
RESEARCH ARTICLE

Wetland biomass inversion and space

differentiation: A case study of the Yellow

River Delta Nature Reserve

Mei Han*, Bin Pan, Yu Bin Liu, Hao Zhe Yu, Yan Rong Liu

School of Geography and Environment, Shandong Normal University, Jinan, China

* hanmei568568@126.com

Abstract

With wetlands categorized as one of the three major ecosystems, the study of wetland

health has global environmental implications. Multiple regression models were employed to

establish relationships between Landsat-8 images, vegetation indices and field measured

biomass in the Yellow River Delta Nature Reserve. These models were then used to esti-

mate the spatial distribution of wetland vegetative biomass. The relationships between wet-

land vegetative biomass and soil factors (organic matter, nitrogen, phosphorus, potassium,

water soluble salt, pH and moisture) were modeled. We were able to achieve higher correla-

tions and improved model fits using vegetative indices and spectral bands 1–5 as indepen-

dent variables. Several important soil factors were isolated, including soil moisture and salt

concentrations, which affect wetland biomass spatial distributions. Overall, wetland biomass

decreased from land to the ocean and from the river courses outward.

Introduction

Wetlands, forests and oceans comprise the three most productive ecosystems on Earth.

Although wetlands account for a relatively small proportion of total productivity, their contri-

bution is nonetheless irreplaceable. Wetlands have therefore been described as "the kidney of

the Earth" and "the species gene pool". The Ramsar Convention classifies wetlands as natural

areas of marsh, peatland and forested swamps[1]. Wetland vegetation biomass incorporates

the total mass of living vegetation within a given area, and this important index measures vege-

tation productivity and describes the circulation of material, energy flow processes, ecological

function and ecosystem health within a wetland ecosystem[2–5].

The study of biomass can be traced back to the earliest research on forest litter and wood

weight data, as conducted by the German scholar Ebemeyer in 1876, which was limited to spe-

cific tree species[6] Rapid development of forest biomass research occurred during the 20th

century at all spatial scales, from regional evaluation of biomass to the interactions between

woodland soil microbes, fungi and nutrients.

Chinese scholars began studying forest biomass in the 1970s [7] The Sixth National Forest

Resources Inventory mapped the distribution of vegetation at a scale of 1:1,000,000, thereby
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allowing the calculation of the spatial distribution of net primary productivity (NPP) based on

Moderate Resolution Imaging Spectroradiometer (MODIS) inversion. Based on the determi-

nation of the aboveground and underground biomasses of plant communities in an alpine

meadow of the Qinghai Tibetan Plateau over a span of four years [8] Yang et al. explored the

correlations of carbon, nitrogen (N) and phosphorus (P) inputs with aboveground biomass[9].

Through the analysis of microbial respiration and micro-environmental factors of soil in the

Shanghai Jiuduansha Wetland National Nature Reserve, Jia et al. found that microbial diversity

and soil microbial biomass were the most significant factors affecting soil microbial respira-

tion[10].

Since the 1990s, researchers have increasingly focused on studying wetland biomass using

remote sensing and the accompanying statistical estimation models[11–14]. Valk et al. found

that seasonal changes in water level and temperature affect all forms of vegetative biomass in

the India Keoladeo National Park[15]. By using hyper spectral remote sensing, Mirik et al.

developed an accurate model at 1 m resolution for modeling the vegetative biomass of pastures

in the Yellowstone National Park[16]. Austin et al.[17] used non-metric multidimensional

scaling on seven vegetative biomass types, thereby establishing that wetland hydrological con-

ditions are the primary factors affecting vegetative biomass in a wetland in southeast Idaho.

Fuller and Feng [18,19] used 10 years of remote sensing images and the normalized difference

vegetation index (NDVI) to analyze the changes in vegetation structure for a wetland in the

South Florida peninsula, with the results suggesting that increased saline intrusion associated

with sea-level rise continues to reduce the photosynthetic biomass within freshwater and oligo-

haline marsh communities of the southeastern Everglades. Using data collected from 1998–

2005 for a wetland in southern California, Daniels et al. [20] identified a strong correlation

between Phragmites australis dry weight, density and aboveground biomass. Using multispec-

tral remote sensing and non-parameter modeling, Güneralp and Filippi [21] estimated the

biomasses of floodplain areas using stochastic gradient (SGB) and multivariate adaptive regres-

sion (SARS) analyses to obtain a more reliable result, which paved the way for research on

regional and global scales. Using enhanced thematic mapper (ETM) and sampling data for

Poyang Lake, Li and Liu [22] estimated the lake’s biomass using linear fitting and Albert

projection.

By comparing HJ-1A charge-coupled device (CCD) satellite remote sensing and field mea-

surement data for the Yellow River Delta (YRD), Fu et al. [23] was able to accurately estimate

the fresh weight of Suaeda heteroptera Kitag., thereby providing a more efficient method to

monitor and evaluate wetland biomass and ecological function. Using the YDR Nature Reserve

as an experimental area, Gao et al. [24] achieved high-precision estimations of wetland vegeta-

tive biomass using multivariable linear regression modeling (MLRM).

At present, two remote sensing (RS)-based methods exist to estimate wetland biomass: opti-

cal and radar. Because RS is economical, readily available and easy to process, optical RS has

been widely used. Radar RS can be used in a wider range of conditions, including during day

or night in all types of weather, and has better penetration capabilities, which is advantageous

when estimating vegetation biomass, particularly spectral bands L and C applied to forest land

and low biomass vegetation wetlands, respectively. However, the factors most influencing wet-

land biomass can be divided into two categories: environmental factors and gene/phenotype

factors. The former mainly includes temperature, moisture, light and soil properties, whereas

the latter includes the number of species, species uniformity and spatial distribution, plant

height, physiological regulation and carbon dioxide fixation. The dominant factors limiting

biomass depends on specific circumstances.

In summary, research on wetland vegetative biomass has made the following progress: (1)

Research methods have progressed from field sampling, drying and weighing to remote
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sensing and simulation modeling. Traditional methods of surveying wetland biomass have

obvious limitations, including the manpower required and the limited spatial extend possible,

whereas modern remote sensing technology can not only overcome these shortcomings, but

can also objectively estimate wetland biomass through a full range, at a large spatial scale and

through multi-angle remote sensing images; (2) The relationships between wetland vegetative

biomass, hydrological conditions, climate and other factors are increasingly well understood.

Wetland vegetation is an important part of the wetland ecosystem, and environmental factors

are closely related to wetland biomass. The study of these factors can result in an improved

quantitative understanding of the specific factors most influencing wetland vegetation bio-

mass, thereby providing a scientific basis for the protection and restoration of wetland ecosys-

tems. The majority of past studies explored the relationships of wetland biomass with

hydrology and climate though outdoor sampling, monitoring and indoor testing, physical/

chemical analysis and establishing regression models; (3) Biomass inversion models are now

effective methods to study wetland biomass. By combining the traditional collection of sample

data with the analysis of remote sensing images, wetland vegetation biomass can be more accu-

rately estimated[25–27].

These advances have made it possible to study the relationship between vegetative biomass

and environmental factors. Therefore, the present study used Landsat-8 imaging of the YDR

Nature Reserve to evaluate the effect of soil organic matter (OM), total nitrogen, total phos-

phorus, total potassium (K), water soluble salt and soil reaction (pH) on wetland biomass to

explore the correlation between the NDVI, difference vegetation index (DVI), ratio vegetation

index (RVI) and spectral bands 1–6 with vegetative biomass. To provide scientific guidance

and a reference for wetland biodiversity conservation and wetland restoration, we calculated

total biomass and generated a biomass distribution map for the study wetland, following

which we discuss how vegetative biomass is influenced by species diversity using the Simpson

Diversity Index (SDI), Richness Index (RI) and Shannon Index. Finally, we analyzed the spatial

distribution of biomass to explore the relationship between biomass and soil parameters.

Materials and methods

Study location

Two sites within the YDR Nature Reserve were chosen for the present study. The YDR Nature

Reserve forms part of the National Nature Reserve Administration of ShanDong Province,

China. The chosen sites are located at the mouth of the Yellow River, one to the west of Laiz-

hou Bay and the other to the north of Bohai Sea. The sites are separated from the Laodong

Peninsula by the sea (37˚350–38˚120 N, 118˚330–119˚200 E). One site is located in the current

Yellow River Estuary and covers an area of 104,500 ha, whereas the other is situated at the posi-

tion of the Yellow River’s previous estuary before the river changed course in 1976, and covers

an area of 48,500 ha (Fig 1). The landforms of the YDR are complex, and can generally be

divided into dryland, tidal flats and the subtidal zone. The study area has a semi-humid, mon-

soon climate. The annual average temperature is 11.9˚C and annual average rainfall is 592.2

mm.

To begin with, we didn’t have any relevant permit numbers, but we have the name of per-

mitting agency, that is the Yellow River National Nature Reserve Administration of ShanDong

Province, China, which has the power to allow us enter the field and extract the soil samples.

In addition, this research was funded by National Natural Science Foundation of China

(41371517) and the Shandong Science and Technology Research Program (2013GSF11706),

both of them are grant numbers. Moreover, we submitted the field investigation plan to the

Yellow River National Nature Reserve Administration of ShanDong Province, China. Then,
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the Director of Scientific Research Department (Zhu Shuyu) and the Chairman of the Union

(Lv juanzhang) verified and approved. After we obtained the permissions, we could extract the

soil samples at the YDR Nature Reserve. And all the soil samples are extracted from the public

land, which belongs to the Yellow River National Nature Reserve Administration of ShanDong

Province, China.

Also, there are numerous endangered birds in the Yellow River National Nature Reserve. 7

species of birds are the first-grade State protection, such as rus japonensis, Otis tarda dows,
Haliaeetus abbicuio albicilla, Ciconia bovciana and Mergus squamatus,etc. Also, there is a

national secondary protected plant: Glycine soja Sieb, et Zucc.

The locations were not affect the threatened species, the reasons are as follows:

1. After careful consideration, all the locations were kept away from the species habitat and

there are no endangered species in the sample range.

2. Soil samples are collected in the field every October. During this period, some endangered

species are not in the reserve because they come to the reserve only in November and

December. Such as rus japonensis, Otis tarda dow, Ciconia bovciana.

3. The soil depth of all samples is 10 cm, and the weight is 500 g, which is very small and has

no effect on the endangered species environment.

4. All sampling procedures were supervised by Director Zhu Shuyu of the Scientific Research

Department of the National Nature Reserve Administration of the Yellow River Delta,

Shandong Province, China.

Fig 1. The Yellow River Delta Nature Reserve and samples taken for the study of wetland biomass.

https://doi.org/10.1371/journal.pone.0210774.g001
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Sample collection

Field samples (n = 43) were collected in August 2014 during the peak growth time of meadow

and marsh biomass to identify the wetland growth status and obtain the highest correlation

with remote sensing data. At each sampling location (Fig 1), a square quadrat (1 m × 1 m)

made of polyethylene pipe was randomly thrown and the geographic coordinates of the center

of the square were recorded by means of a handheld global positioning system (GPS) receiver.

In addition, biomass coverage, vegetation type and average vegetation height within the square

were recorded. Fresh weight of the above-ground biomass was documented and one-third of

the above-ground biomass was sealed in plastic bags. At each sampling location, a topsoil sam-

ple (0–10 cm) was collected and placed in a plastic bag.

Soil and biomass analysis

Biomass samples were initially oven-dried -at 80 ˚C for 8 h. They were further dried in a dry-

ing oven for 4 h and then the biomass dry weight was determined. Soil moisture was measured

gravimetrically by means of a convection oven (105 ˚C). Furthermore, soil organic matter

(OM) was determined through potassium dichromate titration [28] and soil pH was estimated

in a 1:2 soil/water solution using a pH electrode. Nitrogen (N) concentration was determined

using the Kjeldahl method and available phosphorus (P) was extracted using sodium bicarbon-

ate and measured using photo-spectroscopy [29]. The amounts of water-soluble-salts were

measured using filter evaporation.

Remote sensing image extraction and processing

The remote sensing images were captured using the Landsat-8 Operational Land Imager

(OLI) on 20 July 2014. Since the study area shows relatively minor variations in topography,

the remote sensing images were processed using radiometric calibration, fast line-of-sight

atmospheric analysis of spectral hypercubes (FLAASH) atmospheric correction and irregular

image cutting[30]. Remote sensing data extraction was based on the reflectance of each band

and the vegetation indices. Among the 11 spectral bands of the images, spectral bands 1–6 and

the NDVI, DVI and RVI indices were selected due to their accuracy in imaging of coastal

biomass.

Biomass modeling

The RS retrieval model was established using the relationship between the vegetation index

and biomass. A simple linear model could not accurately estimate biomass due to the influence

of land use types, soil type and soil properties. Thus, before establishing the regression model,

the influences of land use types, such as basic farmland, were removed from the vegetation

coverage area to calibrate the results.

Using the Statistical Package for the Social Sciences (SPSS) software package, correlations

between each remote sensing factor and vegetative biomass were calculated. The type of model

chosen for each index was dependent upon the coefficient of determination. The highest corre-

lation coefficient was then used to select the regression model from among the linear regres-

sion, nonlinear regression and multiple linear regression models.

Multi-dimensional linear regression modeling is superior to other evaluation models when

eight factors (NDVI, DVI, RVI and spectral bands 1–5) rather than nine factors (by adding

spectral band 6), are used as independent variables, and the coefficient of determination of R2

= 0.69 was the highest achieved.
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The eight factors of the multivariate linear regression model were as follows:

Y ¼ 1335:203aþ 24279:102b � 124:008cþ 32189:511d � 32877:829eþ 3769:278f
þ 16212:176g � 18279:133h � 62:5ð1Þ

where a is NDVI, b is DVI, c is RVI, d is band 1, e is band 2, f is band 3, g is band 4 and h is

band 5.

The calculation of the average residual error coefficient was as follows:

Y ¼

Pn
i¼1

Bi � Bi
Bi

�
�
�

�
�
�

n
� 100% ð2Þ

Where B is the measured value, B̂ is predicted, Bi is the measured biomass dry weight of the

ith sample, B̂i is the predicted biomass dry weight of the i-th sample and n is the sample

population.

Because of the low precision of linear models, only multiple linear regression models were

established. The prediction accuracy of the model was tested by retaining ten samples in the

model. Average residual error coefficient has a negative relationship with predictive alignment

of the model; therefore, an average residual coefficient of 0.09 and predicted inosculation of

85.85% indicates that the model precision is higher, and that the model can be used to simulate

biomass in this area (Table 1).

Results and discussion

Vegetative biomass of the study area

The multiple linear regression models were then input to the ArcGIS grid calculator to gener-

ate a map showing the spatial distribution of vegetative biomass dry weight divided into five

classes, as according to natural break-point classification (Table 2).

The total estimated marsh and meadow biomass dry weight in the study area was 299,986

kg. Overall, an exponential inverse relationship between area extent and biomass quantity was

evident (Table 2; Fig 2). Most of the land (65.2%) fell within Class 1 with the lowest biomass,

followed by Class 2 (17.3%), Class 3 (12.0%), Class 4 (4.6%) and Class 5 (0.9%). The areas with

Table 1. Tests for accuracy of the biomass multivariable linear regression models.

Number 1 2 3 4 5 6 7 8 9 10 Comment

measured value 579.34 680.58 314.98 650.21 703.56 420.87 450.78 802.97 920.34 440.52 model precision

Goodness-of-prediction 85.85%

Mean residual coefficient

0.09

predicted value 611.56 531.35 379.66 637.92 687.50 494.84 416.94 779.35 1,018.12 476.90

residual error −32.22 149.23 −64.68 12.29 16.06 −73.97 33.84 23.62 −97.78 −36.38

https://doi.org/10.1371/journal.pone.0210774.t001

Table 2. Wetland classification and extent in the Yellow River Delta Nature Reserve based on dry weight of

biomass.

Classification Dry wt (g m−2) Area (km2) Extent (%)

1 < 319 401.2 65.2

2 319–502 106.6 17.3

3 502–711 74.0 12.0

4 711–1,064 28.5 4.6

5 > 1,064 5.3 0.9

https://doi.org/10.1371/journal.pone.0210774.t002
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the most biomass were located at the edge of an artificial woodland and farmland. Class 1 bio-

mass was primarily distributed in areas with poor water quality and soil salinity.

Spatial distribution of vegetative biomass

Vegetative biomass decreased with distance from the Yellow River and increased with dis-

tance from the sea. For the Yiqianer Station, vegetative biomass dry weight generally

decreased from southeast to northwest (Fig 2). Areas of high biomass were located in the

southern shrub swamps and marshes further from the coast and within wetland restoration

areas where biomass growth is more influenced by human activities. Low biomass areas were

located in the northern coastal muddy beaches and the ecological conservation areas. For the

site of the previous river course, vegetative biomass dry weight decreased with distance from

the riverbanks.

At Dawenliu Station, the course of the Yellow River from 1976–1996 and along the current

river course, vegetative biomass was found to be dense (Fig 2); however, the density of the for-

mer river course was found to be significantly higher than that of the latter river course. Dur-

ing the cut off in 1976–1996, the river deposits were mature and the groundwater level was

relatively high. However, the latter course which formed after 1996 remains in an early stage of

development and the groundwater level is lower. Furthermore, higher salt concentrations

occur near the coast and soil moisture is higher near the current course of the Yellow River.

Fig 2. Spatial distribution of biomass density in the Yellow River Delta Nature Reserve.

https://doi.org/10.1371/journal.pone.0210774.g002
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Effect of phragmites australis height on vegetative biomass

Feng and Zhao [19]found that the height of Phragmites australis (P. australis) in the YRD is

directly proportional to water depth. To obtain more CO2 during photosynthesis, the height of

vegetation will increase relative to water depth; therefore, P. australis height can reflect water

depth. As a result, the related features between P. australis height and biomass can indirectly

reflect the relationship between water depth and P. australis biomass.

The correlation coefficients between plant height and P. australis fresh and dry weights are

0.48 and 0.78, respectively, whereas the same correlation coefficients for Suaeda salsa (S.

salsa), a species of seepweed, are 0.28 and 0.19, respectively.

Effect of soil factors on vegetative biomass

The dry weight of P. australis was found to be negatively correlated with soil water soluble salt

and soil pH, indicating that these factors limit P. australis growth (Table 3). P. australis dry

weight was positively correlated with P, OM and N, with the strength of the correlation from

highest to lowest in that order, although soil moisture was found to have the highest positive

correlations with P, OM and N. Since the YRD Nature Reserve is influenced by erosion and

does not receive anthropological nutrient inputs, the soil layers are uniformly thin with little

OM accumulation and low N and P concentrations. Therefore, N and P concentrations were

not found to have a discernable correlation with P. australis dry weight. On the other hand,

soil moisture and salt concentrations were highly correlated with P. australis dry weight. This

illustrates that P. australis is well adapted to grow in weak alkaline soil environments.

The dry weight of S. salsa was positively correlated with soil OM, N, P and pH and nega-

tively correlated with water soluble salt and soil moisture. Since S. salsa is a halophyte and is

adapted to alkaline soil, positive correlations between S. salsa dry weight and pH and soil mois-

ture were evident. Soil water soluble salt concentrations are relatively high in many places near

the coastal areas. Therefore, it is reasonable to assume a higher abundance of S. salsa would be

found in regions with high concentrations of water soluble salt. However, in reality, since high

soil moisture would also be found in areas with high water soluble salt concentration, the den-

sity and overall biomass of S. salsa is low.

Overall, the dry weights of P. australis and S. salsa were predominantly controlled by mois-

ture, i.e., soil moisture was positively and negatively correlated with the growths of P. australis
and S. salsa, respectively.

Effect of species diversity on vegetative biomass

The Simpson Diversity Index (SDI), Richness Index (RI) and Shannon Index (SI) are com-

monly used to classify species diversity. These diversity indices were positively correlated with

wet and dry vegetation weight (Table 4), with dry weight data showing higher correlation coef-

ficients than fresh weight data. SI had the highest correlation with biomass weight, followed by

SDI and then RI. Although SI accounts for the number of species, each species has equal

Table 3. Correlation coefficients of two plant species and soil properties in the Yellow River Delta Nature Reserve wetlands.

OM Available N Available P Water-Soluble Salt pH Moisture%

Phragmites australis 0.087 0.127 0.023 −0.159 −0.159 0.387

Suaeda salsa 0.011 0.013 0.23 −0.013 0.069 −0.314

Abbreviations: organic matter (OM); nitrogen (N); phosphorus (P)

https://doi.org/10.1371/journal.pone.0210774.t003
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weight. When the number of species and species distribution have little diversity, SI can accu-

rately classify vegetative biomass.

Using these techniques, the spatial distribution and correlations of several driving factors of

wetland vegetative biomass in the YRD Nature Reserve was explored. Zeng et al. [31] showed

that biomass varies with elevation; however, elevation changes were not accounted for since

changes in topography of the study area are minor. Among environmental factors, P. australis
height had the greatest effect on P. australis biomass and there was no significant effect of OM

and P. Soil water had the greatest effect on S. salsa biomass and OM had no significant effect

(Fig 3). This shows that plant height and soil moisture are the key factors controlling P. austra-
lis and S. salsa growth, respectively. Although P. australis is well adapted to saturated condi-

tions, S. salsa is less tolerant of salinity. The present study illustrated that not only the number

of species, but also the spatial distribution of species is important for robust restoration and

protection of biomass in the YRD.

Conclusion

Using improved analysis techniques, stronger correlations between biomass dry weight and

remote sensing data were obtained. Due to the unique hydrological relationship between soil

Table 4. Correlation coefficients showing the relationship between Simpson’s diversity Index (SDI), Shannon’s

Index (SI) and Richness Index (RI) with biomass in the Yellow River Delta Nature Reserve wetlands.

SDI SI RI

Fresh wt. 0.318� 0.335� 0.230

Dry wt. 0.417�� 0.449�� 0.293

� significant at p� 0.1 levels;

�� significant at p� 0.05.

https://doi.org/10.1371/journal.pone.0210774.t004

Fig 3. Radial map of the correlation coefficient of two vegetative species and selected environmental factors in the

Yellow River Delta Nature Reserve wetlands.

https://doi.org/10.1371/journal.pone.0210774.g003
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and plants in wetlands, the actual biomass weight of perennial aquatic plants such as P. austra-
lis is lower than what field sampling can accurately reflect. Therefore, drying in the laboratory

is a more accurate reflection of vegetative biomass in wetlands.

By employing multiple regression models, we were able to achieve stronger correlations

and higher model fits with DVI, RVI, NDVI and spectral bands 1–5 as independent variables.

The spatial distribution of vegetation dry weight was significantly correlated with various envi-

ronmental factors, among which P. australis height had the greatest effect on P. australis bio-

mass and P. Soil water had the greatest effect on S. salsa biomass, which illustrates that plant

height and soil moisture are the key factors controlling P. australis and S. salsa growth, respec-

tively, whereas both factors were positively correlated with vegetative biomass. At the same

time, species diversity had a significant effect on biomass dry weight, thereby illustrating that

the number of species and the evenness of the spatial distribution of species affect vegetative

biomass. Thus, to promote the restoration and growth of biomass in natural areas, it is neces-

sary to control soil moisture and salt concentrations to increase species distribution and bio-

mass density.
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