 - - - - -

Trifecta aortic bioprosthesis [56] - - 25 8.4±3.3 1.33±0.44 - - - - -

Starr-Edwards 5 70 25 - 1.62 4.3 - - - 0.33

Bjork-Shiley Convexo- Concave [34] 5 70 25 - 2.37 7.3 - - - 0.48

Bjork-Shiley Monostrut [34] 5 70 25 - 2.62 7.6 - - - 0.53

Medtronic Hall [34] 5 70 25 - 3.07 8.4 - - - 0.62

St. Jude Standard [34] 5 70 25 - 3.23 9.9 - - - 0.66

St. Jude Regent [34] 5 70 25 - 3.97 11.2 - - - 0.81

CarboMedics [34] 5 70 25 - 3.14 6.1 - - - 0.64

Sorin Bicarbon [34] 5 70 25 - 2.39 - - - - 0.69

Carpentier-Edwards Porcine 2625 [34] 5 70 25 - 1.52 <2 - - - 0.31

(Continued)
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conducted on the bi-leaflet and reference tri-leaflet prosthesis to further verify the downstream

flow characteristics.

During the measurement, the PIV was triggered at the systolic peak and 60 pairs of PIV

images were captured in the central of ascending aorta. The images were carefully calibrated

and post-processed in the DaVis software (LaVision, Germany). The adaptive correlation

method calculates velocity vectors within an initial interrogation area (IA) of 32 x 32 pixels

with 50% overlapping.

Table 6. (Continued)

Valve Type CO HR Size TPG EOA VL VL RF EL PI

Carpentier-Edwards Porcine 2650 [34] 5 70 25 - 2.36 <2 - - - 0.48

Carpentier-Edwards Pericardial 2900 [34] 5 70 25 - 3.25 <2 - - - 0.66

Hancock Porcine 242 [34] 5 70 25 - 1.93 <2 - - - 0.39

Hancock MO Porcine 250 [34] 5 70 25 - 2.16 <2 - - - 0.44

Hancock II Porcine 410 [34] 5 70 25 - 2.1 <2 - - - 0.43

Mosaic Porcine [34] 5 70 25 - 2.11 <2 - - - 0.43

Medtronic Freestyle Porcine [34] 5 70 25 - 3.41 <4 - - - 0.69

St. Jude Toronto [57] - - 25 9.2±3.5 1.7±0.6 - - - - -

Perimount [57] - - 25 6.9±4.4 2.2±0.6 - - - - -

CO, cardiac output; HR, heart rate; PI, performance

https://doi.org/10.1371/journal.pone.0210780.t006

Fig 16. Comparison of EOA between the current design and commercially available prosthetics.

https://doi.org/10.1371/journal.pone.0210780.g016

Numerical and in vitro experimental assessment of a novel designed ePTFE bi-leaflet valve for AVR

PLOS ONE | https://doi.org/10.1371/journal.pone.0210780 January 30, 2019 18 / 27

https://doi.org/10.1371/journal.pone.0210780.t006
https://doi.org/10.1371/journal.pone.0210780.g016
https://doi.org/10.1371/journal.pone.0210780


Fig 22(a) illustrated the velocity field downstream of the bi-leaflet valve at the systolic peak.

Similar to its tri-leaflet counterpart(Fig 22(b)), no eccentric jet was observed.

Based on the velocity fields, the shear stress distribution downstream the bi-leaflet valve

and the reference tri-leaflet valve was calculated, respectively (Fig 23). Similar shear stress lev-

els were observed in the ascending aortas.

Fig 17. Comparison of the mean pressure gradient between the current design and commercially available

prosthetics.

https://doi.org/10.1371/journal.pone.0210780.g017

Fig 18. Comparison of (a) regurgitant volume and (b) leakage volume among the valves.

https://doi.org/10.1371/journal.pone.0210780.g018
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Fig 19. Modeling of the conduits with coronary arteries.

https://doi.org/10.1371/journal.pone.0210780.g019

Fig 20. Diagram of valve configurations at t = 0.4 s.

https://doi.org/10.1371/journal.pone.0210780.g020
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Limitations

The investigation on the feasibility of bi-leaflet ePTFE aortic valve prosthesis is still in the very

early stage. Despite the bi-leaflet concept has been used as PVR prosthesis in the RVOT recon-

structions successfully, some important investigations are yet to be carried out before the

Fig 21. Diagram of the boundary conditions.

https://doi.org/10.1371/journal.pone.0210780.g021
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Table 7. Coronary flow rates of both models.

Model Flow rate (ml/s)

Left coronary Right coronary

Bi-leaflet 3.36 2.84

Tri-leaflet 3.31 2.89

https://doi.org/10.1371/journal.pone.0210780.t007

Fig 22. Velocity fields in the ascending aorta.

https://doi.org/10.1371/journal.pone.0210780.g022

Fig 23. Shear stress distributions in the ascending aorta.

https://doi.org/10.1371/journal.pone.0210780.g023
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clinical application of the proposed prosthesis in AVR operations due to the pathological and

hemodynamics environment in aorta differ from that in the pulmonary artery.

Firstly, the long-term durability of the ePTFE prosthetic valve under aortic loading is yet

to be explored by high cycle fatigue tests. Additionally, systemically in-vitro investigations

of the impact of the sinuses of Valsava (height, depth, etc.,) on the local hemodynamics and

the dynamic performance of the bi-leaflet valves would be necessary for the next stage of the

study. Thirdly, the impact of the bi-leaflet aortic substitute on coronary perfusion and down-

stream flow is largely unknown, and detailed investigations should be conducted in the next

stage. Last but not least, animal trials would be required previous to any clinical applications.

Conclusion

In conclusion, this study presents a novel ePTFE bi-leaflet valve prosthesis for AVR, and the

dynamic and hemodynamic performance of the proposed bi-leaflet valve under physiological

aortic loading were evaluated by using numerical and in-vitro experimental methods. The

preliminary results showed that the bi-leaflet valve design is not only capable of serving as

an aortic valve substitute under aortic physiological loadings in terms of structural dynamic

behaviors, but also shows encouraging outcomes in certain critical hemodynamic parameters,

including EOA, TPG, and RF when comparing with its commercialized counterparts. These

novel findings could have implications for the further studies on the use of the ePTFE bi-leaflet

valve in the pediatric patients who need AVR.
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